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Abstract
Synthetic antibody (Ab) technologies are efficient and cost-effective platforms for the generation of
monoclonal proteomic tools against human antigens. Yet, they typically depend on purified proteins,
which exclude from interrogation integral membrane proteins that require the lipid bilayers to support
their native form or function. Here, we present a novel Ab discovery strategy, termed CellectSeq, for
targeting integral membrane proteins presented on native cells in complex environment. As proof of
concept, we targeted the challenging tetraspanin receptor CD151, a target linked to cancer. First, we
optimized in situ cell-based selections to enrich Ab pools for antigen-specific binders. Then, we designed
novel NGS procedures to explore Ab pools diversities and abundances with enhanced accuracies. Finally,
we developed novel motif-based scoring and error filtering algorithms for the comprehensive interrogation
of NGS data to identify Abs with high diversities and specificities, even at extremely low abundances. We
identified highly selective and diversified Abs against CD151 with abundance as low as 0.00009% for
which manual sampling or identification using Abs abundances in NGS data would have been
impossible. Here we show that CellectSeq enables the rapid discovery of diversified and selective
antibodies against CD151, with implications for other integral membrane proteins and cell-surface
receptors.

Introduction
The application of antibodies (Abs)1 for targeting cell surface proteins has prompted the development of
synthetic human Abs2. By this method, synthetic phage-displayed libraries containing > 1010 unique Abs
can be constructed to rival the combinatorial diversity of natural in vivo immune repertoires and, in many
ways, outperform natural repertoires for the production of Abs with high affinities and specificities2, 3.
Synthetic Ab technologies have also proven amenable to automation to enable high-throughput methods
of selection to target large families of soluble antigens4–6.

However, a major limitation to both in vitro and in vivo methods for antibody generation is the difficulty of
targeting multi-pass integral membrane proteins, which generally cannot be purified in a native form in
the absence of a cell membrane. Integral membrane proteins remain a recalcitrant group of critical
targets for Ab development due to their inherent association with the lipid bilayer, differential multi-
conformational states7, 8, and interactions with other cell surface proteins9, 10. Moreover, multi-pass
integral membrane proteins often lack large, structured domains in their extracellular regions11, 12, and
thus, pose a particular challenge for recombinant expression and purification13. Given that many
essential biological processes and diseases depend on integral membrane proteins, the difficulties in
targeting this large subset of the human proteome is a major roadblock in many areas of biological
research and drug development14, 15.

With 33 members in the human proteome, the tetraspanin receptor family (Pfam:PF00335,
Transmembrane 4 superfamily) represents a particularly interesting set of potential therapeutic targets,
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as many family members are involved in processes implicated in cancer progression, including tumor
proliferation, migration, and metastasis16–18. In particular, cluster of differentiation 15119–23 (CD151;
Fig. 1), also known as PETA-3 or SFA-1, is a 30kD tetraspanin receptor that is widely expressed in normal
cells and tissues (e.g. epithelium, endothelium, cardiac muscle, dendritic cells, and hematopoietic cells)24,
and overexpressed in diverse tumor tissues (e.g. lung, colon, prostate, pancreas, breast, and skin)25–27.
Moreover, the elevated expression of CD151 is correlated with cancer patient mortality and enhanced
metastasis of tumors28, 29. The primary role of CD151 in cancer appears to be its ability to organize the
distribution and function of growth factor receptors and integrins25, 30. Consequently, CD151 may guide
the migratory activity of tumor cells to induce invasiveness and metastasis. CD151 also modulates the
pharmacological response of therapeutics that antagonize other cell surface receptors31, and also
appears to synergize and modulate intracellular signal activities in cancer. For example, integrin-
associated CD151 may drive HER2 evoked mammary tumor onset and metastasis, and may enhance the
activation of HER2 and other receptor tyrosine kinases by regulating dimerization32–34. Thus, CD151 is
an integral membrane protein that may be a promising target for the development of antibodies that can
antagonize the interactions mediated by its extracellular domains. However, the recalcitrant nature of
CD151 receptor, due to its diminutive stature protruding only 4–5 nm above the membrane and
displaying limited surface exposed regions35, makes it challenging to target (Fig. 1).

Recently, we reported optimized methods for in situ selections with phage-displayed synthetic antibody
libraries with native antigen on live cells to develop a large panel of selective antibodies for integrin-α11/
β1, a marker of aggressive tumors that is involved in stroma-tumor crosstalk36. Manual screening of over
one thousand phage clones identified unique Abs with strong and selective binding to cells expressing
integrin-α11/β1, and notably, most of these Abs did not recognize the purified antigen, suggesting that
cell-based selections were essential for targeting native epitopes36. Moreover, next generation sequencing
(NGS) analysis of the abundance of unique clones in the selection pools showed that most of the Abs
identified by clonal screening were among the most abundant and enriched amongst the NGS sequences,
but intriguingly, many other sequences were also identified, suggesting that clonal screening had only
isolated a small subset of antigen-specific clones36.

Here, we have further optimized in situ cell-based selection procedures to enrich Ab-phage pools for
antigen-specific binders. In addition, we implemented a novel in silico analysis to efficiently explore and
identify unique antigen-specific clones against CD151 in the enriched pools. In conjunction with rapid and
cost-effective gene synthesis and recombinant Ab production strategies, the antigen-specific Ab-phage
sequences were purified as Abs for direct assessment of cell-surface antigen recognition. We have
collectively termed this methodology “CellectSeq”, which utilizes phage display, in situ selections, next-
generation sequencing, and motif-based scoring and error filtering algorithms for the comprehensive
interrogation of candidate Abs in enriched but highly diverse Ab-phage pools. We used the CellectSeq to
target native CD151 displayed on cells and discovered specific anti-CD151 Abs with frequencies as low
as one in a million NGS reads. Thus, we show that CellectSeq can identify rare but highly selective and
diversified Abs targeting integral membrane proteins, without the need for screening of individual clonesLoading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
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at the phage level. The technology should be applicable for the generation of Abs targeting many integral
membrane proteins that have proven recalcitrant to conventional in vivo and in vitro methods.

Results
Cell-based in situ selection for anti-CD151 Abs

To generate Abs targeting CD151, we used the phage-displayed Library F37 of synthetic antigen-binding
fragments (Fabs) that offers advantageous features for CellectSeq (Figure S1). First, Library F is
extremely diverse (> 1010 unique members) and precisely designed to ensure that most members are
stable and well-displayed on phage38. Second, the library proves functional for selections with either
purified antigens37 or cell-surface antigens36 and has yielded numerous selective Abs per selections36.
Third, the library was constructed with a single, highly stable human framework resulting in negligible
display bias where most library members are presented at similar levels37. Also, the abundances of
individual clones in pools enriched for target antigens are highly correlated with relative affinities39; this
property enhances NGS analysis based on enrichment ranking, allowing for the identification of highly
selective and high affinity clones. Fourth, the synthetic Abs are diversified at only four complementary
determining regions (CDRs; H1, H2 and H3, and L3), which permit standard NGS procedures utilizing
primers that anneal to common framework regions in a cost-effective manner (Figure S2 & S3). Fifth,
each of the four CDRs is composed of defined amino acid positions with restricted diversities. Therefore,
the NGS data quality can be very accurately evaluated by assessing any deviations from the fixed
framework or occurrence of unexpected codons at diversified positions. For instance, CDRs H1 and H2
contain only six or eight binary degenerate codons and offer a diversity of 64 and 256 unique sequences,
respectively (Figure S1D). Conversely, CDRs L3 and H3 are much more diverse in terms of loop lengths
(3–7 or 1–17 degenerate codons, respectively), and in terms of sequence composition (encoded by
defined ratios of nine codons encoding nine amino acids). The CDRs L3 and H3 offer a theoretical
diversity of the order of 107 and 1017 unique sequences, respectively (Figure S1D). Ultimately, the four
CDRs combined offer a practical diversity approximating 1011 unique clones37. Thus, the highly diverse
Library F, with defined length and chemical diversity encoded in CDRs L3, H1, H2, and H3, permits the
precise probabilistic detection and elimination of artifactual CDR sequence combinations from NGS data,
such as those derived from PCR sequence amplifications required for the NGS Illumina process40 (see
Material and Methods).

We performed in situ selections against cell-surface CD151 on live cells, where CD151 is targeted at its
native cell-surface environment. For cell engineering, we selected the HEK293T cell line because it grows
rapidly in suspension and exhibits high display of transgenic cell surface proteins41. To enrich binders for
CD151, we engineered the HEK293T cells to stably overexpress CD151 (HEK293T-CD151+; positive cells)
(Figure S4A). Conversely, to deplete non-target selective binders we engineered HEK293T cells that stably
expressed a short hair-pin RNA that depleted CD151 mRNA, and consequently, reduced cell-surface
display of CD151 (HEK293T-CD151-; negative cells) (Figure S4A). The strategy of CellectSeq in situ
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selections utilizes multiple rounds of selection against antigen positive and negative cells, where it aims
to produce a positive Ab pool enriched with selective clones for the target antigen, and a negative Ab pool
enriched with non-specific clones (background).

To this end, the naïve phage pool representing Library F was subjected to four rounds of selections with
the engineered cell lines (Fig. 2). Round 1 consisted of a positive selection on HEK293T-CD151 + cells to
enrich for Fab-phage that bound to CD151, followed by elution of bound phage and amplification by
passage through E. coli. In round 2, we employed a strategy whereby phage pools were exposed to
control cells HEK293T-CD151- to deplete clones that bound to other cell-surface antigens, followed by
positive selections with HEK293T-CD151 + cells. Round 3 repeated the round 2 process using the
amplified phage pool from round 2. For the last round the amplified phage pool from round 3 was split
into two pools, and then subjected to a round 4 selection process that involved elution and amplification
of phage bound to either HEK293T-CD151 + cells (positive selection) or to HEK293T-CD151- cells
(negative selection) (Fig. 2). Thus, the round 4 phage selection output consisted of two pools, a positive
and a negative pool. After the four rounds of selection for binding to in situ CD151, we manually isolated
96 random Ab-phage clones derived from the round 4 phage output of HEK293T-CD151 + cells (positive
pool). We screened all 96 clones by cellular phage ELISA42, where phage signals were measured for
binding to HEK293T-CD151 + cells and compared to control HEK293T-CD151- cells. Here, we identified 49
phage clones, with binding signals 5-fold or greater over controls deemed as positive binders for cellular
CD151 (Figure S5). After Sanger DNA sequencing analysis, all 49 clones shared the same sequence of
clone CD151-1 (Table 1), indicating the Ab selection enriched for an immune-dominant clone. Accordingly,
manual Ab screening failed at deriving multiple unique and diversified CD151 selective clones;
consequently, we next performed NGS analysis of the output selection.

NGS enrichment ranking selection for anti-CD151 Abs
To identify unique CD151 specific Fab-phage clones in the round 4 selection output, we performed NGS
analysis to explore the output diversity and relative abundance of every Ab clone. Therefore, we deep
sequenced the round 4 output derived from the positive and negative pools. This allowed us to obtain
CD151 selective sequences (derived from the positive pool), and non-specific background sequences
(derived from the negative pool). The phage DNA from the Ab selection output pools were subjected to
PCR amplification resulting in amplicons with Illumina NGS adaptor sequences and unique barcode
identifiers that flanked the region of CDRs L3 and H3 (Figure S2 & S3). The amplicons from each output
pool (positive and negative) were quality controlled for correct size, purified, and quantified, then
normalized and pooled, and finally sequenced using an Illumina HiSeq 2500 instrument (see Materials
and Methods). Besides the Illumina universal sequencing primers (PE1 and PE2), the NGS runs also
included a custom primer that allowed for the complete sequencing of CDRs H1 and H2. Thus, the three
primer reads (PE1, PE2, and custom; Figure S2 & S3) provided the complete sequence coverage of the
four diversified CDRs in Library F37 (Figure S1). We performed duplicate NGS runs, and each run
controlled for high sequence quality scores43, 44. The sequences were filtered from instrument sequencing
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errors using per base high quality score cut-off of Q = 30, which corresponds to 1:1000 of incorrect base
call43. Following, all sequencing reads from the duplicate NGS runs were combined and deconvoluted.
The three different primer reads (PE1, PE2, and custom) for each clone were transformed into a single
sequence to derive the complete synthetic Ab sequence (see Materials and Methods).

The obtained high quality nucleotide sequences were then compared to the designed sequence
repertoires of Library F37 to remove technical errors inherent to Illumina sequencing and PCR
amplification. For each Ab clone, the nucleotide sequences were evaluated for codon deviations from the
synthetic design of the fixed framework and restricted CDR positions (Figure S1A-B). Any divergent
sequences from the synthetic library were discarded. Subsequently, the sequences were filtered for
potential PCR-induced artifacts that may arise during the NGS sample preparation and Illumina
sequencing process (see Material and Methods). This may occur due to incorrect annealing amalgams
(i.e. combinations) of different clones40, which for our case may be driven by the fixed Ab framework
coding region (non-CDR). Therefore, for every sequence we obtained the frequencies (i.e. number of
observations) of CDRs H3 and L3, respectively, since these two CDRs are the most diversified in the
synthetic library and drive the majority of affinity interactions with the antigen37. We then identified valid
L3/H3 pairs by calculating a frequency cut-off to determine a minimal threshold of valid occurrences,
with all below-threshold pairs filtered from the selection pool (see Materials and Methods). Thus, we
obtained 7,541,189 and 7,250,873 high quality NGS reads for the positive and negative pool, respectively.
The reads were then translated into amino acid. This process ultimately yielded 23,671 and 56,352
unique amino acid sequences in the positive and negative pools, respectively.

To perform NGS Ab enrichment ranking selection of potential CD151 selective clones, the unique high-
quality sequence reads from each pool were parsed based on CDR sequences and observation counts.
For each unique paratope we plotted the counts in the positive pool (x-axis) versus the ratio of its
abundance (i.e. frequency) in the positive pool relative to the negative pool (y-axis) (Fig. 3). To estimate
the number of potential unique CD151 binding clones in the plot, we defined an upper-right quadrant of
putative binders. Here, the upper-right quadrant sequences represent observations counts of more than
200 in the positive pool, and more than four-fold enriched relative to the negative pool (Fig. 3). After
performing comparative analysis of the unique sequences, the NGS enrichment ranking revealed all
upper-right quadrant clones as close homologs of clone CD151-1; all showing more than 80% sequence
identity in both L3 and H3 sequences. This finding reveals that the Ab selection is enriched for homolog
clones with a potentially similar targeted epitope (immunodominant), where CD151-1 is the most
abundant and selective clone.

Motif-based algorithm identifies selective and diversified
Abs against CD151
Due to the lack of Ab diversity derived by both manual selection of Ab clones and NGS enrichment
ranking, we developed a novel motif-based algorithm to identify highly selective Abs for CD151 from the
deep sequenced phage pools. The in silico strategy for scoring CD151 selective Abs is based on exploringLoading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
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all possible sequence motifs (i.e. consensus motifs) in the positive pool and scoring their enrichment over
the negative pool (Fig. 4A). This follows the premise that highly selective Abs are enriched with paratope
motifs (i.e. linear information) that recognize the target antigen, whereas non-selective Abs lack such
enrichment45 (Figure S6). Therefore, for each Ab clone in the positive pool (i.e. candidate) (Fig. 4A1) we
explored the entire space of linear information by exhaustively enumerating all possible motifs matching
its CDR sequences46, and obtained the frequencies (number of matching sequences / total number of
sequences) of every motif in the positive and negative pools (Fig. 4A2). According to the premise above,
the high enrichment of the motifs in the positive pool relative to the negative pool implies the Ab
candidate is potentially highly selective (Fig. 4A3). Thus, we analyzed each Ab in the positive pool for the
selective binding to CD151 by scoring the separation between the two distributions of frequencies of the
motifs in the positive and negative pools (see Methods for details). To this end, we calculated the t-test47

to score the separation of the two distributions, then we calculate the p-value to evaluate the statistical
significance of the t-test48–50. Thus, the lower the p-value the higher is the separation between the two
distributions, thus, the higher is the selectivity of the candidate Ab. Finally, we applied the stringent p-
value cut-off of 10 −10 to identify highly selective Ab clones (see Materials and Methods). Therefore, this
motif-based in silico strategy allowed us to explore rapidly and exhaustively the selectivity of all Ab
clones in the positive pool. We were able to identify potentially selective CD151 binders, regardless of
their individual frequencies in the total pool of sequences; thus, bypassing the limitations of standard
NGS analyses based solely on enrichment counts of individual clone sequences, which has difficulties for
discriminating between selective Ab clones and background.

Filtering PCR-induced sequence artifacts improves the in silico Ab selection results

As previously mentioned, PCR-induced artifacts may arise during the NGS sample preparation and
Illumina sequencing process40. These artifacts represent invalid amalgams of existing CDRs L1, H1, H2,
and H3 sequences, which may be seen as novel Ab clones40. These artifacts may significantly bias the
frequencies of individual clones that will inevitably affect the in silico Ab discovery strategy. Therefore,
for both the positive and negative pools, we obtained the frequencies (i.e. number of observations) of
CDRs H3/L3 pairs, where both CDRs are the most diverse in terms of length and amino acid
compositions in Library F37. We calculated a frequency cut-off to determine valid L3/H3 pairs utilizing a
minimal occurrence threshold, with all invalid pairs filtered from the selection pool as potential PCR and
NGS artifacts (see Materials and Methods). We therefore applied the motif-based in silico Ab discovery
strategy to predict CD151 highly selective binders (p-values < 10− 10) for both scenarios, before and after
filtering. The application of error-filtering to the positive pool Abs reduced their clonal diversity to 80% less
unique Abs (Fig. 4B1-C1-D1). Similarly, the application of the error-filtering before the motif-based in silico
prediction of CD151 clones reduced their diversity to 85% less unique Abs (Fig. 4B2-C2-D2). Interestingly,
before error-filtering the in silico predicted Abs clustered into 183 distinct families of similar L3/H3
sequences (> 80% identity), whereas after filtering the Abs reduced to only 4 distinct families (Fig. 4B3-C3-
D3).
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To experimentally assess the validity of predicted antibodies in both scenarios, we selected the Abs with
best specificity scores (p-values; Fig. 4A3) from each of the 4 families predicted after filtering, as well as
23 additional Abs predicted before filtering (Fig. 4B3-C3-D3 & Table S1). Due to the low NGS enrichment
of the identified Ab clones, instead of PCR rescue or similar methods51, 52, all 27 candidate clones were
synthesized as Ab DNA sequences into Fab protein expression plasmids. After Fab purification, we tested
the activity of each clone by flow-cytometry for binding to HEK293T-CD151 + cells when compared to
HEK293T-CD151- cells (control). All four Ab clones predicted after filtering were determined as CD151
binders (Pass validation; Table S1), with fluorescence signals of 3-fold or greater than controls. On the
other hand, all 23 pre-filtering Abs failed to bind to CD151 (Table S1). The success rate of the motif-based
in silico Ab discovery before and after filtering is respectively 4:27 (i.e. ~15%) and 4:4 (i.e. 100%). This
difference between the success rates highlights the requirement to filter PCR-induced and NGS artifacts
to derive accurately and effectively selective clones. Furthermore, the abundance (enrichment) of the 4
identified clones (based on motif-based in silico Ab selection) varied from high (30%) to extremely low. In
fact, the clones CD151-2 and CD151-3 have frequencies below 0.01%, and clone CD151-4 possesses the
extremely low frequency of 0.00009% (Table 1). These latter clones would be impossible to identify using
manual sampling or standard NGS analyses solely based on enrichment.

Characterization of motif-based in silico identified Abs against CD151

To demonstrate the advantage of the motif-based in silico Ab discovery strategy, termed CellectSeq
(Figure S7), we measured all 4 clones (CD151-1 thru − 4) as Fab versions for dose-dependent binding to
HEK293T-CD151 + cells. Quantitative flow cytometry displayed tight and saturable binding of each Fab to
HEK293T-CD151 + cells (Fig. 5A), with EC50 values in the low-nanomolar range (Table 1). We also used
flow cytometry to assess epitope overlap by measuring the ability of immunoglobulin (IgG) versions of
each clone to block binding of each Fab to HEK293T-CD151 + cells. As expected, preincubation of
HEK293T-CD151 + cells with each IgG reduced subsequent binding of the cognate Fab. Moreover, all IgGs
blocked binding of the different Fab clones (Fig. 5B), implying that all four distinct clones share a similar
CD151 binding epitope.

Further corroboration of specificity for CD151 was provided by performing immunoprecipitation mass
spectrometry (IP-MS) experiments with each Fab for HEK293T-CD151 + cells and HT1080 cells (express
native levels of CD151 protein). Tandem mass spectra were searched against a human database to
validate MS/MS protein identifications. Protein identifications were accepted if they could be established
at greater than 99% probability based on identified peptides. After background filtering to remove keratin,
immunoglobulin and cytoplasmic proteins, the highest peptide counts for all four Fabs were for CD151
on both different cell lines (Fig. 5C and S8). The integrin β1 (ITGB1), a receptor identified to associate
with CD15153, also immunoprecipitated with Fabs CD151-1, CD151-3, and CD151-4 (Fig. 5C), adding
further validity of the Fabs selectivity for CD151. Taken together, the results show that the four in silico
Abs recognize cell-surface CD151 with high affinity and specificity, with all different clones likely bind to
overlapping epitopes.
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Discussion
Multi-domain membrane proteins represent about 70% of current drug targets, especially for their role in
the progression and tumorigenesis of numerous cancers14. However, the cellular surface component of
many integral membrane proteins makes their production and purification extremely difficult for in vitro
Ab selections13. The instability of membrane proteins makes them challenging targets to work with, as
many of these proteins depend on the membrane environment for their correct structure. The Ab selection
strategy presented in this work, termed CellectSeq (Figure S7), bypasses the need for purified antigens
where Ab library selections are performed directly on cell-surface antigens. Moreover, CellectSeq may
target difficult receptors, such as those containing minimal loop protrusions and present in complex
mixtures in situ, as is the case of tetraspanin receptors.

By this method, we targeted the challenging CD151, a cell surface protein that is linked in the disease and
progression of tumors. The in situ Ab selection against CD151, then followed by conventional manual Ab
screening yielded a unique immunodominant clone CD151-1. While NGS enrichment ranking analysis of
the same selection identified highly homologous clones to CD151-1, with greater than 80% sequence
identity in both CDRs L3 and H3. On the other hand, the motif-based and error filtering in silico analysis of
CellectSeq yielded multiple diversified clones, with multiple identified at extremely low frequencies in the
output pool. Moreover, all four distinct paratopes identified by CellectSeq share a similar target epitope
(Fig. 5B); this observation highlights the recalcitrant nature of CD151 receptor35, which displays limited
surface exposed regions that limits the available epitopes (Fig. 1). Furthermore, the advantage of
CellectSeq over conventional strategies of NGS derived Abs, such as enrichment ranking54–56, is the
exhaustive analysis of all paratope motifs in the NGS dataset, rather than unique observations of clonal
sequence identities, that enables the discovery of low abundant selective Abs. The statistical evaluation
of paralogs allows for the successful prediction of representative Abs against CD151, including low
abundance clones at observed frequencies as few as 7/7.3 million reads.

We also accredit the success of CellectSeq to the design of the synthetic Ab repertoire itself. In contrast to
existing strategies for enhancing sequencing fidelity in Illumina datasets57–60, as demonstrated in this
report the restricted synthetic framework of Library F permits simple and accurate detection of erroneous
Illumina reads. Here, the design of positional codon frequencies in the restricted CDRs allows for rapid
deconvolution of NGS datasets and the removal of errors and artifacts, whereas natural repertoires prove
more random and difficult to assess NGS errors. The synthetic framework also provides a deep analysis
of paratope diversities in the NGS data by utilizing motif-based in silico strategies that predict infrequent
but target-specific Abs, which was demonstrated by the successful prediction of the CD151 diversified
and selective Abs with frequencies below 0.01%.

The implementation of NGS analysis facilitates the rapid and successful discovery of Abs, and highlights
that membrane associated antigens are accessible to synthetic Abs in situ. As demonstrated in this
report, the strategy of CellectSeq surpasses standard methods of Ab manual screenings and NGS
analysis to introspect all potential binders in the output Ab pool. Additionally, because NGS is anLoading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
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attractive technology for generating meta-data, in regards to costs and access for Ab discovery61, 62, we
foresee the expanded implementation of NGS in conjunction with CellectSeq to identify diversified
paratopes and low abundance clones. This is evidenced by recent reports of deep sequencing
approaches that characterize human Ab libraries and V-gene repertoires from immunized mice63, 64. This
combination of Ab cellular selections coupled with NGS analysis and CellectSeq may create a proteomic
gateway for modulating the surfaceome.

Materials And Methods

Cell lines and culture practices
Both, the CD151 knockdown (HEK293T-CD151-) and CD151 overexpressing (HEK293T-CD151+) cell lines
were gifts from the Dr. Rottapel lab at University of Toronto, Princess Margaret Cancer Centre. Briefly, the
HEK293T-CD151- cells were generated using the Tet-pLKO-puro plasmid and the HEK293T-CD151 + cells
were generated using the pLX304 plasmid, both as previously described66. The HEK293T cell
backgrounds were cultured in Dulbecco’s Modified Eagle medium (DMEM) with 10% fetal bovine serum
(FBS). The human fibrosarcoma H1080 cell line (ATCC; CCL-121) was cultured in Eagle's Minimum
Essential Medium (EMEM) with 10% FBS. All cells were cultured at 37ºC in a humid incubator with 5%
CO2.

Antibody Selections with Cellular Antigen
Phage pools representing synthetic antibody library-F37 were cycled through four rounds of binding
selections using a HEK293T-CD151- cell line as the background depleting step, and a HEK293T-CD151 + 
cell line as the target selection step (Fig. 2). The adherent cell lines were suspended using PBS, 10 mM
ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich). For round 1, ten million re-suspended HEK293T-
CD151 + cells (greater than 90% viability) were incubated with Fab-phage (3 × 1012 cfu) in cell growth
media under gentle rotation for 2 hours at 4 °C. For rounds 2 and 3, the Fab-phage were cycled between
antigen negative (to remove non-specific phage binders) to antigen positive cells. Here the Fab-phage
were first incubated with the HEK293T-CD151- cell line for 2 hours at 4 °C, then the cells were spun down
utilizing a chilled centrifuge and Fab-phage supernatant collected. Similarly, the HEK293T-CD151 + cells
were spun down utilizing a chilled centrifuge and supernatant discarded. Next, the HEK293T-CD151 + 
cells were resuspended utilizing the Fab-phage supernatant, and incubated for 2 hours at 4 °C. For round
4, both HEK293T-CD151- and HEK293T-CD151 + cells were independently presented with Fab-phage and
incubated for 2 hours at 4 °C. The HEK293T-CD151- and HEK293T-CD151+, cell lines were washed four
times with chilled PBS and 1% BSA. For all rounds, after washing the bound phages were eluted from the
cell pellet by resuspending the cells in 0.1 M hydrochloric acid and incubating for 10 minutes at room
temperature. The cell solutions were neutralized using 11 M Tris buffer (Sigma-Aldrich), cellular debris
was removed by high-speed centrifugation, and the eluent was transferred to clean vials. The output
phages were amplified by infection and growth in E. coli OmniMAX™ cells (Thermo-Fisher). After round 4,
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infected E. coli OmniMAX™ cells were plated on 2YT/carbenicillin (Sigma-Aldrich) plates for isolation of
single colonies.

Phage ELISAs
Colonies of E. coli OmniMAX harboring phagemids were inoculated into 450 µl 2YT broth supplemented
with carbenicillin and M13-KO7 helper phage, and the cultures were grown overnight at 37 °C in a 96-well
format. Culture supernatants containing Fab-phage were diluted two-fold in PBS buffer supplemented
with 1% BSA and incubated for 15 minutes at room temperature. To test binding to native antigen on
cells, phages were added directly to the cellular media of HEK293T-CD151- and HEK293T-CD151 + 
adherent cells (95–100% confluence) in tissue-culture-treated 96-well plates (Thermo-Fisher). After
incubation for 45 minutes at room temperature, the plates were washed gently with PBS and the cells
were fixed with 4% paraformaldehyde (Sigma-Aldrich). The cells were washed with PBS and incubated for
30 minutes with horseradish peroxidase/anti-M13 Ab conjugate (Sigma-Aldrich) in PBS buffer
supplemented with 1% BSA. The plates were washed, developed with TMB Microwell Peroxidase
Substrate Kit (KPL Inc.), and quenched with 1.0 M phosphoric acid; the absorbance was determined at a
wavelength of 450 nm. Clones were identified as positive if they produced at least three-fold greater
signal on wells with HEK293T-CD151 + cells over antigen negative HEK293T-CD151- cells. All positive
clones were subjected to Sanger DNA sequence analysis (Genewiz).

Fab Protein Purification
Fab proteins were expressed in E. coli BL21 (ThermoFisher), as described38. Following expression, cells
were harvested by centrifugation and cell pellets were flash-frozen using liquid nitrogen. The cell pellets
were thawed, re-suspended in lysis buffer (50 mM Tris, 150 mM NaCl, 1%Triton X-100, 1 mg/ml lysozyme,
2 mM MgCl2, 10 units of benzonase), and incubated for 1 hour at 4 °C. The lysates were cleared by
centrifugation, applied to rProtein A-Sepharose columns (GE Healthcare), and washed with 10 column
volumes of 50 mM Tris, 150 mM NaCl, and pH 7.4. Fab protein was eluted with 100 mM phosphoric acid
buffer, pH 2.5 (50 mM NaH2PO4, 140 mM NaCl, 100 mM H3PO4) into a neutralizing buffer (1 M Tris, pH
8.0). The eluted Fab protein was buffer exchanged into PBS and concentrated using an Amicon-Ultra
centrifugal filter unit (EMD Millipore). Fab protein was characterized for purity by SDS-PAGE gel
chromatography and concentration was determined by spectrophotometry at an absorbance wavelength
of 280 nm.

IgG Purification
Full-length IgG proteins were expressed in mammalian cells, as described67. Briefly, plasmids designed to
express heavy and light chains were co-transfected into Expi293 cells (ThermoFisher) using the
FuGENE® 6 Transfection Reagent kit (Promega), according to the manufacturer's instructions. After 5
days, cell culture media was harvested and applied to an rProtein-A affinity column (GE Healthcare). IgG
protein was eluted with 25 mM H3PO4, pH 2.8, 100 mM NaCl and neutralized with 0.5 M Na3PO4, pH 8.
Fractions containing eluted IgG protein were combined, concentrated, and dialyzed into PBS, pH 7.4. IgG
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protein was characterized for purity by SDS-PAGE gel chromatography and concentration was determined
by spectrophotometry at an absorbance wavelength of 280 nm.

Flow-cytometry validations and cellular binding titrations
Adherent cells were brought into suspension using PBS supplemented with 10 mM
ethylenediaminetetraacetic acid (EDTA; Sigma-Aldrich). The cells were washed with PBS, resuspended in
PBS supplemented with 1% BSA, and incubated for 15 minutes at 4 °C. The cells were labelled with
500 nM Fab, or IgG for 30 minutes at 4 °C, then washed with PBS and resuspended in PBS supplemented
with 1% BSA. Next, the cells were labelled with anti-Flag (for Fabs) conjugated Alexa-488 secondary Ab
(Abcam) according to manufacturer’s instructions. Data were collected using a CytoFLEX-S flow-
cytometer (Beckman Coulter) using a 488-nm laser with 530/25 nm filter settings. The cells were
analyzed in PBS, and all acquired live events were greater than 10,000 cells per sample. Quantitation
analysis was carried out using FlowJo v10.2 Software (FlowJo, LLC). For Ab cellular titration analysis, the
Abs were added to antigen positive HEK293T-CD151 + cells in triplicate samples from a concentration
range of 500 pM to 1 µM. The mean fluorescence signal values were subtracted from the control antigen
negative HEK293T-CD151- cells signals, and EC50 determined using Graph-pad Prism (GraphPad
Software, San Diego, California, USA), where x is the Fab concentration:

Y = Ymax +
Ymin − Ymax

1 +
EC50

X
HillSlope

Mass Spectrometry
For immunoprecipitation of cell-surface protein, 107 lifted and dissociated HEK293T-CD151 + or HT1080
cells were incubated with 500 nM Fab protein in DPBS with calcium and magnesium (Gibco, 0404) for 1
hour at 4 °C. Cells were washed with PBS and lysed using IP lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM
NaCl, 1.0% IGEPAL CA-630, 0.25% Na-deoxycholate, 1 mM EDTA, and protease inhibitor cocktail (Roche))
for 15 minutes at 4 °C and centrifuged at 12000 x g for 5 minutes at 4 °C. The supernatant was incubated
with 30 µl of sepharose protein-A beads (GE Healthcare) for 1 hour at 4 °C. The beads were washed three
times with lysis buffer, once with PBS, and resuspended in 22 µl 10 mM glycine, pH 1.5. After 5 minutes,
the supernatant was collected and neutralized with 2.2 µl 1 M Tris, pH 8.8. DTT was added to a final
concentration of 10 mM. The sample was incubated at 40 °C for 1 hour and cooled to room temperature.
Iodoacetamide was added to a final concentration of 20 mM, and the sample was incubated at room
temperature in the dark for 30 minutes. Trypsin (1 µg, Promega) was added and the sample was
incubated overnight at 37 °C. Peptides were purified using C18 tips and analyzed on a linear ion trap-
Orbitrap hybrid analyzer (LTQ-Orbitrap, ThermoFisher) outfitted with a nanospray source and EASY-nLC
split-free nano-LC system (ThermoFisher).

( )
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Tandem mass spectra were extracted, and charge state was deconvoluted and deisotoped by Xcalibur
version 2.2. All MS/MS samples were analyzed using PEAKS Studio (Bioinformatics Solutions, Waterloo,
ON Canada; version 8.0 (2016-09-08)) and X! Tandem (The GPM, thegpm.org; version CYCLONE
(2010.12.01.1)). Samples were searched against the Uniprot Human database (Downloaded May 1st,
2017: 20183 entries) assuming the digestion enzyme trypsin. Carbamidomethyl of cysteine was specified
as a fixed modification. Deamidation of asparagine and glutamine were specified as variable
modifications. Scaffold (version Scaffold_4.7.5, Proteome Software Inc., Portland, OR) was used to
validate MS/MS based peptide and protein identifications. Peptide identifications were accepted if they
could be established at greater than 95% probability. Peptide Probabilities from PEAKS Studio
(Bioinformatic Solutions, Inc.) were assigned by the Peptide Prophet algorithm with Scaffold delta-mass
correction. Peptide Probabilities from X! Tandem were assigned by the Scaffold Local FDR algorithm.
Protein identifications were accepted if they could be established at greater than 99% probability and
contained at least one identified peptide. Protein probabilities were assigned by the Protein Prophet
algorithm 42. Proteins that contained similar peptides and could not be differentiated based on MS/MS
analysis alone were grouped to satisfy the principles of parsimony. Proteins sharing significant peptide
evidence were grouped into clusters.

Next-Generation Sequencing Analysis
The Fab-phage output pools from HEK293T-CD151- and HEK293T-CD151 + cell lines were utilized as
input templates of PCR reactions using forward and reverse primers that flanked CDRs L3 and H3,
respectively. The primers included a 24 base-pair template annealing region followed by a 6–8 base-pair
unique nucleotide barcode identifier and an Illumina universal adapter tag (PE1 or PE2 for the reverse or
forward primer, respectively). Duplicate PCR amplicons were generated per Fab-phage pool that were then
isolated by gel electrophoresis and followed by agarose gel extraction (Qiagen). The duplicate PCR
amplicons were combined, and the sample concentrations were determined by spectrophotometry
(BioteK). The amplicons for antigen positive and negative Fab-phage pools were normalized, pooled, and
sequenced using a HiSeq 2500 instrument (Illumina) with 300 paired-end cycles. Besides PE1 and PE2
Illumina universal primers, the sequencing runs also included a custom primer that allowed for complete
sequencing of CDRs H1 and H2. Thus, the three primer reads together provided complete sequence
coverage of the four CDRs that were diversified in Library F37 (Figure S2). We performed duplicate NGS
runs and then combined them. Subsequently, the sequencing reads were deconvoluted for each clone,
and the three primer reads (PE1, PE2, and custom) were combined into a single sequence to derive the
complete sequence. Sequences were filtered from sequencing errors using per base high quality score
cut-off of Q = 30, which corresponds to 1:1000 of incorrect base call 43. High quality nucleotide
sequences were obtained, translated into amino acid sequences, and compared to the designed sequence
repertoire of Library F37 to filter out technical errors inherent to sequencing and PCR amplification.

Filtering hybridization errors in NGS selection pools
The diversity, i.e. combinatorial possibilities, of our phage-displayed synthetic Ab library37 is dominated
by the CDR sequences L3 and H3 (Figure S1B). In fact, the theoretical diversity of L3 and H3 are to theLoading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
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order of magnitude of 6 and 16, while H1 and H2 cover a diversity of 26 and 28. Thus, we theoretically
assumed that the majority of PCR-induced artifacts and bias representing amalgams of existing
sequences, i.e. hybridization errors, to be present in the pairs of sequences L3/H3. In addition, we
assumed that among all possible pairs of sequences L3/H3, the valid pairs are overrepresented
compared to the invalid pairs. Thus, for every sequence H3 in the Ab selection pool, we obtained the
frequencies (i.e. number of observations) of all its paired sequences L3, and we calculated a frequency
cut-off according to the maximum interclass inertia method using the Koenig-Huygens theorem68. The
cut-off serves as a minimum frequency threshold to identify valid pairs L3/H3, thus, all Ab sequences
with the invalid pairs are filtered from the selection pool.

Enumeration of consensus motifs in the CDR sequences
Consensus motifs, or motifs, are utilized to represent the linear information that is shared among groups
of sequences. While certain positions in the motifs are defined (e.g. P as proline and R as arginine in the
motif PXXR), others do not and are called wildcards (e.g. X as any amino acid in the motif “PXXR”). We
utilize here the motifs to explore the linear information in the CDR sequences of each candidate Ab. To
this end, we adapted the algorithm DALEL46 that was first developed to explore the linear information in
proteins. To avoid the explosion of the number of motifs, we restricted the number of allowed wildcards
in each motif to 55% of its length. In addition, we considered only motifs with wildcards matching more
than one amino acid in the matching sequences in the positive pool (e.g. wildcard X in motif PXR
matches amino acids Y and S in the sequences PYR and PSR). Finally, we restricted the number of motifs
by limiting the minimum number of sequences in the positive pool matching every motif to a 100.

Scoring separation between distributions of frequencies in
positive and negative selections
The following procedure is performed for every Ab from the positive pool. We enumerate all possible
motifs in the CDR sequences, as described earlier. Then, for each motif we obtain the frequencies (i.e.
number of matching sequences / total number of sequences) in both the positive and the negative pools.
According to the premise that selective Abs are enriched with paratope motifs that recognize the target
antigen and non-selective Abs are not, it is then possible to assess Ab selectivity by checking whether the
frequencies in the positive pool are higher compared to the negative pool. This is performed by scoring
the level of separation between the distribution of frequencies in the positive and the negative pools.

To score the separation between the two distributions of frequencies of the motifs in the positive and the
negative selection pools we utilized the Welch-Satterthwaite version of the t-test in conjunction with the
rank transformation47. This approach has the advantage to simultaneously counteract the undesirable
effects of both non-normality and unequal variances in our distributions of frequencies. First, the two
distributions of frequencies are combined and arranged in ascending order, with tied frequencies
receiving a rank equal to the average of their positions. Given the two distributions of ranks xP and xN

that correspond to the frequencies in the positive and the negative selection pools, and 
−
x P and 

−
x N are
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the means, sP and sN are the standard deviations, and nP and nP are the sizes, all respectively. We
calculate the p-value to evaluate the statistical significance of the t-score following the procedure
described below48 − 50.

We first calculate the t-score by:

t =

−
x P −

−
x N

s2
P

nP
+

s2
N

nN

We then calculate the degree of freedom by:

f =

s2
P

nP
+

s2
N

nN

2

s2
P

nP

2

nP −1 +

s2
N

nN

2

nN −1

We finally calculate the p-value by:

p =
1

√fπ

Γ
f +1

2

Γ
f
2

∫ t
−∞

1

1 +
t2

f

f +1
2

dt

Where t is the t-score, f is the degree of freedom, Γ(. ) is the Gamma function, and p is the probability
that a single observation from the t distribution with f degrees of freedom will fall in the interval [–∞, t]. In
other terms, the p is the probability to have by chance any t-score that is equal or below to the t-score t.
Thus, the lower is the p-value p, the higher is the significance of the t-score t, and consequently the higher
is the separation between the two distributions of frequencies in the positive and the negative selections.
We filtered the p-values using a stringent cut-off of 10 −10 to identify highly specific Ab clones. To
complement the p-values, we calculated Cohen’s d effect size coefficient69 to evaluate the difference
between the means of the frequencies in the positive and the negative selections, and we kept p-values
with huge effect size70 (d > 2).

√

( )
( ) ( )

( )
( ) ( )
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d =

−
x P −

−
x N

nP −1 s2
P + nN −1 s2

N

nP +nN −2
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Supplemental Legends
Table S1. Validation summary of CD151 selective Ab clones derived from NGS enrichment ranking
analysis. The antibody sequences were synthesized as Fab protein and assayed for cellular binding on
HEK293T-CD151+ cells via flow-cytometry. In-situ validation result “Pass” = fluorescence signal 3-fold or
greater than background (HEK293T-CD151- cells).

Figure S1. Library F CDR sequences. (A) Nucleotide sequences are formatted according to IUPAC code,
and showing the nucleotide composition of template (parental) CDR sequences utilized to construct
library F. Among 3x1010 unique clones in Library F, diversity was incorporated in approximately 80% of
the population in each CDR and the retention of template sequences in the remainders. (B) Composition
of pattern (variable) nucleotide sequences in library F, where the pattern CDR sequences describe the
composition and length diversity introduced to CDRs-H1, H2, H3 and L3 by allowing loop lengths that are
found within these regions of natural antibodies. X(3-7) and X(1-17) indicates the insertion of 3 to 7 and 1
to 17 tri-nucleotides from a mixture designed to contain nine different amino acids of the following
composition; 25% Tyr, 20% Ser, 20% Gly, 10% Ala, and 5% each of Phe, Trp, His, Pro and Val, all
respectively. (C) Framework Structure of Fab region showing the CDR loops L1 and L2 (orange), L3
(black), H1 (green), H2 (red), and H3 (blue) as spheres. The figure was generated using PyMOL
(http://www.pymol.org/) with crystal structure coordinates (Protein Data Bank entry 1MIM). (D)
Description of the synthetic antibody library F CDR amino acid sequences, highlighting the CDR diversity
by position (shaded in gray are fixed positions). Allowed amino acids are denoted by the single-letter
code, where X denotes a mixture of nine amino acids (Y, S, G, A, F, W, H, P or V). The lengths of CDR-L3
and CDR-H3 may vary from 3–9 and 1–19 respectively and the residue numbering is according to the
IMGT scheme.

Figure S2. Description of NGS strategy for Illumina read-out of the diversified CDRs. The template DNA
Fab region includes a PhoA promoter followed by a ribosome binding site (RBS) and two gene cassettes
with signal peptide (SP) sequences and light or heavy antibody regions followed by the M13 gene-3 for
display on phage particles. The phagemid template Fab region is PCR amplified utilizing two distinct
primers that contain barcoded indexes and Illumina adapter sites. The amplicons are sequenced with
three distinct read out primers that cover the sequences of the diversified regions L3, H1, H2, and H3.
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Figure S3. Library F NGS three-read diagram showing annealing regions of primers on Ab framework.

Figure S4. Validation of CD151 transgenic and knock-down cell lines used in this report. (A) Flow-
cytometry histograms showing the CD151 surface expression of different HEK293T cell lines.
Measurements were performed using an overexpressing CD151 cell line (HEK293T-CD151+), a short hair-
pin RNA CD151 knockdown cell line(HEK293T-CD151-) cell line, and the parental HEK293T cell line, and
CD151 surface expression measured utilizing a mouse anti-human CD151 PE conjugated IgG (Biolegend;
cat. 350408). (B) Schematic of a round of selection where amplified Fab-phage is utilized to label
antigens at the surface of live mammalian cells. After cellular wash and elution, the Fab-phage are
amplified in E. coli and isolated for the next round of selection.

Figure S5. Binding measurements of Fab-phage to CD151 expressing cells (HEK293T-CD151+) by single-
point cellular ELISA measurements. The fold change signal is measured by taking the ratio of signal from
HEK293T-CD151+ cells over HEK293T-CD151- cells. A fold change signal of 5 or greater is deemed as a
potential positive CD151 Fab-phage binder.

Figure S6. Linear information of paratope motifs as predictor for binding specificity of antibodies.
Representation of the premise stating that highly selective Abs are enriched with paratope motifs that
enable specific recognition of target epitopes, whereas non-specific Abs lack such enrichment.

Figure S7. Description of CellectSeq Methodology. Flow-chart of workflow for the CellectSeq
Methodology.

Figure S8. IP-MS peptide coverage results of CD151 protein: (A) Fab CD151-1 assayed utilizing HEK293T-
CD151+ cells; (B) Fab CD151-1 assayed utilizing HT-1080 cells; (C) Fab CD151-2 assayed utilizing
HEK293T-CD151+; (D) Fab CD151-2 assayed utilizing HT-1080 cells; (E) Fab CD151-3 assayed utilizing
HEK293T-CD151+ cells; (F) Fab CD151-3 assayed utilizing HT-1080 cells (G) Fab CD151-4 assayed
utilizing HEK293T-CD151+ cells; and (H) Fab CD151-4 assayed utilizing HT-1080 cells. NTT - Number of
termini consistent with the enzymatic cleavage or tryptic termini; Observed - Mass over charge (M/Z) of
the parent or precursor ion measured by the mass spectrometer.; Actual Mass - Peptide mass in Dalton
obtained by multiplying the charge to the subtraction of one proton from the observed M/Z; Charge -
Peptide charge; Delta Da - (Actual Mass - Theoretical Peptide Mass) in Dalton, where the Theoretical
Peptide Mass or Calculated peptide mass, is given by the sum of amino acid residue masses included in
the peptide plus a water molecule; Delta PPM - (Actual Mass - Theoretical Peptide Mass) in PPM also
referred to in the spectrum as the Parent error. It is calculated by dividing the delta mass expressed in
Dalton by the Actual Mass and then multiplied by one million.; Retention Time - Measured in seconds, it is
included in the table only if the information is listed in the peak list of the loaded data; TIC - MS/MS Total
Ion Current; Start - Peptide start index; and Stop - Peptide stop index.

Figures
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Figure 1

Schematic of CD151 structure
CD151 consists of four alpha-helical transmembrane domains, two
extracellular loops one short (ECL1) and one long typically 100 amino acid residues (ECL2), and one very
short intracellular loop, all flanked by relatively short cytoplasmic N-terminal and C-terminal tails. The EC1
loop displays small stature and low structural organization. The ECL2 loop is composed of five α-helical
domains A, B, C, D, and E, forming stalk and head elements of a mushroom-like structure. The A, B and E
helices (blue) are forming the constant region and are suggested to mediate homodimerization, while the
C and D helices (orange) are forming the variable region and their flanking sequences mediate
interactions with other proteins. The six cysteine residues in ECL2 are indicated in green, and the N-
glycosylation site in red. The numbering represents the amino acid occurring before or after each
transmembrane domain.
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Figure 2

CD151 in situ Ab selection process
Circles represent live HEK293T cell lines of either overexpressing
CD151 (HEK293T-CD151+; denoted by “+” sign), or CD151 knockdown cells (HEK293T-CD151-; denoted by
a “-” sign). For round 1, the Fab-phage (naïve library F) were incubated with HEK293T-CD151+ cells, then
eluted and amplified for the next round. For rounds 2 and 3, the Fab-phage were first incubated with
HEK293T-CD151- cells, then transferred and incubated with HEK293T-CD151+ cells. For round 4,
amplified round 3 Fab-phage were independently incubated with HEK293T-CD151- or HEK293T-CD151+
cells. The dashed lines with arrows indicate that eluted phage from the preceding round were amplified
through E. coli prior to incubation with cells in the succeeding round. The solid lines with arrows indicate
that unbound phage from the preceding cell line were transferred directly to the succeeding cell line. In
round 4, phages from Fab-phage pools HEK293T-CD151+ (Positive pool) and HEK293T-CD151- (Negative
pool) were amplified and used as DNA template for NGS analysis.
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Figure 3

NGS enrichment ranking selection of CD151 in situ selection of Ab clones
The abundance of each
sequence in Fab-phage pools selected for binding to HEK293T-CD151+ cells (Positive Counts, x-axis) is
plotted versus the ratio of the abundance in pools selected for binding to HEK293T-CD151+ cells over
pools selected for binding to HEK293T-CD151- (Positive/Negative, y-axis). Each circle represents one
unique paratope (i.e. unique combination of CDRs L3, H1, H2 and H3). The dashed red lines define an
upper-right quadrant that contains putative CD151 binding clones, defined arbitrarily as those occurring
more than 200 times in the positive pool and being greater than four-fold enriched relative to the negative
pool. The red circles represent the 100 Ab clones in the top-right quadrant that were selected after the
NGS analysis and predicted to bind to CD151. All selected clones are close homologs (>80% sequence
identity) of the immunodominant Ab clone CD151-1. The red circle at the far right represents the
immunodominant Ab clone CD151-1 that were manually sampled and validated as specific CD151
binding Ab by cellular phage ELISA (Figure S2).
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Figure 4

Motif-based in silico Ab discovery strategy of CD151 selective Abs.
(A) Scoring Specificity: (1). Consider
the candidate antibody NGS clone, the CDR sequences and counts in the positive (POS) and the negative
(NEG) selection pools at round 4 are reported. (2). We enumerate all consensus motifs in the CDR
sequences. (3). We score the binding specificity of the candidate antibody by assessing the separation
between the distributions of the frequencies of the motifs in the positive (POS) and negative (NEG) pools.
To this end, we calculate the p-value of the t-test (Methods). (B) and (C). In each figure, the abundance of
each sequence in the positive pool (Positive Counts, x-axis) is plotted versus the ratio of the abundance in
the positive pool over the negative pool (Positive/Negative, y-axis). Each circle represents one unique Ab
clone, colored circles (except black) represent families of homologous sequences (sequence identity >
0.75). The dashed red lines define an upper-right quadrant that contains enriched Ab clones defined as
occurring more than 200 times in the positive pool and being greater than four-fold enriched relative to
the negative pool. (B) Before Filtering: NGS sequences and predicted sequences before filtering
hybridization errors. (1). Distribution of unique sequences in the positive pool and their enrichment over
the negative pool. (2). Distribution of predicted sequences with high specificity, colored by family of
homologs. (3) Distribution of selected sequences for in situ validation, colored by family of homologs. (C)
After filtering: NGS sequences and predicted sequences after filtering hybridization errors. (1). Distribution
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of unique sequences in the positive pool and their enrichment over the negative pool. (2). Distribution of
predicted sequences with high specificity, colored by family of homologs. (3). Distribution of selected
sequences for in situ validation, colored by family of homologs. Colored circles represent Ab clones
named CD151-1 to CD151-4 which were selected and validated as specific CD151 binding Abs by cellular
phage ELISA. (D) Before vs. After filtering: Difference between number of unique sequences and
prediction results before and after filtering hybridization errors. (1). Number of unique sequences in the
positive pool before and after filtering. (2). Number of predicted sequences before and after filtering. (3).
Number of validated sequences before and after the filtering.
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Figure 5

Characterization of anti-CD151 Abs derived from CellectSeq
(A) Dose response curves for anti-CD151
Fabs assessed by flow cytometry fluorescence (y-axis) using HEK293T-CD151+ cells. The MFI signals
were subtracted from background Fab binding to HEK293T-CD151-cells and normalized to the highest
concentration value for each sample. Experiment performed in triplicates and error bars indicate SD. (B)
Blocking of anti-CD151 Fabs (x-axis) binding to HEK293T-CD151+ cells by indicated IgGs, assessed byLoading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
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flow cytometry fluorescence (y-axis). Experiment a representative of duplicate experiments. (C) Mass-
spectrometry summary table of enriched isolated peptides from immuno-precipitated CD151 cellular
lysates from HEK293T-CD151+ or HT1080 cells with anti-CD151 Fabs or control Fab. Percent coverage is
the percentage of CD151 protein detected by the total peptides.
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