Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Surface model of the human red blood cell
simulating changes in membrane curvature under
strain

Philip W. Kuchel (| philip.kuchel@sydney.edu.au)
9RMZIVWMX] SJ 7]HRI] 2I[ 7SYXL :EPIW

Charles D. Cox
‘MGXSV 'LERK '"EVHMEG 6IWIEVGL -RWXMXY XI

Daniel Daners
IRMZIVWMX] SJ 7]HRI] 21[ 7SYXL ;EPIW

Dmitry Shishmarev
%WYWXVEPMER 2EXMSREP 9RMZIVWM X]

Petrik Galvosas
"MGXSVME 9RMZIVWMX] ;IPPMRKXSR

Research Article

Keywords: )V]XLVSG]Xl HMQIRWMSREP IHEWLIQARNBEP KIGIQERBW IR)
AMI*S WYVJEGI XVMERKYPEVM/AEXMSR

Posted Date: % TVMP XL
DOl LXXTW HSM SVK VW VW Z

License: g O 8LMW [SVO MW PMGIRWIH YRHIWHMFYDEMMRZ | 'S RXIRRE %
6lEH *YPP OMGIRWI


https://doi.org/10.21203/rs.3.rs-467222/v1
mailto:philip.kuchel@sydney.edu.au
https://doi.org/10.21203/rs.3.rs-467222/v1
https://creativecommons.org/licenses/by/4.0/

Surface model of the human red blood cell simulating changes in

membrane curvature under strain

Philip W. Kuchel’, Charles D. Cd¢, Daniel Daners Dmitry Shishmaret and Petrik

Galvosas

aSchool of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
bVictor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, Australia.
StILQFHQWYV &0OLQLFDO 6FKRRO )DFXOW\ RI OHGLFLQH 80Q
New South Wales, Australia.

dSchool of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia.

€John Curtin School of Medical Research, Australian National University, Canberra, ACT,
Australia.

'ODF'LDPLG ,QVWLWXWH IRU $GYDQFHG ODWHULDOV DQG 1D
3K\WWLFDO 6FLHQFHV 9LFWRULD 8QLYHUVLW\ :HOOLQJWRQ

Running heading Mechanically distorted erythrocytes

Correspondence Philip W. Kuchel
School of Life and Environmental Sciences
Building G08
University of Sydney
New South Wales, 2006
Australia
Email:philip.kuchel@sydney.edu.au
Fax: (02) 9351 4726

Keywords: Erythrocyte 3-dimensional differential geometriytathematicamechanosensitive
C&* flux; Piezol; surface triangularization

Abbreviations: 3D, 3-dimensional; NMR, nuclear magnetic resonance; RBC, red blood cell


mailto:philip.kuchel@sydney.edu.au

Abstract

The highly deformable red blood cell (erythrocyte; RBC) responds to mechanically imposed
shape changes with enhanced glycolytic flux and cation transport. Such morphological changes
are produced experimentally by suspending the cebsgmlatin gel, whichs then elongated

or compressed in a special apparatus inside an NMR spectrometer. However, direct
mathematical predictions of the shapes of the morphed cells have not been reported leefore. W
used recently available functionsMathematicato triangularize and then compute four types

of curvature. TheRBCswere described by a previously presented quartic equation in three
dimensional (3D) Cartesian space. A key finding was the extent to which the maximum and
minimum Principal Curvatures were localized symmetridallyatches at the poles or equators

and distributed in rings around the main axis of the stra®id. The simulations, on the nano-
metre to micro-meter scale of curvature, suggest activation of only a subset of the intrinsic
mechanosensitive cation channels, Piezol, during experiments carried out with controlled
distortions that persist for many hours. This view is consistent with a recent proposal for non-
uniform distribution of Piezol molecules around the RBC membrane. On the other hand, if the
curvature that gat Piezol is at a much finer length scale, then membrane tension will
determine local curvature and micron scale curvature as described here will be less likely to
influence Piezol activity.

The geometrical reorganization of the simulated cytoskeleton helps understanding of the
concerted metabolic and cation-flux responses of the RBC to mechanically imposed shape

changes.



Introduction

Our aim is to convey a sense of scale of the distribution of proteins in the membrane and
adjacent cytoskeleton, relative to the whole human red blood cell (RBC); and to graphically
represent changes in membrane curvature on the ~1 nm toRtHgale, brought about by the
systematic straining of these cells. This study was motivated by the quest for the geometrical
and mechanistic basis of recent findings on mechanically distorted RBCs, made by using
nuclear magnetic resonance (NMR) spectroscopy with stretched and compressed gels [1, 2].
The rates of glycolysis and transmembrane exchange of cations in RBCs are enhanced when
these cells, suspended in gelatin gel, are stretched or compressed. The effects occur only when
the medium contains &aions; and the cedl responses are attributed to the activation of the
mechanosensitive cation channel, Piezol, when the plasma membrane is d&toytddhe
NMR-based cation-flux estimates are in the same range as meadsremade by
electrophysiological means, performed on whole RBCs and membrane patches (patch
clamping) (e.g., [6]). However, because the electrophysiological measurements typically occur
over seconds (of a transient response to shape change), while the NMR experiments can last
for hours a different property of channel opening and closure is in operation [1, 2, 8]; the latter
is UHIHUUHG WR D g KN®.QQHO IDWLJIXHT

The Piezol three-arm (triskelion) structure spans a relatively+@8yem diameter membrane

patch; this has been measured from images obtained with cryo-electron microscopy [10-12].
Such imaging provides an indication of the likely values of curvature that are required to
activate the channel. The current model suggests that the channel is curved in the resting state
and flattens as membrane tension increases, which opens the channel [13]. Therefore, when
inspecting the alteration of the average extent of membrane curvature, when an RBC is
distorted, we might expect an increase in the fraction of the total membrane area that has lower
curvature; since such altered topology (induced flatness) appears to cause activation of Piezol.
To quantify the alteration of membrane curvature that is brought about by stretching an
idealized RBC, we employed a geometris@hin field in which an RBC is elongated by a
specified extent, denoted HyIn addition, we considered the variation of the angle of rotation

of RBCs relative to the direction of the imposed strain field, prior to "switching the strain field
on" (imposing stretch). This is relevant to describing the state-of-affairs of RBCs suspended in
liquid gelatin prior to gelation, because the cells are known to have random orientations, which
persist while in the gel state [14]. The mathematical model used in these analyses ttaptures



key micro-anatomical dimensions of the discocyte that typify a hiRB&h(and in most other
mammals other than the camelidae) [15].

Mathematical definitions of curvature of three dimensional (3D) surfacesnaagor concern

of differential geometry [16, 17]; it is obvious that complicated formulae have become more
accessible since the advent of symbolic computation, most notably in software packages like
Mathematicg18, 19]. Euler rotation matrices and strain tensors were applied to bring about
the simulated RBC distortions (morphing), taking care to invoke the relevant inverse functions
in the definition of the transformed shape function, and the curvature functions; again,
Mathematicagenerated algebraic expressions symbolically. This remarkable outcome, despite
the highly complicated forms, meant that the expressions were readily evaluated to give
estimates of curvatures. The ability to triangularize* the mathematically specified surface of
the RBC (inMathematica meant that the relative size of the cytoskeletal triangular (also
referred to as hexagonal) mesh was able to be visualized in practicable computation times
(minutes) [18]. (*Aside: we use the term triar@udation as opposed to triangulation to
distinguish the operation from the trigonometric procedure used in surveying, and cartography

etc.)

Theory of Methods

RBC shape There have been several expressions presented for the shape of the RBC including
one based on the minimization of the bending energy of a dual layer membran€hi0].
mathematical expression for the RBC discocyte used here is close to those in [20f and it
continuous degree-4 surface that can be written either in Cartesian or disc-cyclide coordinates,
making it versatile for numerical exploration [15]. The shiam®nstrained by three prin@p
distances, the main diametdythe thickness at the centre of the dimpbesind the maximum
thickness (height) near the periphery of the tel§ee Figure 1 for the first of many examples
here:
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The mean volume atnormal human RBC is 86 fL, while the surface area is variously stated
to be 137 + 17 or 14%n? [21, 22]. Thus, whed = 8 An, b = 1 Rn, andh = 2.12 Rn, the
model gives a volume of 86 fL and a surface area of R88 We gave precedence to the

correct volume over the predicted smaller surface area in the above range of 12@n?2.154

Triangularization of the surface. While Eqg. 1 is readily graphed iMathematica a
representation of the cell's cytoskeleton requires partitioning the surface with a known number
of struts (edges) in the geodetic-dome-like closed polyhedron. In a human RBC, the struts of
the mesh consist of heaothead associated two hetero-dimers Bfand Espectrin, with
junctional complexes of 12-14 actin monomers bound as a short, twisted filament. There are
~121,000 edges [23]so in Mathematica the Option, MaxCellMeasure in the
BoundaryDiscretizeRegion function could be manually adjusted to make the number of edges
in the polyhedron very close to this value (see the Supplementary Information for a Notebook

implementation).



Figure 1. Triangular mesh of thBBC drawn to scalén its biconcave-disc, using Eq. 1 Mathematica The
triangularization was with BoundaryDiscretizationRegion, applied to ImplicitRegion (Supplementary
Information) Number of edges = 120,042 and MeshCoordinates4@&%86 points and 80,268 triangles. Green
colouring was chosen over red (the natural choice for an RBC) for ease of visualizing the mesh. Notebook 2 has

the Mathematicascript used to generate this graphic.

Shape transformation. We emulated the distortion of RBCs suspended in stretched gelatin
gel by specifying thaa geometrical strain field was applied in one direction, chosen to be along
the z-axis. This equates to what applies in real NMR experiments [1, 2]. It is not possible,
experimentally, to align all the RBCs in gelatin media prior to or after gelation, so the members
of the population of RBCs assume all possible orientations of their axes of symmetry in the
strain field. Therefore, we consigéeithree orientations agpresentativef all those that are

possible (see Discussion for additional comment



Euler rotation matrix To alter RBC orientation, the independent variables in Eg. 1 were

transformed, by rotation about tk@xis by an anglerl using an Euler rotation matrix [24]:
s r r

4:L m ?KD FOH] , (5)
r OHJ ?KD

where T= 0 specifies the original position/orientation.

Strain tensor This mathematical object is a matrix that invokes volume preserving elongation

of a Cartesian body in the direction of thaxis:

len

r r
¥l S
gL Er 2 e, (6)
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where [ = 1 specifies the original shape.

Inverse affine transformation of Eq. The requisite overall coordinate-transformation matrix
was derived symbolically iMathematicawith the following function (note the standard matrix

product denoted by.

trf = InverseFunction[AffineTransforng . 4]

followed by 'threading' the transformation through the discocyte expression (see the
Supplementary Information for further explanation of the symbols and the complete
MathematicaNotebook):

(x> +y? +2%)? +pP (x* +y?) +qQz® +rR /. Thread[{x, y, z} > trf[{x, y, z}]] // Simplify
(7)

and this yielédthe shape-transformed Eqg. 1:
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Then, the triangularization of the surface was performed as follows:

rbco = ImplicitRegion[ (x? +y? +z%)? + pP (x* +y?) +qQz* +rR <0 /.

Thread[{x, ¥, z} »>trf[{x, v, z}11, {{X, -7, T}, {y, -7, 7}, {z, -7, 7}}];
bmro = BoundaryDiscretizeRegion[rbc0®, MaxCellMeasure » 0.00858, AspectRatio » 1]}
RBCVolume = RegionMeasure[bmro]

RBCArea = RegionMeasure[RegionBoundary[bmro] ]

meshCoords = MeshCoordinates[bmr0O] ;

meshTriangles = MeshPrimitives[bmro, 2];

gphGreenPlus = Graphics3D[{RGBColor[0, 1, O], Opacity[0.9],
meshTriangles}, Boxed - False]

9)

The function RegionMeasure applied to the boundary-discretized region gave the RBC
volume; and the functions RegionMeasure[RegionBoundary[bmrOfedehe area of the
RBC. The coordinates of the nodes of the mesh, and the list of all triangles, vearedith

the functions MeshCoordinates and MeshPrimitives. Finally, MeshTriangles was plotted by

using Graphics3D (Figure 1).

Curvature. Representing shape and curvature are primary objectives of differential geometry
[16], and modern computation witddathematicaprovides a way of generating curvature
expressions fosurfaces that are defined implicitly by equations like Eq. 1. And, even more

remarkably, those transformemlcomplicated expressions like Egs. 8 and 9.

A non-planar surface in three dimensions has a tangent plane and a normal vector at a specified
point. In general, the curvature of the surface differs in one direction, versus one at right angles

to it. The shapes of these surfaces can be illustrated with the particular example of the



hyperbolic paraboloid (saddle) [16]. Such a graphical rendering is shown in Supplgmentar
Information, Figure SIThe observation of, in general, two PrirgiiCurvatures motivates the
implementation of expressions that describe the curvature of the surface at a given point on the
RBC. The fact that there are several ways of describing curvature of a surface may not be
immediagly obvious ; but in general there are four expressions that have been explored in the

theory of 3D differential geometry [16].

Curvature expressions.We begin the presentation of the operations that are required to

calculate the types of curvaturesthe RBC surface by definirfgx,y,4 from Eqg. 1:
(STAUAME UEVSE2:TPE;E3 VE4 L : (10)

Four operations are to be carried out(CA a U WMake up the requisite expressions: (1) The
gradient ofF, * (3T a Uzs \& vector of partial derivatives &f with respect to each of the

independent Cartesian variables:

(2) The Hessian df, H[F], is a 3 u3 matrix of second order partial derivatived-of

(es (&1 (i
*X?L LGe G GiM . (13)
Ge G Gy

(3) The cofactor or adjugate matrix, denoted3j/F] is defined as:

Cfee—eer (T f =t e

*Os (2 1L T f =80 T =TS , (14)
B AT G A e v
where ‘" f ... —4%r {or each of the second derivatives in Eq. 13 is a matrix of deterrsinant

[25].

(4) Finally, the trace of the Hessian matrix is required; this is simply the sum of the three terms

in the leading diagonal ¢d[F] (Eqg. 13) it is the Laplace operator &f

Gaussian curvature & The Gaussian Curvature is expressetgrms of the vector of partial
derivatives, its transpose, and the cofactor matrix of the Hessian [16, 17];

roal 28

C’O

k L (15)
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Mean curvature Ik This is given by,

"o aA>yoPa - 1a00@>A?
6 ¢! ’

ol (16)

Principal curvatures kand k: They are the smallest and largest curvatures at a given jpoint.
appears obtuse to define the PrimtiBurvatures after the other two, but it is computationally

more efficient to do so [16, 17]:

sL oE8 o°F , (17)

sL oF8 o°F « . (18)

The relationships arex L & %, and o L '—:5' the latter explaining the term Mean

Curvature.
Implementation of Eqs 15-18 for the RBC.

Average at the three verticeBhe next step after triangularization (as shown in Figure 1) was
to assign the values of curvature to each triangular face. This was done by applying Eqgs. 15-

18 to the vertices of each of the triangles and then averaging the three values.

Average at the centroid\n alternative treatment was to determine the positions of the centroid

(centre of gravity) of each triangle and apply Eqs 15-18 to those:
CentroidK,y,4 = (vertex1k,y,4 + vertex2k,y,4 + vertex3k,y,4)/3 . (29)

Weighted average curvatureBecause the area of thétrgles in any triangularization vary,
as seen in the histogram of Figure 2, the average of the curvatures of a set of triangles must be
the weighted average. The weighting factor is the area of the traingle relative to the total area

of all the triangles in the set:

Wt N:l:”f%o:t _n~fAC(;)8—_:2_%O_§SFit_r%pC’ (20)
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where the area of each triangle is given by titess product formulffrom vector analysis
[26]. The differences between the position vectors of each vertex, v1, v2, v3 are the side vectors

of the triangle,udenotes the vector cross product, and | | denotes the norm:

area = (1/2) |(v2tvl) u(v3 zv1)| . (21)

Results

Triangularization.

Euler test The triangularization shown in Figure 1 was closed (no gaps), with the number of
edges E, faces (F; triangles) and vertices (V; mesh points) conforming to Euler's ferr&ula

+V = 2 [27]; the Zis a topological invariant called thguler characteristif DQG LV W\SLFD
denoted byk

Gauss-Bonnet theorem te3ihe Total Curvature which is the integral of the values of the
Gaussian Curvature,d{over a closed surface (like that used to describe the RBC), evaluates
to 4S specifically it is 2S F[16]. This was indeed closely approximated by summing the
product of ks (the mean of the three values of each triangle) and its area, across all triangles

in the mesh. An example of the analysis is given in Notebook 5, Supplementary Information.

Triangles per mesh poimbDetailed inspection of the mesh shemthat in the vast majority of

cases single mesh point was met by six triangles; but there were a few instances of five and
seven triangles sharing one vertex. These points appeared to be randomly dispersed on the
surface. If the instances of such sharp triangles were high this could cause problems with the
finite element approximation of the surface area; but there was not a problem as noted above
in relation to the Gauss-Bonnet Theorem test. On the other hand such aberrant triangles are not
a"good" representation of the spectrin mesh according to recent microscopic image analysis
[23, 28].

Orientation It was important to test the fidelity to the triangularization algorithm in generating

the same RBC volume and area, and curvature estimates when the RBC was rotated about the
x-axis (and, by symmetry, any other rotations about lines through the origindig-fhlane) in

the Cartesian coordinate system using Eq. 5. Specifically, the distribution of edge-lengths

should not change whefis varied, and this was reliably achieved.
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Edge lengthThe next step was to compute the distribution of edge lengths, in order to study
how these edges, which could be thought of as modelling the spectrin network, might imply
that the spectrin is either stretched or compressed. Figure 2 shows the distribution of sides in
Figure 1, first at a resolution of 20 linearly space bins. The distribution is slightly skewed to the
left, but it is unimodal; however, the inset which was based on 200 bins now appears to be at

least trimodal (see Discussion).
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Figure 2. Data from the mesh in Fig.1 showing the length-distribution histogram of edges in 20 bins (green); and,
200 bins (red inset). The mean edge length overall was 62 nm. The median bin (tallest green pillar) contained 38%
of the total bin contents and spanned 60 - 65 nm; whilevwhenost abundant bins spanning 60 - 70 nm contained

75% of the edge lengths. Notebook 2 hasMlaghematicascript used to generate this graphic.

Triangle area distribution: Another feature of the surface triangularization, that is of
biophysical importance, is the area of each triangle and whether this is consistent with the
known span of membrane proteins that are corralled in the network. Figurgh&&s the
separate triangularization of the RBC which (as for Figure 1) clearly indicates a range of shapes
and sizes of the triangles. Sorting the triangles according to area showed a span from 0.0094 to
3431 nm. When subdivided linearly into 10 bins it was seen that'ti#rcontained the most

triangles (27,541) with a mean area of 1873;imother words 40.3% of the total area of 128
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An? had this mean area, while the mean area of a triangle across the whole cell was?1575 nm

The size distribution is shown graphically in Figure S3.

Curvature mapping. A primary aim was to devise a means of displaying (mapping) the
distribution of curvature(s) on the surface of the RBC. For #tis]our-coding program was
written. Each triangle from the triangularization was stored in one of 10 value-domains,
according to whichever of the attributes was to be mapped. Figure 3 shows an undistorted RBC
with its axis of symmetry normal to the tlgrplane, and for which the average of the
curvatures at each of the three vertices of each triangle was assigned.

Fraction of Total REC Area

\

N A

e
005 010 015 020 025 030 035
Gaussian Curvature, K_{um}

. 0.35

Fraction of Total RBC Area

0.05 e

0.2 4] 0.2 0.4
Principal Curvature, k_(ui)

0.20
T N 045
7 L]
Ao
\'\
Fraction of Total RBC Area b
008!

1.0 -0.5 1] 0.5
Prineipal Curvature, k, {um™)

0.25

Fraption of Tetal RBC Area

“—0.15 /

0.05

Range Key: Low to High —— o8

VPP F9000990

-0.4 -0.2 [v] 0.2 0.4
. Mean Curvature, K, (pm)

Figure 3. Positional dependence of the four types of curvature on the surface of theRB&i€h) Gaussian

Curvature; ) Principal Curvature (maximum), ki¢)(Principal Curvature (minimum), k2; and)(Mean
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Curvature. On the right of each cell is the graph of mean value (of the respective curvature) versus the fraction of
the RBC area that has the curvature in a specified sub-domain of values. Specifically, the minimum and maximum
values okachcurvature were idenified, then the whole domain of values was divided linearly into 10 sub-domains
(bins) with each assigned a colour-code as shown in the given Range Key. The area of each triemiglputed

(Theory of Methods; and Notebook 2) so the total area occupied by triangles in a given bin was able to be
expressed asfraction of the total RBC area, 128n?. For speed of computation the triangularization was made

with fewer mesh points than for Figure 1, specifically 13640 triangles and 6822 mesh points.

Rotation and Strain. The affine transformation, which combines both rotation and strain,
produced shape changasthose shown in Figure 4. For this figure the RBC was rotated by

45° from thex,y-plane and then increasingly stretched.

a £=1.00
b £=1.25
c =150
d £E=175
e

Figure 4. RBC rotated through 2&bout the x-axis, relative to a linear strain field imposed iz-theection. @)
No elongation,[ = 1; (b) stretched by 25%] = 1.25; €) stretched by 50%]| = 1.50; @) stretched by 75%]| =

1.75; and €) showing the relative elongation and concomitant narrowing of the RBCs by superimposing the
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images. Colour coding was used to provide distinction between the RBC#ithe boundary discretization

MaxCellMeasure was set to 0.1 giving ~8,000 mesh points.

On stretching (in the z-direction) the RBC was elongated and became narrower, an effect best
seen in the overlapping images in Figues However, the width of the RBC at the dimples
and the maximum curvature at the rim both increased, as if the opposite faces of the cell were

being pulled apart.

Volume and surface area during distortion.The surface area of an RBC declines with age

in the blood circulation [29, 30].

14¢C
RBC Area (ymzl

g, Extent of Stratch
20 @®
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®
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60, ‘
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Figure 5. Dependence of RBC surface arapdnd volume lf) on rotation about to the-axis (7 and stretching

along thez-axis (|).

It is also known thadan RBC's surface area cannot be increased by more-tti beforeit
ruptures; this was discover@d studies with RBCs swelling in hypotonic media [31]. In our
own experiments with RBCs suspended in gelatin gel that is then stretched, haemolysis is very

extensive with two-fold stretchindg & 2) (unpublished results). Therefore, it was important to
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explore the volume and surface area inter-relationghgtsare brought about by the affine
transformation (Egs. 5 and 6).

Figure @ shows that the surface area decreases on stretching if the RBC lies across the strain
field; but it increases by up to 218sthe cell is stretched by 75% € 1.75) when aligned with

its disc-plane parallel to the strain field. Meanwhile, the volume of the RBC scarcely changed
under all the angles orientation and extents of stretching explored here (Fighye 5

Overall, we concluded from Figure 5 that RBCs sustain increasddcreased surface area
depending on their initial orientation in the gel on stretching the sample, while the volume did
not change significantly. The extent of area change is much less than would occur with a
sphere; and this helps explain why the biconcave disc shape has been naturally selected.
Specifically, the particular shape enables volume and surface area preservation during passage

of the RBC through the capillaries of the peripheral tissues and lungs [2, 29, 30, 32].

Colour-coded curvatures for different values of Tand [. Figure 6 shows R8s that were

tilted at 48 around thex-axis and progressively strained from no extension to a maximum of

[ = 1.75. The changes in curvature are indicated by the changes in tiedoarost notable

feature for the Gaussian curvaturesJKs the increasing dominance of areas of red denoting
increased area of lower values as the RBCs are stretched. On the other hand, the intermediate
values (green) dominate the area of the values:gfhk maximum PrincipaCurvature).

Numerous other comparisons can be made, as are taken up in the Discussion.
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Extent of Stretching in z-Direction (&)
1.00 125 1.50 1.75

Figure 6. Curvatures of RBC rotated 24&round thex-axis and stretched in thedirection by the extents[(

indicated above.
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Another way of depicting the changes in curvature with orientation and strain is via a form of

histogram shown in Figure 7. The graphs show the fraction of the RBC area that is occupied
by triangles with curvature (for each of the four types) in the neighbourhood of the mean values
that correspond to 10 bins, arranged uniformly between the minimum and maximum values of

the curvature.

Angle of Rotation About the x-Axis ()
0° 45° 90°

Fraction of RBC Area

o / wl'( \1
= e

A T 4 [0 AL ] BS 28 ] os

(3) uonpang-z ul ygauns Jo ey

<k 5B

Curvature (K_/, k. -, K,/ K, /) (unr?)

Figure 7. Curvature graphsf an RBC rotated at°’045° and 90 around the-axis and stretched in tlzedirection
by the extents[j indicated on the right. The colours of the polygonal plots indicate: Gaussian Curvatued;K

Principal Curvature (maximum)gkorange; Principal Curvature (minimumy, green; and Mean Curvaturg K
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blue. Each discontinuity of the polygons denotes the mean value in curvature of the bin in the given curvature

domain.

The values of the curvatures span different ranges in all scenarios of orientation and strain.
When there is no strain (top row of Figure 7, and Figure 3) the trianglesiwithakge line)

of smallest value occupy the largest area. When the RBCsaat 8tretched the minimum of

ki1 decreases in value but occupies a much larger area of the cell as stretching is increased.
Another notable feature at %6rientation is the shift indand the mean curvature (green and

blue lines) to larger values as stretching was increased, with the maximum area occupied by
triangles of intermediate values. Also, there is a clearly defined maximum value in these
polygonal graphs. For the RBCs at’Qffientation k and k both decrease with increased
stretching with the maximum a®ccupied by large values. Overall, the patterns of all four
polygonal graphs shift progressively as stretching is increased, but at each of the angles of
orientation the patterns are distinctly different.

This is but a snapshot of three angles; for a continuous distribution of angles we would expect
a smooth transition from the left hand column of polygonal graphs through the middle column

to the right hand column.

Edge length distribution as a function of extent of stretchingFigure 8 shows that for°0
orientation the median value of edge length of the triangularization decreased on stretching by
75% more than the original value. This is consistent with the fact that Figure 5 shows that for
T= (P the surface area decreased with increagifidne main feature for the RBCs at 4 the
emergence of a broad bimodal distribution of edge lengths that is most clearly evident in the
bottom of the middle column of the histograms. On the other hand, when the RBCs weére at 90
the distribution of edge lengths remained relatively narrow all thetov@y 1.75. From Figure

5 it is at this orientation that most increase in area took place and it is especially clear in the
bottom right-hand histogram that the median edge length~&@&sm; this is similar to the
second maximum in the second column. Consistent with this observation is that both RBC

orientations display increases in surface area as well (Figure 5).
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Figure 8. Histograms of the lengths of the 121,000 edges in the triangularization of an RBC at each of three
rotations about the-axis with no stretching[(= 1), and 75% stretchind (= 1.75). The colour coding was used

to distinguish the three groups of data according to the rotations: greed 83, and blue 90 The bin numbers

were 20 and 200 for the upper and lower pair of histograms at each value of strdtalspgectively. The insets

show the RBC shapes from which the histograms were made; they are the same as given in Figures 4, S4 and S5.

Discussion

Triangularization. The fully extendedD and Espectrin heterotetramer has an ¢odnd

length of ~200 nm [23]; but the filaments of unstretched RBC membranes have an average
distance between the nodal F-actin helices oftg® nm [33], and up to 85 nm [28]. The
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automatic triangularization, that we used here to model the RBC cytoskeleton was controlled
to correspond to the 121,00D and Espectrin heterotetramers; and this gave ~65asthe

mean value of the distance between two neighbouring nodes. This would imply that native
spectrin hasts filaments in a bent or serpentine form that more than halves tho-end-
distance of the tetramer. This state of the struts could be maintained by the central complex
coordinated by ankyrin-1 [23] imposing curvature on them.

Given that the fully extended struts of the cytoskeleton are ~200 nm long [23], basic geometry
(triangle sidea gives area &> -3/4 ) yieldsanestimate of the area of the resulting tessellation

as follows: a single equilateral triangle of 200 nm on each side has an area of @@ ¥8ith

a closed single-sheet surface like the RBC, each iedtie tessellation is shared with two
triangles, and since there are three edges per triangle the number of triangles is 2/3 the number
of edges. This implies that there are 80,667 triangles, which when multiplied by (793,73

gives a total area of 139f?, a number 10.9 times greater than for the real/aRB4l.

On the other hand, if we assume there are 80,667 cytoskeletal triangles, this implies a triangle
area of 128/80,667 = 0.001®n?, which translates (using the triangle area formula abowe) to

side length of 60.8 nm. In other words, the internodal distance of the RBC cytoskeletal network
should be ~60 nm. This number compares favourably with what we obtained as the mean
distance of the edges in the tessellation analysed in Figuie,Z5% of the edges span 60 -

70 nm.

While the observation of a less-than-fully-extended triangular spectrin mesh could have been
deduced without the complex triangularization process used ther@analysis nevertheless
adds credibility to thab initio triangularization process; while the discussion aboverrcosaf

the consistency of the numerical values reported in the literature with a (fairly) regular

triangular tessellation [23].

Curvature. In its present form the analysis of curvature and its graphical representation
conveys as semi-quantitative impression of how the distorted RBCs might transmit the locally
altered shape of the membrane to Piezol. However, the odugiience of membrane
curvature on Piezol remains to be determined. Perhaps a finer mesh of triangularization is
needed to explore this. The approaches adopted here should be extendable to such situations.
At the level of formal 3D differential geometry it was important to check for conformity of the
total curvature with the Gauss-Bonnet Theorem [16], which states that the integral of the

Gaussian curvature over a closed surface will H&fat surfaces like the RBC, even with its
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dimples that have regions of negative curvature. Notebook 5 sttexample of this outcome

in which the Gaussian curvature in each triangle was multiplied by the area of the respective
triangle and then the sum taken over them all. This is tantamount to a finite difference
approximation to the surface integral and was a gratifying verification of the overall curvature

analysis.

Conclusions

There are many aspects of RBC shape, volume and flexibility that are ripe for (crying out for
(1) according to [34, 35], and we agree) explanation and inevitably these studies will tap into
recent findings on Piezol, and new analytical methods including computational modelling
[35].

At a deeper conceptual level the work described here is an exploration of the geometrical
constraints on 'biological formeé(g,[27, 36]); in this case the particular shapes are those taken
up by an RBC in a strain field. The linear strain field used isdree simplest of all, being in

a single direction: but it is consistent with that imposed by a stretched gel as used in our NMR
experiments [14]. Much more complicated deformations occur in flowing systems, in which
some domains of the RBC membrane are stressed into more positive curvature while others
simultaneously undergo more negative curvature [37-40]. The ability of the RBC to
accommodate these contortions decreases with the age of the cellpmsited as a major
factorin what determines its survival, for ~120 days in the circulation [32]. Transient, distorted
shapes exigh RBCs when they are in regions of high velocity that impose non-laminar flow
around prosthetic and even healthy heart valves. Flow changes occur during valve development
in cardiogenesis, in particular, and this flmmodified around calcified or diseased valves not

just prosthetic ones [39, 40], so there is considerable merit in having a computationally

accessible means of modelling RBC shape changes with the methods presented here.

TheRBC shapes in various in vivo situations have begun to yield to computation. For example

it is known that the stresses can be so extreme around prostheses as to lead to cell rupture. To
date, such outcomes really only yield to advanced supercomputing e.g., [41].

The other critical aspect of simulations for surface deformation is the distance scale of the
deformations that are required to activate mechanosensitive ion channels like Piezol [10, 13].
The changes in curvature invoked at the tip of a patch-clamp pipette are quite extreme across
a diameter of ~1M or an area of 0.78n? implying that 80,667 (number of triangleap.79*

( An?, area of patch)/128Rn?, total area of RBC) #00 cytoskeletal triangles are spanned.
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The resolution of the present simulations and the curvature near the rim of the RBC are in the
same range. Therefore, if increased membrane bending activates Piezol then it will be those
molecules at the rim of the cells (as in Figure 6, right) that would be activated. On the other
hand,if a decrease in curvature (increased area of flathess) is what activates them, then it will
be also found in the stretched cells. More interestingly is the fact that the two Principal

Curvatures kand k bothincrease on stretching the cell (Figure 6 right).

However (as alluded to in the Introduction), in patch clamp experiments the visible curvature
appearsiotto be what activates the channel. The inflation of the membrane dome is driven by
the confinement by the micro-pipette that is on the micron scale. It is the tension (and
presumably flattening at the nm scale below the resolution of a confocal microscope) that
drives the channels to open [42-45]. Whereas in stretched/compressed gel experiments, the
morphological forms taken up by the RBCs will be like those shown here. However, further
curvature of the membrane on the length scale seen in membrane flickering [46, 47] would be
superimposed on these shapes.

Future directions for this work will involve larger scale simulations of population-averaged
curvatures in cells under strain, and in strain fields that are not simply unidirectional and linear.
Then, correlations could be made with experimental measurements like those already reported

on stretched/compressed gels [1, 2], and in electrophysiological measurements on whole RBCs.
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