Secreted protein, acidic and rich in cysteine is crucial for the vascular endothelial growth factor-stimulated fibrotic process in human Tenon’s fibroblasts

XiaoQiong Xiang
Shanghai Jiaotong University the First People's Hospital

LiYing Luo
Shanghai Jiaotong University First People's Hospital

YuHong Chen
Shanghai Jiaotong University the First People's Hospital

FuXiang Ye
Shanghai Jiaotong University the First People's Hospital

Yang Fu
Shanghai Jiaotong University First People's Hospital

Min Tang (✉ tangmin_dr@sina.com)
Shanghai Jiaotong University the First People's Hospital

Research article

Keywords: Human Tenon’s fibroblast (HTF), secreted protein, acidic and rich in cysteine (SPARC), vascular endothelial growth factor (VEGF), fibrosis

Posted Date: September 17th, 2020

DOI: https://doi.org/10.21203/rs.2.14174/v2

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background Aberrant post-surgical scarring is responsible for failure of glaucoma filtration surgery (GFS) and is attributed to strong fibrotic process of human Tenon's fibroblasts (HTFs). Vascular endothelial growth factor (VEGF) and secreted protein, acidic and rich in cysteine (SPARC) contribute to angiogenesis and fibrosis. However, whether SPARC can regulate the VEGF-mediated fibrotic process in HTFs has not been clarified. This study aimed to examine how SPARC and VEGF crosstalk to regulate the expression of Collagen-I and matrix metalloproteinase 9 (MMP9) as well as the ERK signalling in HTFs. Methods Human Tenon's capsule tissues were cultured for preparation of HTFs, which were characterized by immunofluorescence. The effects of VEGF treatment on SPARC, Collagen-I and MMP9 expression and ERK phosphorylation were determined by Western blot, quantitative RT-PCR and immunofluorescence. The proliferation and wound healing induced by VEGF were examined in HTFs and SPARC-silenced HTFs. Results Following successful passages, immunofluorescent assays indicated that HTFs at passages 3-9 displayed unique characters of fibroblasts with Vimentin, but not keratin, expression. Treatment with VEGF significantly up-regulated SPARC, Collagen-I and MMP9 expression and ERK phosphorylation, and promoted the proliferation and wound healing of HTFs. The stimulatory effects of VEGF were significantly mitigated by SPARC silencing in HTFs. Conclusions Our data provided novel evidence that SPARC was crucial for the VEGF-stimulated fibrotic process in HTFs and may be a novel target for anti-fibrotic therapies post GFS.

Background

Glaucoma can cause irreversible blindness and it may affect several millions of people in the near future. Filtration surgery (FS) for glaucoma is usually effective. However, surgical failure occurs when excessive wound healing happens below the conjunctiva because human Tenon's fibroblasts (HTFs) can activate and proliferate, contributing to fibrotic process. Actually, many cytokines and biochemical factors can activate HTFs and promote their fibrotic process, leading to an aberrant scarring response. Thus, understanding the pathogenic process in HTFs will be of significance in uncovering new therapeutic target for prevention and intervention of post-FS scarring.

Vascular endothelial growth factor (VEGF) can regulate angiogenesis and fibrosis, and has been considered to be important for post-FS scar formation. Previous studies have shown that VEGF can promote wound healing of HTFs and scar formation in glaucoma patients. High concentrations of VEGF were detected in the aqueous humor of glaucoma patients and rabbits following FS. VEGF can be expressed by fibroblasts and stimulate the proliferation of Tenon's fibroblasts, contributing to fibrotic process. In addition, previous in vitro studies demonstrated that anti-VEGF antibody bevacizumab (BVC) has an antiproliferative effect on HTFs. However, the molecular mechanisms by which VEGF regulates the fibrotic process in HTFs have not been clarified.

Secreted protein, acidic and rich in cysteine (SPARC) is one of the matricellular proteins that are crucial for scar formation and tissue fibrosis. SPARC can regulate the expression of Collagens and matrix
metalloproteinases (MMPs), as well as the extracellular matrix (ECM) remodeling. SPARC is expressed in scarred of the Tenon's capsule and may play a role in wound healing process after GFS. However, little is known about whether SPARC regulates the VEGF-stimulated fibrotic process in HTFs.

In this study, we prepared and characterized HTFs and tested how VEGF stimulated SPARC, collagen-I and MMP9 expression and ERK activation as well as the wound healing and proliferation of HTFs. Furthermore, we examined the impact of SPARC silencing on the VEGF-stimulated fibrotic process in HTFs.

Methods

Primary cell culture and quality control

This study was approved by the Ethics Committee of Shanghai General Hospital (Registration number: 2016KY034). All patients signed a written informed consent. Small biopsied Tenon's capsule specimens were isolated from five patients when they underwent a strabismus surgery. All patients were aged 10-15, three of them were girls, two were boys. After being washed, the tissues were cultured for preparation of HTFs, as described previously\(^\text{11}\). The HTFs were cultivated in Dulbecco's Modified Eagle's medium (DMEM) containing 10% of fetal bovine serum (FBS) at 37°C in a humidified atmosphere of 5% CO\(_2\). The cells were passaged every 3-5 days. Subsequently, their morphology and purity were examined by immunofluorescence using rabbit-anti-vimentin (1:400, ab92547, abcam), mouse-anti-keratin (1:50, ab185627, abcam), Alexa Fluor 488-conjugated goat-anti-rabbit or Alexa Fluor 647-conjugated goat-anti-mouse IgG and DAPI staining. HTFs between passage 3 and passage 9 were used for experiments after starving for 24 h.

Transduction

HTFs were cultured overnight and transduced with control lentivirus or lentivirus for expression of SPARC-specific shRNA at a multiplicity of infection (MOI) of 10 in the presence of puromycin (4 µg/ml) for four days to generate HTF-NC and HTF-SPARC-shRNA cells, respectively. The second generation of control lentivirus or lentivirus for SPARC-specific shRNA were generated by transfecting 293T cells with pL_shRNA_mKate2-SPARC-543 and Packaging Mix (cat. no. K4975-00, Invitrogen) using lipofectamine 2000 (cat. no. 11668019, Invitrogen)\(^\text{12}\). The efficacy of SPARC silencing was determined by Western blot.

Cell viability assay

Cell viability was measured by MTS assay using a kit, according to the manufacturer's instruction (Promega G3580). Briefly, HTFs (1×10\(^3\) cells/mL) were cultured in 96-well plates and when reaching 80% confluency, the cells were treated in sextuplicate with vehicle PBS or different concentration of VEGF (25-100 ng/mL, 96-100-20A-2, PeproTech) for 24 h. Individual wells were added with 20 µL of MTS and cultured at 37°C for 2 h. The absorbance at 490 nm was measured using a microplate reader (Epoch™
Bio-Tek Instruments, Winooski, VT, USA). Additional MTS assays were performed in HTF, HTF-NC and HTF-SPARC-shRNA cells using 50 ng/ml of VEGF for stimulation in the same way.

Western blot

The impact of VEGF on SPARC and other fibrosis-related protein expression was determined by Western blot. Briefly, HTFs were stimulated with, or without, 25-100 ng/ml of VEGF for 24 h and their cell lysates were prepared in RIPA buffer, and the samples were loaded onto SDS-PAGE gels and then the proteins were transferred onto PVDF membranes. After determination of protein concentrations, cell lysates (50 µg/lane) were analysed by western blot using primary antibodies against β-actin (1:1000, 60008-1-lg, Proteintech), SPARC (1:1000, ab207743), Collagen-I (1:1000, ab138942), MMP9 (1:1000, ab76003), ERK1/2 (1:1000; ab184699, abcam) and p-REK1/2 (1:1000, #9101, Cell Signaling Technology) and HRP-goat anti-rabbit lgG (1:5000, #A27024) or HRP-goat anti-mouse lgG (1:5000, #A11357, Thermofisher) as well as an ECL assay kit. The data were analysed by densitometry using ImageJ software. Additional Western blot assays about the proteins mentioned above were performed in HTF, HTF-NC and HTF-SPARC-shRNA cells using 50 ng/ml of VEGF for stimulation.

Immunofluorescence

HTFs (1×10^3 cells/mL) were grown on glass coverslips in 24-well plates and when reaching 80% confluence, the cells were treated with VEGF(25-100 ng/mL) for 24 h. After being washed by phosphate buffer saline, and fixed with 100% methanol at 4°C for 2 minutes. The cells were stained with primary antibodies against SPARC, Collagen-I and MMP-9 for 24 h. followed by the cells were incubated with Alexa Fluor-488-conjugated secondary antibodies (1:1000, Invitrogen, Carlsbad, CA, USA) at room temperature for 1 h, then nuclei stained with DAPI. The fluorescent signals were visualized using a confocal microscope (Carl Zeiss) and analysed by Image J. Additional immunofluorescent assays were performed in HTF, HTF-NC and HTF-SPARC-shRNA cells using 50 ng/ml of VEGF for stimulation.

Quantitative RT-PCR

The effect of VEGF on SPARC and other fibrosis-related gene mRNA transcripts were determined by quantitative RT-PCR using special reagents including TRIzol for total RNA was extracted, the PrimeScript 1st Strand cDNA Synthesis kit (RR036A, TaKaRa Bio, Dalian, China), the SYBR Premix Ex Taq (RR420, TaKaRaBio) in Viia7 Real-Time PCR System (Applied Biosystems, Life Technologies, Carlsbad, CA, USA). The primers were list in Table 1. The data were analyzed by 2^ΔΔct. Expression was normalized to that of the housekeeping gene β-actin. Additional quantitative RT-PCR assays were performed in HTF, HTF-NC and HTF-SPARC-shRNA cells using 50 ng/ml of VEGF for stimulation.

Wound healing assay

Cell migration was assessed by wound healing assay. HTFs were cultured in twelve-well plates. When the cells reached full confluence, they were scratched using a pipette tip. The cells were treated with, or
without, 25-100 ng/ml of VEGF and the dynamic process of cell proliferation and migration was monitored longitudinally by photoimaging. The data were expressed as the percentage of wound healing. Additional wound healing assays were performed in HTF, HTF-NC and HTF-SPARC-shRNA cells using 50 ng/ml of VEGF for stimulation.

Statistical analysis

Data are present as the means ± standard deviation (SD). The statistical comparisons were performed by Student's t-test or ANOVA using SPSS version 17.0 for Windows (SPSS, USA). A P-value of <0.05 was considered statistically significant.

Results

Preparation and characterization of HTFs.

Following cultured the tissue explants for 10 to 14 days, cells with the similar shape to HTFs migrated out from the tissue explants. Immunofluorescence revealed that all cells were positive for anti-vimentin, but negative for anti-keratin staining, the hallmarks of fibroblast-like cells (Fig. 1). These proved that the cells cultured from the tenon's capsule were HTFs. We observed that cellular morphology and growth characteristics were similar between passage 3 and passage 9.

VEGF up-regulates the expression of fibrotic proteins and promotes the proliferation and migration of HTFs

To understand the molecular mechanisms underlying the action of VEGF, we examined whether VEGF could modulate the SPARC, Collagen-I, MMP9 expression and ERK1/2 activation in HTFs. Western blot indicated that treatment with 50 ng/ml of VEGF significantly increased the relative levels of SPARC, Collagen-I, MMP9 expression and ERK phosphorylation in HTFs (all the $P<0.01$, Fig. 2A). However, treatment with VEGF at a lower or higher dose either did not significantly up-regulate or only moderately increased their expression and phosphorylation in HTFs. Similar patterns of VEGF-enhanced SPARC, Collagen-I and MMP9 expression were observed in HTFs by immunofluorescence ($P<0.05$, $P<0.01$ and $P<0.01$, Fig. 2B). Similarly, treatment with VEGF increased the relative levels of SPARC, Collagen-I and MMP9 mRNA transcripts in HTFs ($P<0.01$, $P<0.01$ and $P<0.05$, Fig. 2C). Functionally, VEGF treatment significantly promoted the proliferation and wound healing of HTFs ($P<0.05$, $P<0.01$ and $P<0.05$, Fig. 2D; $P<0.01$, $P<0.05$ and $P<0.01$, Fig. 2E). Hence, VEGF promoted the proliferation and wound healing of HTFs by enhancing fibrotic protein expression and ERK1/2 activation in vitro.

SPARC silencing mitigates the VEGF-induced fibrotic process in HTFs

SPARC can regulate ECM remodelling by modulating collagen expression and MMP activity 9,10. To understand the regulatory role of SPARC in VEGF-induced fibrotic process in HTFs, we generated stable SPARC-silenced HTFs by lentivirus-based shRNA technology. Following stimulation with VEGF (50
ng/ml), we found that SPARC silencing not only decreased the VEGF-stimulated SPARC expression, but also mitigated the VEGF-enhanced Collagen-1 and MMP expression and ERK phosphorylation in HTFs (Fig. 3A-C). Functionally, measurements of wound healing and cell proliferation revealed that following VEGF stimulation, the percentages of wound healing and viability in the SPARC-silenced HTFs were significantly lower than that in the controls (Fig. 3D and E). Such data indicated that SPARC silencing mitigated the VEGF-stimulated wound healing and proliferation in HTFs in vitro. Collectively, these findings suggest that VEGF-stimulated fibrotic process in HTFs may partially depend on inducing SPARC expression in our experimental conditions. Meanwhile, our experiment showed that all the aspects mentioned above of NC HTFs were slightly down regulated compared with normal HTFs. Probably, the process of infecting cells with virus would also affect the function of cells to some extent.

Discussion

Filtration surgery is one of the most effective treatments for glaucoma. Unfortunately, a failure after FS occasionally occurs due to excessive post-surgical wound healing process and scar formation. Previous studies have shown that VEGF₁₂₁ and VEGF₁₈₉ can induce the proliferation and migration of HTFs by activating the ERK signaling and higher levels of VEGF expression in Tenon's tissues are associated with post-FS fibrosis. In this study, we prepared HTFs from human Tenon's capsule tissues and characterized them. We found that almost all cells displayed typical morphology of fibroblasts with Vimentin, but not keratin, expression. Furthermore, we found that VEGF treatment stimulated the proliferation and would healing of HTFs, accompanied by up-regulating SPARC, Collagen-I and MMP9 expression and ERK1/2 phosphorylation. Such data clearly demonstrated that VEGF promoted the fibrotic process of HTFs and suggested that SPARC might participate the process of VEGF-mediated fibrosis.

SPARC is an ECM protein and its up-regulated expression is associated with fibrosis. Actually, SPARC⁻/⁻ mice exhibit deficient scarring and SPARC deficiency increases successful rates of FS in a mouse model of Glaucoma. In this study, we found that treatment with VEGF stimulated SPARC expression in HTFs, which extended previous observations in HMEC-1 cells and HUVECs. Furthermore, VEGF also up-regulated Collagen-I and MMP9 expression in HTFs and promoted the proliferation and wound healing of HTFs. More importantly, SPARC silencing significantly mitigated the VEGF-stimulated Collagen-I and MMP9 expression in HTFs and attenuated the VEGF-stimulated proliferation and wound healing of HTFs. Previous studies have shown that SPARC can modulate MMP activity in U87MG glioma cells and altered MMP activity can affect the ECM remodeling and fibroblast proliferation and migration. Moreover, SPARC can promote cell adhesion and SPARC deficiency inhibits cell migration in various types of cells. It is possible that SPARC modulates MMP activity and wound healing, contributing to the progression of fibrosis. Our data further indicated that SPARC participated in the fibrotic process in HTFs.

It is notable that SPARC can bind to collagen and acts as a chaperone to promote its post-translational process. Furthermore, SPARC can activate both platelet-derived growth factor (PDGF) and fibroblast
growth factor-2 (FGF2), which are crucial for Collagen-I expression10,27. VEGF can activate the p38 and ERK signaling in vascular endothelial cells15,28. We found that VEGF treatment enhanced the ERK1/2 phosphorylation in HTFs, consistent with a previous report15. Interestingly, SPARC silencing significantly mitigated the VEGF-enhanced ERK1/2 activation in HTFs. It is possible that SPARC silencing may minimize PDGF and FGF2 activation, which cross-talks with the VEGF-related ERK1/2 signaling to reduce Collagen-I expression and fibrotic process in HTFs. We are interested in further investigating the precise molecular mechanisms underlying the action of SPARC in regulating Collagen-I and MMP9 expression following VEGF stimulation in HTFs.

There is still much research should be done in the future. Firstly, the characteristic of HTFs cultured from strabismus patients may be different from glaucoma patients in some extent. Secondly, we need more evidences to prove that SPARC also plays a role in VEGF-stimulated fibrotic process in HTFs in vivo. Besides, in our experiement, we reduced the expression of SPARC by transducing with lentivirus. Though the effect of such SPARC-silencing is relatively lasting, it takes more time and needs to be more careful when dealing with lentivirus. The usage of SPARC inhibitors, such as antibodies, seems to be another approach, which is more safe and easy to control.

Conclusions

Our data indicated that VEGF treatment stimulated the wound healing and proliferation of HTFs by up-regulated SPARC, Collagen-I and MMP9 expression and ERK phosphorylation, which were significantly mitigated by SPARC silencing. Such data suggest that SPARC may be crucial for the VEGF-stimulated fibrotic process in HTFs. Conceivably, SPARC may be a promising therapeutic target for prevention and invention of FS-related scarring.

List Of Abbreviations

- **GFS**: Glaucoma Filtration Surgery
- **HTF**: Human Tenon's fibroblast
- **VEGF**: Vascular endothelial growth factor
- **SPARC**: Secreted protein, acidic and rich in cysteine
- **MMP**: Matrix metalloproteinase
- **FS**: Filtration surgery
- **ECM**: Extracellular Matrix

Declarations
Ethics approval and consent to participate

This study was approved by the Ethics Committee of Shanghai General Hospital (Registration number: 2016KY034). All patients signed a written informed consent.

Consent for publication

Not applicable

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by a grant from the National Nature Science Foundation of China (Grant No.81700845).

Authors' contributions

X X, F Y, and T M were primarily responsible for experimental concept and design. X X, L L and Chen Y performed the experiments and data acquisition. X X, Y F and F Y performed the data analysis as well as drafting of the manuscript. All authors reviewed and approved the final manuscript.

Acknowledgement

We are grateful to the Shanghai Key Laboratory of Ocular Fundus Diseases of Shanghai General Hospital for providing the experimental equipments and device.

Authors' information

Affiliations

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Corresponding author

Correspondence to Min Tang

CO-Correspondence to Yang Fu
Reference

Tables

Table 1: Primers used in Quantitative RT-PCR

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primers</th>
<th>Sequences (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARC</td>
<td>SPARC-F</td>
<td>AGGAAACCGAAGAGGAGG GCAAAGAAGTGGCAGGAA'</td>
</tr>
<tr>
<td></td>
<td>SPARC-R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMP-9-F</td>
<td>GACCTCAAGTGGCACCACCA</td>
</tr>
<tr>
<td></td>
<td>MMP-9-R</td>
<td></td>
</tr>
<tr>
<td>collagen-I</td>
<td>MMP-9-R</td>
<td>GTGGTACTGCACCAGGGCGAA</td>
</tr>
<tr>
<td></td>
<td>collagen-I-R</td>
<td>CCCAGCCACAAAGATCTACAG GTTTCCACACGTCTCGGTCA</td>
</tr>
<tr>
<td>β-actin</td>
<td>β-actin-F</td>
<td>GGACTTCGAGCAAGAGATGG</td>
</tr>
<tr>
<td></td>
<td>β-actin-R</td>
<td>AGCACTGTGTTGGCGTACAG</td>
</tr>
</tbody>
</table>

Figures
Figure 1

Immunofluorescent characterization of HTFs. Human Tenon's specimens were cultured for 15 days and many cells migrated out. The cells were passaged every 3 days for 3-9 times. The cells were stained with anti-Vimentin or anti-keratin, and after being washed, the cells were stained with Alexa Fluor 488-conjugated goat-anti-rabbit IgG or Alexa Fluor 647-conjugated goat-anti-mouse IgG. Subsequently, the cells were nuclearly stained with DAPI and the fluorescent signals were captured under a confocal microscope. Data are representative images (magnification x 200) from three separated experiments. (A) Immunofluorescent staining of cells with anti-Vimentin. (B) Immunofluorescent staining with anti-keratin. Scale bar: 100 μm.
Figure 2

VEGF stimulates SPARC, Collagen-I and MMP9 expression and ERK phosphorylation to promote the proliferation and wound healing in HTFs. HTFs were starved overnight and stimulated in triplicate or sexduplicate with the indicated concentrations of VEGF for 24 h. (A) The relative levels of SPARC, Collagen-I and MMP9 expression and ERK1/2 phosphorylation were determined by Western blot. (B) The expression of SPARC, Collagen-I and MMP9 was characterized by immunofluorescence. (C) The relative levels of SPARC, Collagen-I and MMP9 mRNA transcripts were quantified by quantitative RT-PCR. (D) The wound healing. Vertical lines outline the wound edge. (E) The viability of HTFs was examined by MTS assays. Data are representative images or expressed as the mean ± SD of each group of cells from three separate experiments. *P < 0.05; **P < 0.01.
Figure 3

SPARC silencing mitigates the VEGF-stimulated fibrotic process in HTFs. HTFs, control HTF-NC and stable SPARC-silenced HTF-SPARC-shRNA cells were starved overnight and stimulated in triplicate or sexduplicate with 50 ng/ml of VEGF for 24 h. (A) The relative levels of SPARC, Collagen-I and MMP9 expression and ERK1/2 phosphorylation were determined by Western blot. (B) The expression of SPARC, Collagen-I and MMP9 was characterized by immunofluorescence. (C) The relative levels of SPARC, Collagen-I and MMP9 mRNA transcripts were quantified by quantitative RT-PCR. (D) The wound healing. (E) The viability of HTFs was examined by MTS assays. Data are representative images or expressed as the mean ± SD of each group of cells from three separate experiments. *P < 0.05; **P < 0.01.