The effectiveness of preoperative rehabilitation programmes on postoperative outcomes following anterior cruciate ligament (ACL) reconstruction: a systematic review.

Hayley Carter (hayley.carter1@nhs.net)
University Hospitals of Derby and Burton NHS Foundation Trust
https://orcid.org/0000-0002-0837-0802

Chris Littlewood
Manchester Metropolitan University

Kate Webster
La Trobe University

Benjamin Smith
University Hospitals of Derby and Burton NHS Foundation Trust

Research article

Keywords: Anterior Cruciate Ligament (ACL), Rehabilitation, Postoperative outcomes, Systematic Review

DOI: https://doi.org/10.21203/rs.3.rs-48839/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background To explore the effectiveness of preoperative rehabilitation programmes (PreHab) on postoperative physical and psychological outcomes following anterior cruciate ligament reconstruction (ACLR).

Method A systematic search was conducted from inception to November 2019. Randomised controlled trials (RCTs) published in English were included. Risk of bias was assessed using Version 2 of the Cochrane risk-of-bias tool, and the Grading of Recommendations Assessment system was used to evaluate the quality of evidence.

Results The search identified 739 potentially eligible studies, three met the inclusion criteria. All included RCTs scored ‘high’ risk of bias.

PreHab in all three RCTs was an exercise programme, each varied in content (strength, control, balance and perturbation training), frequency (10 to 24 sessions) and length (3.1- to 6-weeks).

Statistically significant differences (p<0.05) were reported for quadriceps strength (one RCT) and single leg hop scores (two RCTs) in favour of PreHab three months after ACLR. One RCT reported no statistically significant between-group difference for pain and function. No RCT evaluated post-operative psychological outcomes.

Conclusion Low-quality evidence suggests that PreHab that includes muscular strength, balance and perturbation training offers a small benefit to quadriceps strength and single leg hop scores three months after ACLR. There is no consensus on the optimum PreHab programme content, frequency and length; this requires future consideration including the development of PreHab programmes that consider psychosocial factors and the measurement of relevant post-operative outcomes such as psychological readiness.

PROSPERO trial registration number CRD42020162754

1. Background

The anterior cruciate ligament (ACL) is the most commonly injured ligament in the knee with annual incidence rates of ruptures reported at 68.6 per 100,000[1]. ACL ruptures are commonly treated with surgical reconstruction[2] which aims to restore knee stability and maximise functional capacity to allow individuals to return to their preinjury level of physical activity[3]. Prior to ACLR, preoperative rehabilitation, commonly termed prehabilitation (PreHab), has been suggested to physically and mentally prepare patients for surgery and postoperative rehabilitation[4, 5].

No previous systematic review has specifically evaluated the effectiveness of PreHab on postoperative outcomes. A 2017 systematic review did investigate prehabilitation, but of the included eight RCTs only two included post-operative outcomes and not all RCTs included surgery in the treatment pathway[6].

Return to sports participation after ACLR is commonly cited in the literature to be inadequate despite patients achieving a successful functional outcome[3, 7, 8]. A recent cohort study revealed that at 1-year post-surgery, only 24% of individuals (n = 675) had returned to their pre-injury level of sport despite 91% reporting preoperatively to expect to return[9]. Reasons for failing to return have also been reported in the literature, with psychological barriers commonly cited as potential causes[3, 10–16]. A number of authors have identified the need to address these psychological barriers, however, research has focused on utilising psychological scores as predictors of return to physical activity outcomes as opposed to considering how to address them[3, 9, 10, 15–18].

Therefore, the primary aim of this systematic review was to evaluate the effectiveness of PreHab on postoperative outcomes, including psychological outcomes following ACLR.

2. Methods

This systematic review was registered with the International Prospective Register of Systematic Reviews (PROSPERO 2020 CRD42020162754; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020162754) and reported following the PRISMA statement (available in supplementary file 1)[19].

2.1 Search Strategy

Articles were identified via an electronic search of the following six databases: CINAHL, AMED, PsycINFO, Medline and SPORTDiscus via EBSCOhost and Web of Science from inception to November 2019. Databases were searched in addition to the reference lists of included articles and the grey literature via OpenGrey, ClinicalTrials.gov and WHO International Clinical Trials Registry Platform. The search strategy
used a range of keywords in three categories (1) ACL (2) preoperative interventions (3) post-operative outcomes and were combined using Boolean operators (search strategy available in supplementary file 2).

2.2 Study Selection
Articles were imported into a reference management software and duplicates were removed. One reviewer (HC) independently reviewed titles and abstracts for eligibility against predetermined criteria. The full text articles were independently screened by two reviewers (HC and BS). Inclusion agreement was 100%. For inclusion, the studies had to meet the following eligibility criteria:

Participants any age or sex undergoing primary ACLR

Intervention any therapy intervention completed prior to ACLR

Outcomes any outcome relating to pain, disability, function or psychological status post ACLR

Study Design randomised controlled trials (RCTs) only

Language English only

2.3 Assessment of Methodological Quality
The methodological quality of each study was independently assessed by 2 reviewers (HC and BS), with a third reviewer available to resolve discrepancies. Version 2 of the Cochrane risk-of-bias (ROB-2) tool for RCTs was used in addition to the GRADE assessment[20, 21].

The Cochrane Risk of Bias tool was originally developed in 2008, and most recently updated in 2019 to the ROB-2 tool[22]. It includes five domains that aim to assess bias relating to: the randomisation process, deviations from intended intervention, missing outcome data, measurement of the outcome and selection of the reported result. The excel implementation tool was used which allows an answer of ‘yes’, ‘probably yes’, ‘probably no’, ‘no’ or ‘no information’ to be inputted for each question with an algorithm used to suggest the level of bias for each domain. An overall judgement from the five domains is calculated to determine ‘low risk’, ‘some concerns’ or ‘high risk’ for each individual study.

The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was also used to rate each outcome[20, 21]. The outcomes were assessed and reported as one of four grades, shown in Table 1.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>We are very confident that the true effect lies close to that of the estimate of the effect.</td>
</tr>
<tr>
<td>Moderate</td>
<td>We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different</td>
</tr>
<tr>
<td>Low</td>
<td>Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect.</td>
</tr>
<tr>
<td>Very Low</td>
<td>We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect</td>
</tr>
</tbody>
</table>

With reference to the GRADE handbook[21], each outcome starts at a ‘high’ grade as all derive from a RCT study design. Outcomes are then downgraded as appropriate based on five domains (1) Study limitations (2) Inconsistency (3) Indirectness (4) Imprecision and (5) publication bias.

2.4 Data Extraction
Data were extracted by one reviewer (HC) in relation to study location, sample size and population, intervention and setting, outcome measures and data collection time points, and results. Where necessary, authors were contacted to request further data where that reported in the published article or supplementary material were deemed insufficient. The data extraction table was verified by a second reviewer (BS).

2.5 Data Analysis
The extracted data were assessed for clinical heterogeneity. Regards to differences in exercise interventions investigated, study populations and outcome measures, it was deemed that included studies were not homogenous, and thus, a meta-analysis could not be completed. Although quadriceps strength was assessed in all three RCTs, the assessment method varied between studies, and therefore raw data were not requested. Single leg hop was assessed in two RCTs but reporting measures differed; therefore, both authors were contacted via the
corresponding email provided on publication for raw data[23, 24]. One author[23] responded and provided the original data for the study however, the other author[24] did not respond after three months. Where statistical significance was found, the standardised mean difference (SMD) was calculated to determine effect size using the OpenMetaAnalyst software[25]. As per Cohen[26], the effect size interpretation was greater than or equal to 0.2 for ‘small’, greater than or equal to 0.5 for ‘medium’ and greater than or equal to 0.8 for ‘large’.

3. Results

The study selection process is presented in Fig. 1. The initial database search yielded 736 articles. After duplicates were removed, 392 articles were screened for inclusion. No additional articles were found from the screening of unpublished searches. After title and abstract screening, nine full-text articles were assessed for eligibility. Six were excluded due to study design. Three further articles were found from reference list screening of which two were duplicates; the remaining article was deemed to meet the inclusion criteria by both reviewers (HC and BS) and was included. The total number of RCTs included was three[23, 24, 27].

3.1 Characteristics of the Included Studies

The characteristics of the three included RCTs are summarised in Table 2.

The three RCTs investigated a total of 122 participants, of which 116 (95%) were male. Two RCTs excluded female participants[23, 24]. Two RCTs included a PreHab group compared to a control group who received no preoperative exercise programme[23, 24]. The remaining RCT compared two different preoperative exercise protocols[27]. No RCT utilised a psychological outcome measure.

All RCTs evaluated quadriceps strength. Two RCTs utilised a single leg hop for distance test[24, 27]. One RCT assessed knee excursion during the mid-stance phase of gait to report between limb symmetry[27]. One RCT also reported hamstring strength, Tegner-Lysholm Score, Modified Cincinnati Knee Rating System and time to return to sport (RTS)[23]. All RCTs included pre- and post-operative outcome measures although time-points at which they were assessed varied.

Table 2 – Characteristics of Included Studies
<table>
<thead>
<tr>
<th>Authors, Year of Publication and Study Location</th>
<th>Sample Size and Study Population</th>
<th>Intervention and Setting</th>
<th>Outcome Measures and Data Collection Time Points</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartigan, Axe and Snyder-Mackler (2009)[27]</td>
<td>n = 19 13 males, 6 females. Age range 17-50. Subjects were recruited from the University of Delaware Physical Therapy Clinic, USA, and were referred into the study by one surgeon. Inclusion criteria: (a) Regular participation in Level I and II activities (b) Subject classified as ‘non-copers’ following a screening examination Exclusion criteria: (a) Full thickness chondral defect >1cm (b) repairable meniscal tears (c) Concomitant grade III ruptures to other knee ligaments</td>
<td>Subjects were randomly assigned to 2 groups: 1. Perturbation group (PERT) (n=9) 6 males and 3 females (28 ± 10.7 years), averaging 9.8 ± 9.5 weeks from the time of injury to the screen 2. Strengthening group (STR) (n = 10) 7 males and 3 females (30 ± 9.4 year), averaging 12.6 ± 13.1 weeks from the time of injury to the screen No subjects exercised their lower extremities outside of therapy while participating in the preoperative intervention phase.</td>
<td>Quadriceps strength index (involved/uninvolved side) was calculated and reported as a percentage using the highest quadriceps maximum volitional isometric contraction (MVIC) force output from each limb. Knee excursion (obtained by calculating peak knee extension minus peak knee flexion) during the mid-stance phase of gait were measured. Data were collected prior to the intervention and at 6 months postoperatively.</td>
<td>Quadriceps strength indexes improved over time (F = 16.5, observed power = 0.961, p = 0.002). Quadriceps strength indexes before intervention (Pert: 87.2%; Str: 75.8%) improved 6 months after ACL reconstruction in both groups (Pert: 97.1%; Str: 94.4%). Knee Excursion Significant differences were found in knee excursions between limbs (F = 13.96, observed power = 0.96, p = 0.001) and over time (F = 7.52, observed power = 0.73, p = 0.014). Knee excursions at mid-stance were smaller on the involved side prior to surgery in both groups. The involved limb moved through less flexion in the perturbation group (Mean: 5.98; 95% CI: 10.2 to 1.5; p = 0.026) and strength group (Mean: 5.68; 95% CI: 10.5 to 0.06; p = 0.031). The perturbation group demonstrated an increase in knee excursion at midstance compared to the uninvolved side, resulting in no significant difference between limbs 6 months after surgery (Mean: 3.58; 95% CI: 8.3 to -1.4; p=0.14). The mid-stance knee excursions continued to be significantly different between limbs in the strength group 6 months after surgery (Mean: 7.08; 95% CI: 11.6 to 2.5; p=0.007).</td>
</tr>
<tr>
<td>Kim, Hwang and Park (2015)[24]</td>
<td>n = 80 80 males, 0 females. Mean age 27.8 ± 5.7</td>
<td>Subjects were randomly assigned to 2 groups: 2. STR group received 10 sessions of progressive quadriceps strength training only (average 3.1 weeks to complete). After the 10 preoperative sessions, ACLR was performed using either semitendinosus-gracilis autograft or soft tissue allograft. The University of Delaware postoperative ACL protocol was followed regardless of group.</td>
<td></td>
<td>Knee extensor strength deficit (%) 60/s: Preoperative Knee extensor strength deficit (calculated as the percentage difference between the uninjured and injured limb) and the limb symmetry index (LSI) for single leg hop distance were measured at 4 weeks before surgery and 3 months after surgery.</td>
</tr>
</tbody>
</table>
1. Preoperative exercise group (PEG) (n = 40)

2. No preoperative exercise group (NPEG) (n = 40)

PEG participated in a 4-week exercise programme preoperatively and in a 12-week postoperative programme.

The preoperative programme focused mainly on strengthening with particular attention paid to the quadriceps muscle, functional balance, muscle control and co-contraction. The exercise programme was however, adapted to meet patient specific conditions and needs, but included stationary bike, range of movement exercises, open and close chain strengthening exercises and balance/proprioception exercises.

NPEG participated in the 12-week postoperative programme only. Postoperatively:

- 0-2 weeks: operated limb immobilised in a functional brace, subjects instructed to complete straight leg raises and quadriceps setting exercises.
- 2-4 weeks: subjects were allowed to complete partially weight bearing exercises and move through full knee joint range of movement.
- 4+ weeks: subjects able to complete closed chain exercises

Knee extensor strength was measured through the range of 0-90° at an angular speed of 60°/s, 4 repetitions completed at an angular speed of 180°/s, with 20 repetitions completed to calculate average power. The highest peak torque value for each velocity was compared with the uninjured side and described as percent of strength deficit.

The mean average distance was calculated for the single leg hop test and was quantified by LSI using the formula: distance for uninjured leg / distance for injured leg) x 100.

- 0.228 ± 13.7 for PEG and 23.5 ± 15.8 for NPEG.
- 0.285 ± 9.0 for PEG and 36.5 ± 10.7 for NPEG.

Knee extensor strength deficits were significantly different between the groups at both angular velocities (60°/s; p = 0.018, 180°/s; p = 0.033).

Subjects in the PEG showed a significantly greater improvement in postoperative strength than the NPEG at 60°/s and 180°/s.

Single leg hop LSI (%)

- **Preoperative:**
 - 75.1 ± 10.3 PEG and 76.5 ± 8.9 NPEG
- **Postoperative:**
 - 85.3 ± 7.4 PEG and 80.5 ± 9.6 NPEG

The PEG showed significant improvement in the single leg hop distance test (p=0.029).

IRELAND

Shaarani et al. (2013)

Mean age:
- Exercise group: 27.55 ± 7.85
- Control group: 32 ± 8.3

Subjects were recruited from 2 orthopaedic centres, Dublin, Republic of Ireland.

Inclusion criteria:
- (a) Associated fractures
- (b) Meniscal repair
- (c) Associated collateral ligament injury requiring repair/reconstruction
- (d) Comorbidities that would be contraindicated with high physical exertion
- (e) Living outside the Greater Dublin area

Subjects were randomly assigned to 2 groups:

1. 6-week gym- and home-based preoperative exercise (prehabilitation) group (n=11)
2. Control group (n=9)

There was no significant difference in age, height, weight, body mass index and Tegner activity level before and after injury between the groups at baseline.

The **prehabilitation group** completed a 6-week supervised resistance and balance training programme. This consisted of 4 exercise periods per week: 2 supervised gym sessions and 2 supervised home sessions.

The **control group** were not discouraged to do any exercise or normal activity of daily living but were asked to keep a record of exercise activity performed during the weeks before surgery. All patients had an ACLR performed by one surgeon using a standard bone-patellar tendon-bone graft.

Single leg hop distance (the best distance from 3 jumps), **quadriceps and hamstring peak torque** (measured at an angular speed of 90°/s), and **quadriceps cross sectional area** (CSA) (measured using magnetic resonance imaging [MRI]) were assessed at baseline, before the ACLR and 12 weeks postoperatively. Pain and function were also assessed using the **Modified Cincinnati Knee Rating System** at all 3 time points. The Tegner activity level was also completed although authors lacked clarity regarding time points taken. The **Tegner-Lysholm Knee Score** was also taken at all 3 time points.

- **Preoperative:**
 - 180°/s: 23.3 ± 9.0 PEG and 27.9 ± 12.6 NPEG

Knee extensor strength deficits were significantly different between the groups at both angular velocities (60°/s; p = 0.018, 180°/s; p = 0.033).

The PEG showed significant improvement in the single leg hop distance test compared to baseline (p=0.001).

Preoperative score (mean ± SD) was 183.1 ± 15.55 compared to the control group (156.0 ± 42.98) (p = 0.15).

At 12-weeks postoperatively, the single leg hop scores were reduced for both
Both groups undertook a standard postoperative physiotherapy programme. This was split into 6 phases over a 12 week period and progressed from early exercises to improve knee joint range of movement, weight bearing ability and gait to increasing strength, proprioception and balance.

Groups but the prehabilitation group (144.91 ± 15.52) had significantly higher scores compared to the controls (113.33 ± 25.54) (p = 0.001).

Quadriceps Peak Torque

Quadriceps peak torque increased significantly from baseline to the preoperative time point in the injured (p=0.001) and uninjured limb (p=0.009).

In the prehabilitation group, there was a significant decrease in quadriceps peak torque of the injured limb at 12 weeks postoperatively compared with baseline (p=0.042) and preoperative (p<0.001) time points.

There were no statistically significant differences between the prehabilitation and control group for the injured limb at any time point.

Hamstring Peak Torque

Hamstring peak torque increased significantly in the injured limb from baseline to preoperatively for both the prehabilitation group (p=0.034) and control group (p<0.001).

No significant differences were found for hamstring peak torque between groups at both pre- and postoperative time points.

Modified Cincinnati Knee Rating System

The prehabilitation group scores increased significantly from baseline (62.6) to the preoperative time point (76.5) (p=0.004) to 12-weeks postoperatively (85.3) (p = 0.001).

The mean score at 12 weeks
postoperatively was significantly higher (p = 0.004) for the prehabilitation group (85.3) compared with the controls (77.7).

Tegner-Lysholm Knee Score
The prehabilitation group scores increased significantly at all time points from baselines (p=0.006).

There was no significant difference between group scores at any time point.

Time to Return to Sport (RTS)
The mean time (SD) to RTS was 42.5 weeks (10.46) for the control group and 34.18 weeks (4.14) for the prehabilitation group. This difference was not significant (p=0.055).

3.2 Assessment of Methodological Quality and Risk of Bias

A summary of the risk of bias assessment is shown in Figs. 2 and 3. Percentage agreement between the two reviewers (HC and BS) for the individual risk of bias domains for the Cochrane ROB-2 tool was 83%; calculating Cohen’s kappa statistic, the agreement was k = 0.73, which is considered substantial[28]. Disagreements were resolved through discussion.

Overall, all RCTs scored a high risk of bias and all RCTs had at least two ‘high risk of bias’ domain scores (Fig. 2). All studies were high risk for ‘deviations from intended interventions’ and ‘measurement of the outcome’ (Fig. 3). Common omissions across studies for these two domains included lack of detail with regard to study protocol and lack of blinding of participants and study personnel.

Shaarani et al[23] scored low risk for the ‘randomisation process’ domain as they reported sufficient detail with regard to the randomisation of study participants whereas Kim, Hwang and Park[24] and Hartigan, Axe and Snyder-Mackler[27] did not. All three RCTs failed to report whether deviations arose from the intended interventions and only the protocol for Shaarani et al[23] study was available for comparison between final study procedures and that planned in the protocol.

Only one RCT[24] scored ‘low risk’ for ‘missing outcome data’ as all participants could be accounted for in the data table provided. Hartigan, Axe and Snyder-Mackler[27] failed to declare a drop-out rate and although Shaarani et al[23] reported 3 drop-outs (13% of study participants), they excluded their data from analysis and thus did not utilise intention-to-treat approach, introducing a high risk of bias.

The Grading of Recommendations Assessment, Development and Evaluation (GRADE) was also used to assess the certainty of evidence relating to individual outcome measures. Two reviewers (HC and BS) assessed these domains and agreement was reached by consensus. The results are shown in Table 3. The quality of evidence was rated as ‘very low’ for all outcomes due to trial design limitations and low participant numbers for all outcomes. Publication bias was not assessed as funnel plot asymmetry should only be used when there are ten or more studies included[29].
<table>
<thead>
<tr>
<th>Authors, Year of Publication and Study Location</th>
<th>Sample Size and Study Population</th>
<th>Intervention and Setting</th>
<th>Outcome Measures and Data Collection Time Points</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartigan, Axe and Snyder-Mackler (2009)[27]</td>
<td>n = 19</td>
<td>Subjects were randomly assigned to 2 groups:</td>
<td>Quadriiceps strength index (involved/uninvolved side) was calculated and reported as a percentage using the highest quadriiceps maximum volitional isometric contraction (MVIC) force output from each limb.</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>13 males, 6 females. Age range 17–50.</td>
<td>1. Perturbation group (PERT) (n = 9) 6 males and 3 females (28 ± 10.7 years), averaging 9.8 ± 9.5 weeks from the time of injury to the screen</td>
<td>Knee excursion (obtained by calculating peak knee extension minus peak knee flexion) during the mid-stance phase of gait were measured.</td>
<td>Quadriceps strength indexes improved over time (F = 16.5, observed power = 0.961, p = 0.002).</td>
</tr>
<tr>
<td></td>
<td>Subjects were recruited from the University of Delaware Physical Therapy Clinic, USA, and were referred into the study by one surgeon.</td>
<td>2. Strengthening group (STR) (n = 10) 7 males and 3 females (30 ± 9.4 year), averaging 12.6 ± 13.1 weeks from the time of injury to the screen</td>
<td>Data were collected prior to the intervention and at 6 months postoperatively.</td>
<td>Quadriceps strength indexes before intervention (Pert: 87.2%; Str: 75.8%)</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: (a) Regular participation in Level I and II activities (b) Subject classified as 'non-copers' following a screening examination</td>
<td>No subjects exercised their lower extremities outside of therapy while participating in the preoperative intervention phase.</td>
<td>Knee excursions at mid-stance were smaller on the involved side prior to surgery in both groups (Pert: 97.1%; Str: 94.4%).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: (a) Full thickness chondral defect > 1 cm (b) reparable meniscal tears (c) Concomitant grade III ruptures to other knee ligaments</td>
<td>1. PERT group received 10 sessions of physical therapy including specialized neuromuscular exercises involving systematic translation of support surfaces and progressive quadriceps strength training (average 3.7 weeks to complete). The University of Delaware guidelines for perturbation training were followed.</td>
<td>The involved limb moved through less flexion in the perturbation group (Mean: 5.98; 95% CI: 10.2 to 1.5; p = 0.026) and strength group (Mean: 5.68; 95% CI: 10.5 to 0.06; p = 0.031).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>After the 10 preoperative sessions, ACLR was performed using either semitendinosus-gracilis autograft or soft tissue allograft. The University of Delaware postoperative ACL protocol was followed regardless of group.</td>
<td>2. STR group received 10 sessions of progressive quadriceps strength training only (average 3.1 weeks to complete).</td>
<td>The perturbation</td>
<td></td>
</tr>
</tbody>
</table>

(To be included on page 12 as indicated in the main text body)
Results

The mid-stance knee excursions demonstrated an increase in knee excursion at midstance compared to the uninvolved side, resulting in no significant difference between limbs 6 months after surgery (Mean: 3.58; 95% CI: 8.3 to -1.4; p = 0.14).

The mid-stance knee excursions continued to be significantly different between limbs in the strength group 6 months after surgery (Mean 7.08; 95% CI: 11.6 to 2.5; p = 0.007).

Knee extensor strength deficit

(To be included on page 12 as indicated in the main text body)

<table>
<thead>
<tr>
<th>Authors, Year of Publication and Study Location</th>
<th>Sample Size and Study Population</th>
<th>Intervention and Setting</th>
<th>Outcome Measures and Data Collection Time Points</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim, Hwang and Park (2015)[24] Korea</td>
<td>n = 80</td>
<td>Subjects were randomly assigned to 2 groups:</td>
<td>Knee extensor strength deficit (calculated as the percentage difference between the uninjured and injured limb) and the limb symmetry index (LSI) for single leg hop distance were measured at 4 weeks before surgery and 3 months after surgery.</td>
<td>Knee extensor strength deficit (%) 60°/s:</td>
</tr>
<tr>
<td></td>
<td>80 males, 0 females. Mean age 27.8 ± 5.7</td>
<td>1. Preoperative exercise group (PEG) (n = 40)</td>
<td>Preoperative: • 22.8 ± 13.7 for PEG and 23.5 ± 15.8 for NPEG.</td>
<td>Preoperative: • 22.8 ± 13.7 for PEG and 23.5 ± 15.8 for NPEG.</td>
</tr>
<tr>
<td></td>
<td>Subjects were recruited from the Samsung Medical Orthopaedics Centre, Sungkyunkwan, South Korea.</td>
<td>2. No preoperative exercise group (NPEG) (n = 40)</td>
<td>Postoperative: • 28.5 ± 9.0 for PEG and 36.5 ± 10.7 for NPEG</td>
<td>Postoperative: • 28.5 ± 9.0 for PEG and 36.5 ± 10.7 for NPEG</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: (a) Male (b) Aged 20–35 (c) isolated ACL rupture</td>
<td>PEG participated in a 4-week exercise programme preoperatively and in a 12-week postoperative programme.</td>
<td>Knee extensor strength was measured through the range of 0-90° at an angular speed of 60°/s, 4 repetitions completed at an angular speed of 180°/s, with 20 repetitions completed to calculate average power. The highest peak torque value for each velocity was compared with the uninjured side and described as percent of strength deficit.</td>
<td>Knee extensor strength deficit (%) 180°/s:</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: (a) Previous ACLR or meniscus repair (b) Injury to other ligaments in the same knee (c) Associated fractures</td>
<td>The preoperative programme focused mainly on strengthening with particular attention paid to the quadriceps muscle, functional balance, muscle control and co-contract. The exercise programme was however, adapted to meet patient specific conditions and needs, but included stationary bike, range of movement exercises, open and close chain strengthening exercises and balance/proprioception exercises</td>
<td>The mean average distance was calculated for the</td>
<td>Preoperative: • 16.6 ± 10.6 PEG and 17.5 ± 11.9 NPEG</td>
</tr>
<tr>
<td></td>
<td>(To be included on page 12 as indicated in the main text body)</td>
<td></td>
<td>Knee extensor strength deficits were significantly</td>
<td></td>
</tr>
<tr>
<td>Authors, Year of Publication and Study Location</td>
<td>Sample Size and Study Population</td>
<td>NPEG Intervention and Setting</td>
<td>Outcome Measures and Data Collection Time Points</td>
<td>Results</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Shaarani et al. (2013)[23]</td>
<td>n = 23 (3 drop-outs), Mean age:</td>
<td>Subjects were randomly assigned to 2 groups:</td>
<td>single leg hop test and was quantified by LSI using the formula: distance for uninjured leg/distance for injured leg) x 100.</td>
<td>different between the groups at both angular velocities (60°/s; p = 0.018, 180°/s; p = 0.033). Subjects in the PEG showed a significantly greater improvement in postoperative strength than the NPEG at 60°/s and 180°/s.</td>
</tr>
<tr>
<td>Ireland</td>
<td>Exercise group 27.55 ± 7.85 Control group 32 ± 8.3</td>
<td>1. 6-week gym- and home-based preoperative exercise (prehabilitation) group (n = 11)</td>
<td></td>
<td>Single leg hop LSI (%):</td>
</tr>
<tr>
<td></td>
<td>Subjects were recruited from 2 orthopaedic centres, Dublin, Republic of Ireland.</td>
<td>2. Control group (n = 9)</td>
<td>Preoperative:</td>
<td>Postoperative:</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria:</td>
<td>There was no significant different in age, height, weight, body mass index and Tegner activity level before and after injury between the groups at baseline.</td>
<td></td>
<td>• 75.1 ± 10.3 PEG and 76.5 ± 8.9 NPEG</td>
</tr>
<tr>
<td></td>
<td>(a) Male</td>
<td>The prehabilitation group completed a 6-week supervised resistance and balance training programme.</td>
<td></td>
<td>Postoperative:</td>
</tr>
<tr>
<td></td>
<td>(b) Aged 18–45</td>
<td>This consisted of 4 exercise periods per week: 2 supervised gym sessions and 2</td>
<td></td>
<td>• 85.3 ± 7.4 PEG and 80.5 ± 9.6 NPEG</td>
</tr>
<tr>
<td></td>
<td>(c) Isolated ACL tear</td>
<td></td>
<td></td>
<td>The PEG showed significant improvement in the single leg hop distance test (p = 0.029).</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria:</td>
<td></td>
<td></td>
<td>Single Leg Hop Distance</td>
</tr>
<tr>
<td></td>
<td>(a) Associated fractures</td>
<td></td>
<td></td>
<td>The prehabilitation group had a statistically significant improvement in single leg hop distance preoperatively compared to baseline (p = 0.01).</td>
</tr>
</tbody>
</table>

| | (To be included on page 12 as indicated in the main text body) | | | The mean preoperative score (mean ± SD) was higher for the prehabilitation group (183.1 ± 15.5) compared to the control group (156.0 ± |

Postoperatively:

- 0–2 weeks: operated limb immobilised in a functional brace, subjects instructed to complete straight leg raises and quadriceps setting exercises.
- 2–4 weeks: subjects were allowed to complete partially weight bearing exercises and move through full knee joint range of movement.
- 4+ weeks: subjects able to complete closed chain exercises.

The prehabilitation group had a statistically significant improvement in single leg hop distance preoperatively compared to baseline (p = 0.01).

The mean preoperative score (mean ± SD) was higher for the prehabilitation group (183.1 ± 15.5) compared to the control group (156.0 ± 13.1).
<table>
<thead>
<tr>
<th>Authors, Year of Publication and Study Location</th>
<th>Sample Size and Study Population</th>
<th>Intervention and Setting</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) Meniscal repair</td>
<td>The control group were not discouraged to do any exercise or normal activity of daily living but were asked to keep a record of exercise activity performed during the weeks before surgery.</td>
<td>Tegner-Lysholm Knee Score was also taken at all 3 time points.</td>
<td>42.98 (p = 0.13).</td>
</tr>
<tr>
<td>(c) Associated collateral ligament injury requiring repair/reconstruction</td>
<td>All patients had an ACLR performed by one surgeon using a standard bone-patellar tendon-bone graft. Both groups undertook a standard postoperative physiotherapy programme. This was split into 6 phases over a 12 week period and progressed from early exercises to improve knee joint range of movement, weight bearing ability and gait to increasing strength, proprioception and balance.</td>
<td>At 12-weeks postoperatively, the single leg hop scores were reduced for both groups but the prehabilitation group (144.91 ± 15.52) had significantly higher scores compared to the controls (113.33 ± 25.54) (p = 0.001).</td>
<td></td>
</tr>
<tr>
<td>(d) comorbidities that would be contraindicated with high physical exertion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) living outside the Greater Dublin area</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(To be included on page 12 as indicated in the main text body)
<table>
<thead>
<tr>
<th>Authors, Year of Publication and Study Location</th>
<th>Sample Size and Study Population</th>
<th>Intervention and Setting</th>
<th>Outcome Measures and Data Collection Time Points</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>significant differences between the prehabilitation and control group for the injured limb at any time point.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hamstring Peak Torque</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hamstring peak torque increased significantly in the injured limb from baseline to preoperatively for both the prehabilitation group (p = 0.034) and control group (p < 0.001).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No significant differences were found for hamstring peak torque between groups at both pre- and postoperative time points.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modified Cincinnati Knee Rating System</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The prehabilitation group scores increased significantly from baseline (62.6) to the preoperative time point (76.5) (p = 0.004) to 12-weeks postoperatively (85.3) (p = 0.001).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The mean score at 12 weeks postoperatively was significantly higher (p = 0.004) for the prehabilitation group (85.3) compared with the controls (77.7).</td>
</tr>
</tbody>
</table>

(To be included on page 12 as indicated in the main text body)
<table>
<thead>
<tr>
<th>Study Design</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limitations*</td>
<td>Inconsistency†</td>
<td>Indirectness‡</td>
<td>Imprecision‡</td>
<td>Very Low</td>
</tr>
<tr>
<td>Limitations*</td>
<td>Inconsistency†</td>
<td>Indirectness‡</td>
<td>Imprecision‡</td>
<td>Very Low</td>
</tr>
<tr>
<td>Limitation*</td>
<td>Inconsistency§</td>
<td>No Indirectness</td>
<td>Imprecision§</td>
<td>Very Low</td>
</tr>
<tr>
<td>Limitations†</td>
<td>Inconsistency§</td>
<td>No Indirectness</td>
<td>Imprecision§</td>
<td>Very Low</td>
</tr>
<tr>
<td>Limitations†</td>
<td>Inconsistency§</td>
<td>No Indirectness</td>
<td>Imprecision§</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

*Lack of allocation concealment, lack of blinding and personnel, incomplete accounting of patients and outcome events

(To be included on page 12 as indicated in the main text body)
Pre-operative protocols differed across all three RCTs. The number of sessions varied from ten to 24 and were completed over varying time frames. Hartigan, Axe and Snyder-Mackler[27] did not set participants a fixed number of sessions to complete per week only that ten sessions were to be completed, taking the perturbation group an average of 3.1-weeks to complete and the STR 3.7-weeks. The two remaining studies specified the number of sessions to be completed each week; Shaarani et al[23] four sessions a week for 6-weeks and Kim, Hwang and Park[24] three sessions a week for 4-weeks. The exercise interventions were predominantly completed with supervision, Shaarani et al[23] specified two gym and two home sessions a week, Kim, Hwang and Park[24] had all sessions supervised in a sports medicine clinic[24] and Hartigan, Axe and Snyder-Mackler[27] did not state whether sessions were supervised or completed at home, however, the PERT group required a therapist to be involved in the intervention and it is therefore implied this group were supervised[27].

3.4 Outcome Measures

3.4.1 Muscle Strength

All RCTs included quadriceps strength as an outcome measure but utilised different methods of assessment. Two RCTs reported a strength ‘index’ or ‘deficit’ as a percentage of the injured limbs force output compared to the uninjured limb; Hartigan, Axe and Snyder-Mackler[27] measured the highest quadriceps volitional isometric contraction reporting a ‘quadriceps strength index’ and Kim, Hwang and Park[24] measured power at angular speeds 60°/s and 180°/s reporting a ‘knee extensor strength deficit’. Shaarani et al[23] measured quadriceps peak torque at an angular speed of 90°/s. As the measurements across studies were not comparable, the authors were not contacted for the raw data as data pooling would not have been possible.

Hartigan, Axe and Snyder-Mackler[27] found that quadriceps strength indexes improved in both groups from pre-intervention (Pert: 87.2%; Str: 75.8%) to six-month post-surgery (Pert: 97.1%; Str: 94.4%). Although between group differences were not reported in their results.

Kim, Hwang and Park[24] reported that knee extensor strength deficits were significantly different between groups at both angular velocities 60°/s (p = 0.018) and 180°/s (p = 0.033) at follow-up and that the intervention group showed significantly greater improvements in post-operative strength than patients in the control. The authors did not provide point measures for the between group differences in knee extensor strength deficits from pre- to post-operation. The effect size was calculated (SMD) to be ‘small’ for PreHab at both angular velocities of 60°/s, 0.41 (95% CI -0.85 to 0.01), and 180°/s, 0.23 (95% CI -0.67 to 0.21). No minimal clinically significant difference (MCID) has been established for this outcome.

Shaarani et al[23] found no statistical significance between the PreHab group and the control for quadriceps peak torque at any time point. This study also assessed hamstring peak torque[23] and again found no significant difference between groups for hamstring peak torque measured pre- and post-operatively.

3.4.2 Function

Two RCTs[23, 24] assessed single leg hop distance but reported results as a best of three score[23], or a limb symmetry index (LSI) (injured limb distance / uninjured limb distance).[24] Both authors were contacted for the raw data, Shaarani et al[23] provided this however, Kim, Hwang and Park[24] did not respond; data could therefore not be pooled for a meta-analysis. Both studies found that, at 12-weeks post-operation, single leg hop distance/LSI scores were significantly higher in the group who received PreHab compared to the control group. Both Kim, Hwang and Park[24] and Shaarani et al[23] did not provide point measures for between group differences in single leg hop distance/LSI from pre- to post-operation.
The effect size (SMD) was ‘small’ for the single leg hop scores for PreHab in both studies; Kim, Hwang and Park[24], 0.48 (95% CI 0.48 to 0.03), and Shaarani et al[23], 0.12 (95% CI -0.77 to 0.99). No MCID has been reported for the single leg hop distance.

Gait was assessed by Hartigan, Axe and Snyder-Mackler[27] reporting knee excursion at the mid-stance of gait (obtained by calculating peak knee extension minus peak knee flexion). At six months post-surgery, the perturbation group showed no significant difference in knee excursion between limbs (Mean: 3.58; 95% CI: 8.3 to -1.4; p = 0.14) whereas the strength group continued to show significant differences between limbs (Mean 7.08; 95% CI: 11.6 to 2.5; p = 0.007). No between group differences were reported.

3.4.3 Patient Reported Outcome Measures

The Tegner score was reported to have been taken by Shaarani et al[23] although no detail regarding the time points at which this was assessed, or scores obtained were reported in the published study or supplementary material. When contacted, it was confirmed that the Tegner-Lysholm Knee Score was assessed at all three time points (baseline, before ACLR and 12-weeks postoperatively). There were no statistically significant differences between the PreHab and control groups scores at any time point.

The Modified Cincinnati Knee Rating System was reported in one study[23]. The intervention group showed a statistically significant improvement from baseline (62.6) to the preoperative time point (76.5) (p = 0.004) to 12-weeks postoperatively (85.3) (p = 0.001). The mean score at 12-weeks postoperatively was also significantly higher (p = 0.004) for the PreHab group (85.3) compared with the controls (77.6). No between group differences were analysed.

3.4.4 Return to Sport

Shaarani et al[23] also measured return to sport time in weeks following surgery. Although it was reported that the intervention group returned to sport sooner after surgery (mean time [SD], 34.18 weeks [4.14]) than the control group (42.5 weeks [4.14]), this difference was not statistically significant (p = 0.055).

3.5 Data Collection Time-Points

All RCTs included pre- and post-operative outcome measures, although time-points varied between studies; Hartigan, Axe and Snyder-Mackler[27], pre-intervention and 6-months post-operatively; Kim, Hwang and Park[24] 4-weeks pre-operatively and 3-months post-operatively; Shaarani et al[23] prior to the intervention, preoperatively (post intervention) and 3-months post-operatively.

4. Discussion

4.1 Summary of Main Findings

This systematic review demonstrates there is only limited, low-quality evidence to support the use of PreHab to improve knee extensor strength deficits, single leg hop distance/LSI, limb symmetry during gait and subjective knee scores for the Modified Cincinnati Knee Rating System after ACLR (3- and 6-months post-operatively). A clear limitation of this body of evidence relates to the study populations which are dominated by males (n = 116/122, 95%). Currently, no evidence exists to support the use of PreHab to improve return to preinjury levels of physical activity, function or psychological readiness post-surgery.

4.2 Wider Evidence Base

Two RCTs in this review were also included in the 2017 Alshewaier, Yeowell and Fatoye[6] systematic review; Hartigan, Axe and Snyder-Mackler[27] and Shaarani et al[23]. Alshewaier, Yeowell and Fatoye[6] assessed methodological quality using the Physiotherapy Evidence Database (PEDro) scale whereas the present review used the Cochrane RoB-2 tool and the GRADE assessment for individual outcomes. The overall quality of the two RCTs varied with agreement between the PEDro and Cochrane score: Hartigan, Axe and Snyder-Mackler[27] (low quality) but disparity for Shaarani at al[23] (PEDro; high, Cochrane; low). Although both the PEDro and Cochrane Risk of Bias tools evaluate the risk of bias in RCTs and have six common items (random allocation, concealed allocation, blinding of participants, personnel and assessors, and incomplete outcome data) it has been acknowledged that the tools cannot be used interchangeably and agreement between overall scores is poor[30]. The remaining studies included in the Alshewaier, Yeowell and Fatoye[6] review were excluded from this review due to study design (not RCT), data collection time-points (not all studies assessed participants post-operatively) and study population (not all participants underwent ACLR).

There are three remaining cohort studies in the literature that were excluded from both reviews. These studies report positive results for the effect of PreHab on post-operative objective and subjective outcomes, reporting improvements in International Knee Documentation Committee (IKDC)[31, 32], Knee Injury and Osteoarthritis Outcome Score (KOOS)[31, 32] and reduction in limb asymmetries[33] with PreHab. However, generalisability of results is limited as the study designs introduces a high risk of bias with key concerns including the risk of confounding, selection and information bias[34].
4.3 Clinical and Research Implications

The evidence supporting the use of PreHab remains limited. In the included RCTs, no emphasis was placed on the importance of the psychological status of individuals prior to or following surgery and how PreHab may effect this; despite the evidence base identifying psychological barriers as the most commonly cited reasons for failing to return to physical activity after ACLR[11, 35, 36].

The results from one RCT[23] demonstrated that PreHab improved patient reported symptoms (Modified Cincinnati Knee Rating System) at 12-weeks post-operation. It has been suggested that increased subjective knee scores are associated with increased psychological readiness for return to activity[3, 13, 37]. Thus, it could be hypothesised that PreHab also improves psychological readiness, however further high-quality research needs to explore this more explicitly using validated outcome measures, such as the ACL-Return to Sport after Injury (ACL-RSI) scale[38].

Another function of PreHab that is yet to be explored is the clinician’s role in influencing the patient’s physical and psychological recovery. It has recently been suggested that patients’ expectations have a significant effect on motivation during rehabilitation and that in turn, higher levels of patient motivation improve return rates to physical activity[39]. PreHab may influence this process by addressing and optimising individual’s motivation levels and expectations prior to surgery. This may offer another explanation as to why patients had a higher subjective knee score in the intervention group in the study by Shaarani et al[23] as they received greater clinician input, than the controls, prior to surgery. However, whether the early stages of rehabilitation after ACLR are better suited to address expectations and motivation levels than PreHab is unknown; this should be a future research area of focus.

The use of psychological responses to predict post-operative outcomes following ACLR and return to preinjury activity levels has frequently been cited in the literature[17, 40–43]. A case-control study of recreational and competitive level athletes established a link between pre- and early post-operative ACL-RSI scores and the likelihood of returning to preinjury activity, with higher scores favouring a return[3]. The generalisability of these results, however, is relatively limited due to study design, population and setting (private orthopaedic clinic). Further evidence has proposed a link between poor subjective knee scores within 1-year post ACLR and long-term impairments in health-related quality of life, emphasising further the importance of improving patients psychological response to surgery[44]. Aiming to improve psychological readiness and tackle patients fear of reinjury has been shown to support a return to preinjury levels of physical activity[41] and presents another unexplored function of PreHab.

Returning to preinjury levels of physical activity is a common goal for both patients and clinicians and often establishes the overall success of ACLR surgery[45]. Only one RCT assessed return to sport outcomes, reporting that the group who followed a preoperative programme returned to sport quicker than those in the control group (intervention 42.5 weeks [SD: 10.46], control 34.18 weeks [SD: 4.14]), although the difference did not reach statistical significance (p = 0.055).

Recent literature has emphasised the importance of evaluating post-operative progression against objective and time based criterion; a return to sport decision based on time alone is considered insufficient[8, 46]. A recent survey of Australian orthopaedic surgeons and physiotherapists found that when asked about return to sport time, a large proportion of both professions (77% surgeons, 78% physio) do not permit a return earlier than 9-months after ACLR[47, 48]. Returning to sport sooner than 9-months has also been suggested to increase the risk of reinjury[46] with some arguing the return should be no earlier than 12-months[49]. Shaarani et al[23], did not define ‘return to sport’, this could have been considered achieved by those who had returned to training for example and not necessarily preinjury levels of physical activity. The lead author was contacted for clarity regarding this outcome and provided their wider study material, but this detail was not included. The results should be translated with caution as no other detail regarding the success of participants in passing RTS objective and subjective criteria was provided.

There is a lack of consensus for clinicians on how best to deliver PreHab, exposing the potential for unnecessary time and cost being spent on this stage of rehabilitation. It is unknown how clinicians can optimally prepare patients both physically and mentally for surgery and return to physical activity.

4.4 Study Limitations

This review included a small number of RCTs of which all scored an overall high risk of bias with overall very low quality of evidence; therefore, results are interpreted with caution. It is likely that future studies would significantly alter our conclusion.

5. Conclusion

There is currently limited, low-quality evidence to support the use of PreHab for ACLR. The three included RCTs offer unconvincing results on post-operative outcomes of muscular strength, function and patient reported symptoms. Future research could look to provide consensus on
the approach to PreHab and evaluate holistic interventions that consider the physical and psychological state of individuals and how this may affect post-operative biopsychosocial outcomes.

List Of Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>Anterior cruciate ligament</td>
</tr>
<tr>
<td>ACLR</td>
<td>Anterior cruciate ligament reconstruction</td>
</tr>
<tr>
<td>ACL-RSI</td>
<td>ACL-Return to Sport after Injury</td>
</tr>
<tr>
<td>CSA</td>
<td>Cross sectional area</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading of recommendations assessment, development and evaluation</td>
</tr>
<tr>
<td>IKDC</td>
<td>International Knee Documentation Committee</td>
</tr>
<tr>
<td>KOOS</td>
<td>Knee Injury and Osteoarthritis Outcome Score</td>
</tr>
<tr>
<td>LSI</td>
<td>Limb symmetry index</td>
</tr>
<tr>
<td>MCID</td>
<td>Minimal clinically significant difference</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>MVIC</td>
<td>Maximum volitional isometric contraction</td>
</tr>
<tr>
<td>NPEG</td>
<td>No preoperative exercise group</td>
</tr>
<tr>
<td>PEG</td>
<td>Preoperative exercise group</td>
</tr>
<tr>
<td>PERT</td>
<td>Perturbation group</td>
</tr>
<tr>
<td>RCTs</td>
<td>Randomised controlled trials</td>
</tr>
<tr>
<td>ROB-2</td>
<td>Version 2 risk-of-bias</td>
</tr>
<tr>
<td>RTS</td>
<td>Return to sport</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SMD</td>
<td>Standardised mean difference</td>
</tr>
<tr>
<td>STR</td>
<td>Strengthening group</td>
</tr>
</tbody>
</table>

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

All data generated or analysed during this study are included in this published article [and its supplementary information files].

Competing Interests

The authors declare that they have no competing interests.
Funding

HC is supported by an Integrated Clinical Academic (ICA) Internship funded by Health Education England/National Institute for Health Research (HEE/NIHR) working in the East Midlands. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR, HEE or the Department of Health.

CL is supported by a National Institute for Health Research Fellowship (NIHR Post-Doctoral Fellowship, Dr Chris Littlewood, PDF-2018-11-ST2-005). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health and Social Care.

Author Contributions

HC was responsible for conception and design, publication screening, acquisition of data, analysis and interpretation, and drafting and revising the manuscript. BS was responsible publication screening, data interpretation, and reviewing and revising the manuscript. All authors were involved in interpretation, reviewing revisions to the manuscript and final approval of the version to be published. All have read and approved the final version.

Acknowledgements

Not applicable.

References

Figures

![PRISMA 2009 Flow Diagram](image-url)

Figure 1

PRISMA 2009 Flow Diagram
Figure 2

Risk of Bias Summary

Figure 3

Risk of Bias Graph

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryFile1.pdf
- SupplementaryFile2.pdf