
�7�Y�V�J�E�G�I���Q�S�H�I�P���S�J���X�L�I���L�Y�Q�E�R���V�I�H���F�P�S�S�H���G�I�P�P
�W�M�Q�Y�P�E�X�M�R�K���G�L�E�R�K�I�W���M�R���Q�I�Q�F�V�E�R�I���G�Y�V�Z�E�X�Y�V�I���Y�R�H�I�V
�W�X�V�E�M�R
�4�L�M�P�M�T���;�����/�Y�G�L�I�P�Á�������¦ ���T�L�M�P�M�T���O�Y�G�L�I�P�$�W�]�H�R�I�]���I�H�Y���E�Y���

�9�R�M�Z�I�V�W�M�X�]���S�J���7�]�H�R�I�]���2�I�[���7�S�Y�X�L���;�E�P�I�W

�'�L�E�V�P�I�W���(�����'�S�\�Á
�:�M�G�X�S�V���'�L�E�R�K���'�E�V�H�M�E�G���6�I�W�I�E�V�G�L���-�R�W�X�M�X�Y�X�I

�(�E�R�M�I�P���(�E�R�I�V�W�Á
�9�R�M�Z�I�V�W�M�X�]���S�J���7�]�H�R�I�]���2�I�[���7�S�Y�X�L���;�E�P�I�W

�(�Q�M�X�V�]���7�L�M�W�L�Q�E�V�I�Z�Á
�%�Y�W�X�V�E�P�M�E�R���2�E�X�M�S�R�E�P���9�R�M�Z�I�V�W�M�X�]

�4�I�X�V�M�O���+�E�P�Z�S�W�E�W�Á
�:�M�G�X�S�V�M�E���9�R�M�Z�I�V�W�M�X�]���;�I�P�P�M�R�K�X�S�R

�6�I�W�I�E�V�G�L���%�V�X�M�G�P�I

�/�I�]�[�S�V�H�W�����)�V�]�X�L�V�S�G�]�X�I���������H�M�Q�I�R�W�M�S�R�E�P���H�M�J�J�I�V�I�R�X�M�E�P���K�I�S�Q�I�X�V�]�����1�E�X�L�I�Q�E�X�M�G�E�����Q�I�G�L�E�R�S�W�I�R�W�M�X�M�Z�I���'�E�������§�Y�\��

�4�M�I�^�S�������W�Y�V�J�E�G�I���X�V�M�E�R�K�Y�P�E�V�M�^�E�X�M�S�R

�4�S�W�X�I�H���(�E�X�I�����%�T�V�M�P�������X�L������������

�(�3�-�����L�X�X�T�W�������H�S�M���S�V�K���������������������V�W�������V�W�����������������Z��

�0�M�G�I�R�W�I�����q ���O���8�L�M�W���[�S�V�O���M�W���P�M�G�I�R�W�I�H���Y�R�H�I�V���E���'�V�I�E�X�M�Z�I���'�S�Q�Q�S�R�W���%�X�X�V�M�F�Y�X�M�S�R�����������-�R�X�I�V�R�E�X�M�S�R�E�P���0�M�G�I�R�W�I�����Á

�6�I�E�H���*�Y�P�P���0�M�G�I�R�W�I

https://doi.org/10.21203/rs.3.rs-467222/v1
mailto:philip.kuchel@sydney.edu.au
https://doi.org/10.21203/rs.3.rs-467222/v1
https://creativecommons.org/licenses/by/4.0/


 1 

Surface model of the human red blood cell simulating changes in 

membrane curvature under strain 

 

Philip W. Kuchela*, Charles D. Coxb,c, Daniel Danersd, Dmitry Shishmareve, and Petrik 

Galvosasf 
aSchool of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia. 
bVictor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, Australia.  
cSt �9�L�Q�F�H�Q�W�¶�V���&�O�L�Q�L�F�D�O���6�F�K�R�R�O�����)�D�F�X�O�W�\���R�I���0�H�G�L�F�L�Q�H�����8�Q�L�Y�H�U�V�L�W�\���R�I���1�H�Z���6�R�X�W�K���:�D�O�H�V�����6�\�G�Q�H�\����

New South Wales, Australia. 

 dSchool of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia. 
eJohn Curtin School of Medical Research, Australian National University, Canberra, ACT, 

Australia. 
�I�0�D�F�'�L�D�P�L�G���,�Q�V�W�L�W�X�W�H���I�R�U���$�G�Y�D�Q�F�H�G���0�D�W�H�U�L�D�O�V���D�Q�G���1�D�Q�R�W�H�F�K�Q�R�O�R�J�\�����6�F�K�R�R�O���R�I���&�K�H�P�L�F�D�O���D�Q�G��

�3�K�\�V�L�F�D�O���6�F�L�H�Q�F�H�V�����9�L�F�W�R�U�L�D���8�Q�L�Y�H�U�V�L�W�\���:�H�O�O�L�Q�J�W�R�Q�����:�H�O�O�L�Q�J�W�R�Q�����1�H�Z���=�H�D�O�D�Q�G�� 

 

Running heading: Mechanically distorted erythrocytes 

 

Correspondence: Philip W. Kuchel 

        School of Life and Environmental Sciences 

        Building G08 

        University of Sydney 

         New South Wales, 2006 

        Australia 

        Email: philip.kuchel@sydney.edu.au 

        Fax: (02) 9351 4726 

 

Keywords: Erythrocyte; 3-dimensional differential geometry; Mathematica; mechanosensitive 

Ca2+ flux; Piezo1; surface triangularization 

Abbreviations: 3D, 3-dimensional; NMR, nuclear magnetic resonance; RBC, red blood cell   

mailto:philip.kuchel@sydney.edu.au


 2 

Abstract 

The highly deformable red blood cell (erythrocyte; RBC) responds to mechanically imposed 

shape changes with enhanced glycolytic flux and cation transport. Such morphological changes 

are produced experimentally by suspending the cells in a gelatin gel, which is then elongated 

or compressed in a special apparatus inside an NMR spectrometer. However, direct 

mathematical predictions of the shapes of the morphed cells have not been reported before. We 

used recently available functions in Mathematica to triangularize and then compute four types 

of curvature. The RBCs were described by a previously presented quartic equation in three 

dimensional (3D) Cartesian space. A key finding was the extent to which the maximum and 

minimum Principal Curvatures were localized symmetrically in patches at the poles or equators 

and distributed in rings around the main axis of the strained RBC. The simulations, on the nano-

metre to micro-meter scale of curvature, suggest activation of only a subset of the intrinsic 

mechanosensitive cation channels, Piezo1, during experiments carried out with controlled 

distortions that persist for many hours. This view is consistent with a recent proposal for non-

uniform distribution of Piezo1 molecules around the RBC membrane. On the other hand, if the 

curvature that gates Piezo1 is at a much finer length scale, then membrane tension will 

determine local curvature and micron scale curvature as described here will be less likely to 

influence Piezo1 activity. 

The geometrical reorganization of the simulated cytoskeleton helps understanding of the 

concerted metabolic and cation-flux responses of the RBC to mechanically imposed shape 

changes. 
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Introduction 

Our aim is to convey a sense of scale of the distribution of proteins in the membrane and 

adjacent cytoskeleton, relative to the whole human red blood cell (RBC); and to graphically 

represent changes in membrane curvature on the ~1 nm to ~10 ���Pm scale, brought about by the 

systematic straining of these cells. This study was motivated by the quest for the geometrical 

and mechanistic basis of recent findings on mechanically distorted RBCs, made by using 

nuclear magnetic resonance (NMR) spectroscopy with stretched and compressed gels [1, 2]. 

The rates of glycolysis and transmembrane exchange of cations in RBCs are enhanced when 

these cells, suspended in gelatin gel, are stretched or compressed. The effects occur only when 

the medium contains Ca2+ ions; and the cells' responses are attributed to the activation of the 

mechanosensitive cation channel, Piezo1, when the plasma membrane is distorted [3-7]. The 

NMR-based cation-flux estimates are in the same range as measurements made by 

electrophysiological means, performed on whole RBCs and membrane patches (patch 

clamping) (e.g., [6]). However, because the electrophysiological measurements typically occur 

over seconds (of a transient response to shape change), while the NMR experiments can last 

for hours a different property of channel opening and closure is in operation [1, 2, 8]; the latter 

is �U�H�I�H�U�U�H�G���W�R���D���µ�F�K�D�Q�Q�H�O���I�D�W�L�J�X�H�¶ e.g., [9].  

The Piezo1 three-arm (triskelion) structure spans a relatively large ~23 nm diameter membrane 

patch; this has been measured from images obtained with cryo-electron microscopy [10-12].  

Such imaging provides an indication of the likely values of curvature that are required to 

activate the channel. The current model suggests that the channel is curved in the resting state 

and flattens as membrane tension increases, which opens the channel [13]. Therefore, when 

inspecting the alteration of the average extent of membrane curvature, when an RBC is 

distorted, we might expect an increase in the fraction of the total membrane area that has lower 

curvature; since such altered topology (induced flatness) appears to cause activation of Piezo1. 

To quantify the alteration of membrane curvature that is brought about by stretching an 

idealized RBC, we employed a geometrical strain field, in which an RBC is elongated by a 

specified extent, denoted by �[. In addition, we considered the variation of the angle of rotation 

of RBCs relative to the direction of the imposed strain field, prior to "switching the strain field 

on" (imposing stretch). This is relevant to describing the state-of-affairs of RBCs suspended in 

liquid gelatin prior to gelation, because the cells are known to have random orientations, which 

persist while in the gel state [14]. The mathematical model used in these analyses captures the 
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key micro-anatomical dimensions of the discocyte that typify a human RBC (and in most other 

mammals other than the camelidae) [15]. 

Mathematical definitions of curvature of three dimensional (3D) surfaces are a major concern 

of differential geometry [16, 17]; it is obvious that complicated formulae have become more 

accessible since the advent of symbolic computation, most notably in software packages like 

Mathematica [18, 19].  Euler rotation matrices and strain tensors were applied to bring about 

the simulated RBC distortions (morphing), taking care to invoke the relevant inverse functions 

in the definition of the transformed shape function, and the curvature functions; again, 

Mathematica generated algebraic expressions symbolically. This remarkable outcome, despite 

the highly complicated forms, meant that the expressions were readily evaluated to give 

estimates of curvatures. The ability to triangularize* the mathematically specified surface of 

the RBC (in Mathematica) meant that the relative size of the cytoskeletal  triangular (also 

referred to as hexagonal) mesh was able to be visualized in practicable computation times 

(minutes) [18]. (*Aside: we use the term triangularization as opposed to triangulation to 

distinguish the operation from the trigonometric procedure used in surveying, and cartography 

etc.) 

 

Theory of Methods 

RBC shape. There have been several expressions presented for the shape of the RBC including 

one based on the minimization of the bending energy of a dual layer membrane [20]. The 

mathematical expression for the RBC discocyte used here is close to those in [20], and it is a 

continuous degree-4 surface that can be written either in Cartesian or disc-cyclide coordinates, 

making it versatile for numerical exploration [15]. The shape is constrained by three principal 

distances, the main diameter, d, the thickness at the centre of the dimples, b, and the maximum 

thickness (height) near the periphery of the cell, h (see Figure 1 for the first of many examples 

here):  

 

�:�T�6 E �� �U�6 E �V�6�;�6 E ���2�:�T�6 E �U�6�; E �3���V�6 E ���4�� L ���r     ,     (1) 
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The mean volume of a normal human RBC is 86 fL, while the surface area is variously stated 

to be 137 ± 17 or 143 �Pm2 [21, 22]. Thus, when d = 8 �Pm, b = 1 �Pm, and h = 2.12 �Pm, the 

model gives a volume of 86 fL and a surface area of 128 �Pm2. We gave precedence to the 

correct volume over the predicted smaller surface area in the above range of 120 - 154 �Pm2. 

 

Triangularization of the surface. While Eq. 1 is readily graphed in Mathematica, a 

representation of the cell's cytoskeleton requires partitioning the surface with a known number 

of struts (edges) in the geodetic-dome-like closed polyhedron. In a human RBC, the struts of 

the mesh consist of head-to-head associated two hetero-dimers of �D- and �E-spectrin, with 

junctional complexes of 12-14 actin monomers bound as a short, twisted filament. There are 

~121,000 edges [23] so in Mathematica the Option, MaxCellMeasure in the 

BoundaryDiscretizeRegion function could be manually adjusted to make the number of edges 

in the polyhedron very close to this value (see the Supplementary Information for a Notebook 

implementation).  
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Figure 1. Triangular mesh of the RBC drawn to scale in its biconcave-disc, using Eq. 1 in Mathematica. The 

triangularization was with BoundaryDiscretizationRegion, applied to ImplicitRegion (Supplementary 

Information). Number of edges = 120,042 and  MeshCoordinates gave 40,136 points and 80,268 triangles. Green 

colouring was chosen over red (the natural choice for an RBC) for ease of visualizing the mesh. Notebook 2 has 

the Mathematica script used to generate this graphic. 

 

Shape transformation.  We emulated the distortion of RBCs suspended in stretched gelatin 

gel by specifying that a geometrical strain field was applied in one direction, chosen to be along 

the z-axis. This equates to what applies in real NMR experiments [1, 2]. It is not possible, 

experimentally, to align all the RBCs in gelatin media prior to or after gelation, so the members 

of the population of RBCs assume all possible orientations of their axes of symmetry in the 

strain field.  Therefore, we considered three orientations as representative of all those that are 

possible (see Discussion for additional comment). 
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Euler rotation matrix: To alter RBC orientation, the independent variables in Eq. 1 were 

transformed, by rotation about the x-axis by an angle �T����using an Euler rotation matrix [24]: 

�4���TL ��m
�s �r �r
�r �?�K�O�T F�O�E�J�T
�r �O�E�J�T �?�K�O�T

q ,        (5) 

where �T��= 0 specifies the original position/orientation. 

Strain tensor: This mathematical object is a matrix that invokes volume preserving elongation 

of a Cartesian body in the direction of the z-axis: 

�5�[ L ��

�É

�È
�Ç

�5

¥�[
�r �r

�r
�5

¥�[
�r

�r �r �[�Ì

�Ë
�Ê

   ,         (6) 

where �[ = 1 specifies the original shape. 

Inverse affine transformation of Eq. 1: The requisite overall coordinate-transformation matrix 

was derived symbolically in Mathematica with the following function (note the standard matrix 

product denoted by .). 

trf = InverseFunction[AffineTransform[�5�[ . �4���T]]  

followed by 'threading' the transformation through the discocyte expression (see the 

Supplementary Information for further explanation of the symbols and the complete 

Mathematica Notebook): 

 .           (7) 

and this yielded the shape-transformed Eq. 1: 
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 .           (8) 

Then, the triangularization of the surface was performed as follows: 

 

       .            (9) 

The function RegionMeasure applied to the boundary-discretized region gave the RBC 

volume; and the functions RegionMeasure[RegionBoundary[bmr0]] yielded the area of the 

RBC. The coordinates of the nodes of the mesh, and the list of all triangles, were obtained with 

the functions MeshCoordinates and MeshPrimitives. Finally, MeshTriangles was plotted by 

using Graphics3D (Figure 1). 

Curvature.  Representing shape and curvature are primary objectives of differential geometry 

[16], and modern computation with Mathematica provides a way of generating curvature 

expressions for surfaces that are defined implicitly by equations like Eq. 1. And, even more 

remarkably, those transformed to complicated expressions like Eqs. 8 and 9.  

A non-planar surface in three dimensions has a tangent plane and a normal vector at a specified 

point. In general, the curvature of the surface differs in one direction, versus one at right angles 

to it. The shapes of these surfaces can be illustrated with the particular example of the 
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hyperbolic paraboloid (saddle) [16]. Such a graphical rendering is shown in Supplementary 

Information, Figure S1. The observation of, in general, two Principal Curvatures motivates the 

implementation of expressions that describe the curvature of the surface at a given point on the 

RBC. The fact that there are several ways of describing curvature of a surface may not be 

immediately obvious ; but in general there are four expressions that have been explored in the 

theory of 3D differential geometry [16].   

Curvature expressions. We begin the presentation of the operations that are required to 

calculate the types of curvatures of the RBC surface by defining F[x,y,z] from Eq. 1: 

�(�>�T�á �U�á �V�?���{���:�T�6 E �U�6 E �V�6�;�6 E �2���:�T�6 E �U�6�; E �3���V�6 E �4 L �r .             (10) 

Four operations are to be carried out on �(�>�T�á �U�á �V�? to make up the requisite expressions: (1) The 

gradient of F, �’ �(�>�T�á �U�á �V�?�á is a vector of partial derivatives of F with respect to each of the 

independent Cartesian variables: 

�’ �(�>�T�á �U�á �V�?L �:�(�ë�á �(�ì �á �(�í�;  .                  (12) 

(2) The Hessian of F, H[F], is a 3 �u 3 matrix of second order partial derivatives of F: 

  �* �>�(�?L �L

�(�ë�ë �(�ë�ì �(�ë�í

�(�ì�ë �(�ì�ì �(�ì�í
�(�í�ë �(�í�ì �(�í�í

�M     .                (13) 

(3) The cofactor or adjugate matrix, denoted by H*[ F] is defined as: 

 �* �Û�>�(�? L ���L

���‘�ˆ�ƒ�…�–�‘�”�:�(�ë�ë�; ���‘�ˆ�ƒ�…�–�‘�”�:�(�ë�ì�; ���‘�ˆ�ƒ�…�–�‘�”�:�(�ë�í�;
���‘�ˆ�ƒ�…�–�‘�”�:�(�ì�ë�; ���‘�ˆ�ƒ�…�–�‘�”�:�(�ì�ì �; ���‘�ˆ�ƒ�…�–�‘�”�:�(�ì�í

���‘�ˆ�ƒ�…�–�‘�”�:�(�í�ë�; ���‘�ˆ�ƒ�…�–�‘�”�:�(�í�ì �; ���‘�ˆ�ƒ�…�–�‘�”�:�(�í�í�;
�;�M ,           (14) 

where  ���‘�ˆ�ƒ�…�–�‘�”�:�(�ë�ë�;�� for each of the second derivatives in Eq. 13 is a matrix of determinants 

[25].  

(4) Finally, the trace of the Hessian matrix is required; this is simply the sum of the three terms 

in the leading diagonal of H[F] (Eq. 13); it is the Laplace operator of F.      

  

Gaussian curvature KG: The Gaussian Curvature is expressed in terms of the vector of partial 

derivatives, its transpose, and the cofactor matrix of the Hessian [16, 17]; 

�� �K L ��
�’ �¿�ä�Á�Û�>�¿�?���ä�’ �¿���P

���’ �¿���0
   .                      (15) 
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Mean curvature KM: This is given by, 

�� �Q L ��
�’ �¿�ä�Á�>�¿�?���ä�’ �¿���P�?���’ �¿���. �Í�å�Ô�Ö�Ø�>�Á�?

�6�����’ �¿���/
 .                   (16) 

Principal curvatures k1 and k2: They are the smallest and largest curvatures at a given point. It 

appears obtuse to define the Principal Curvatures after the other two, but it is computationally 

more efficient to do so [16, 17]: 

�•�5 L �� �Q E§�� �Q
�6 F �� �K�� ,                  (17) 

�•�6 L �� �Q F §�� �Q
�6 F �� �K�� .                  (18) 

The relationships are �� �K L �� �•�5���•�6, and �� �Q L ��
�i �-�>���i�.

�6
, the latter explaining the term Mean 

Curvature. 

Implementation of Eqs 15-18 for the RBC.   

Average at the three vertices: The next step after triangularization (as shown in Figure 1) was 

to assign the values of curvature to each triangular face. This was done by applying Eqs. 15-

18 to the vertices of each of the triangles and then averaging the three values.  

Average at the centroid: An alternative treatment was to determine the positions of the centroid 

(centre of gravity) of each triangle and apply Eqs 15-18 to those: 

 

Centroid[x,y,z] = (vertex1[x,y,z] +  vertex2[x,y,z] + vertex3[x,y,z] )/3     .             (19) 

 

Weighted average curvatures: Because the area of the triangles in any triangularization vary, 

as seen in the histogram of Figure 2, the average of the curvatures of a set of triangles must be 

the weighted average. The weighting factor is the area of the traingle relative to the total area 

of all the triangles in the set: 

 

wt���˜�‡�”�ƒ�‰�‡���—�”�˜�ƒ�–�—�”�‡ L
�Ã �_�p�c�_�Ô

�¿
�Ô�8�- ���a�s�p�t�_�r�s�p�c�Ô

�Ã �_�p�c�_�Ô
�¿
�Ô�8�- ��

     ,                (20) 
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where the area of each triangle is given by the �µcross product formula�¶ from vector analysis 

[26]. The differences between the position vectors of each vertex, v1, v2, v3 are the side vectors 

of the triangle, �u denotes the vector cross product, and | | denotes the norm: 

 

area = (1/2) |(v2 �± v1) �u (v3 �± v1)|     .                 (21) 

 

Results 

Triangularization. 

Euler test: The triangularization shown in Figure 1 was closed (no gaps), with the number of 

edges E, faces (F; triangles) and vertices (V; mesh points) conforming to Euler's formula F - E 

+ V = 2 [27]; the 2 is a topological invariant called the �µEuler characteristic�¶���D�Q�G���L�V���W�\�S�L�F�D�O�O�\��

denoted by �F.  

 

Gauss-Bonnet theorem test: The Total Curvature which is the integral of the values of the 

Gaussian Curvature, KG, over a closed surface (like that used to describe the RBC), evaluates 

to 4�S; specifically it is 2�S �F [16]. This was indeed closely approximated by summing the 

product of KG (the mean of the three values of each triangle) and its area, across all triangles 

in the mesh. An example of the analysis is given in Notebook 5, Supplementary Information.  

 

Triangles per mesh point: Detailed inspection of the mesh showed that in the vast majority of 

cases a single mesh point was met by six triangles; but there were a few instances of five and 

seven triangles sharing one vertex. These points appeared to be randomly dispersed on the 

surface. If the instances of such sharp triangles were high this could cause problems with the 

finite element approximation of the surface area; but there was not a problem as noted above 

in relation to the Gauss-Bonnet Theorem test. On the other hand such aberrant triangles are not 

a "good" representation of the spectrin mesh according to recent microscopic image analysis 

[23, 28]. 

  

Orientation: It was important to test the fidelity to the triangularization algorithm in generating 

the same RBC volume and area, and curvature estimates when the RBC was rotated about the 

x-axis (and, by symmetry, any other rotations about lines through the origin in the x,y-plane) in 

the Cartesian coordinate system using Eq. 5. Specifically, the distribution of edge-lengths 

should not change when �T is varied, and this was reliably achieved. 
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Edge length: The next step was to compute the distribution of edge lengths, in order to study 

how these edges, which could be thought of as modelling the spectrin network, might imply 

that the spectrin is either stretched or compressed. Figure 2 shows the distribution of sides in 

Figure 1, first at a resolution of 20 linearly space bins. The distribution is slightly skewed to the 

left, but it is unimodal; however, the inset which was based on 200 bins now appears to be at 

least trimodal (see Discussion).  

 

 

      

 

Figure 2. Data from the mesh in Fig.1 showing the length-distribution histogram of edges in 20 bins (green); and, 

200 bins (red inset). The mean edge length overall was 62 nm. The median bin (tallest green pillar) contained 38% 

of the total bin contents and spanned 60 - 65 nm; while the two most abundant bins spanning 60 - 70 nm contained 

75% of the edge lengths. Notebook 2 has the Mathematica script used to generate this graphic. 

 

Triangle area distribution: Another feature of the surface triangularization, that is of 

biophysical importance, is the area of each triangle and whether this is consistent with the 

known span of membrane proteins that are corralled in the network. Figure S2a shows the 

separate triangularization of the RBC which (as for Figure 1) clearly indicates a range of shapes 

and sizes of the triangles. Sorting the triangles according to area showed a span from 0.0094 to 

3431 nm2. When subdivided linearly into 10 bins it was seen that the 6th bin contained the most 

triangles (27,541) with a mean area of 1873 nm2; in other words 40.3% of the total area of 128 
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�Pm2 had this mean area, while the mean area of a triangle across the whole cell was 1575 nm2. 

The  size distribution is shown graphically in Figure S3. 

 

Curvature mapping. A primary aim was to devise a means of displaying (mapping) the 

distribution of curvature(s) on the surface of the RBC. For this, a colour-coding program was 

written. Each triangle from the triangularization was stored in one of 10 value-domains, 

according to whichever of the attributes was to be mapped. Figure 3 shows an undistorted RBC 

with its axis of symmetry normal to the the x,y-plane, and for which the average of the 

curvatures at each of the three vertices of each triangle was assigned. 

 

                         

    

Figure 3. Positional dependence of the four types of curvature on the surface of the model-RBC. (a) Gaussian 

Curvature; (b) Principal Curvature (maximum), k1; (c) Principal Curvature (minimum), k2; and (d) Mean 
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Curvature. On the right of each cell is the graph of mean value (of the respective curvature) versus the fraction of 

the RBC area that has the curvature in a specified sub-domain of values. Specifically,  the minimum and maximum 

values of each curvature were idenified, then the whole domain of values was divided linearly into 10 sub-domains 

(bins) with each assigned a colour-code as shown in the given Range Key. The area of each triangle was computed 

(Theory of Methods; and Notebook 2) so the total area occupied by triangles in a given bin was able to be 

expressed as a fraction of the total RBC area, 128 �Pm2. For speed of computation the triangularization was made 

with fewer mesh points than for Figure 1, specifically 13640 triangles and 6822 mesh points.  

 

Rotation and Strain. The affine transformation, which combines both rotation and strain, 

produced shape changes as those shown in Figure 4. For this figure the RBC was rotated by 

45o from the x,y-plane and then increasingly stretched.  

 

                                     

 

Figure 4. RBC rotated through 45o about the x-axis, relative to a linear strain field imposed in the z-direction. (a) 

No elongation, �[ = 1; (b) stretched by 25%, �[ = 1.25; (c) stretched by 50%, �[ = 1.50; (d) stretched by 75%, �[ = 

1.75; and (e) showing the relative elongation and concomitant narrowing of the RBCs by superimposing the 
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images. Colour coding was used to provide distinction between the RBCs in e. In the boundary discretization 

MaxCellMeasure was set to 0.1 giving ~8,000 mesh points. 

 

On stretching (in the z-direction) the RBC was elongated and became narrower, an effect best 

seen in the overlapping images in Figure 4e.  However, the width of the RBC at the dimples 

and the maximum curvature at the rim both increased, as if the opposite faces of the cell were 

being pulled apart. 

 

Volume and surface area during distortion. The surface area of an RBC declines with age 

in the blood circulation [29, 30]. 

 

                     
Figure 5. Dependence of RBC surface area (a) and volume (b) on rotation about to the x-axis (�T) and stretching 

along the z-axis (�[).   

 

It is also known that an RBC's surface area cannot be increased by more than ~15% before it 

ruptures; this was discovered in studies with RBCs swelling in hypotonic media [31]. In our 

own experiments with RBCs suspended in gelatin gel that is then stretched, haemolysis is very 

extensive with two-fold stretching (�[ = 2) (unpublished results). Therefore, it was important to 
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explore the volume and surface area inter-relationships that are brought about by the affine 

transformation (Eqs. 5 and 6).  

Figure 5a shows that the surface area decreases on stretching if the RBC lies across the strain 

field; but it increases by up to 21% as the cell is stretched by 75% (�[ = 1.75) when aligned with 

its disc-plane parallel to the strain field. Meanwhile, the volume of the RBC scarcely changed 

under all the angles or orientation and extents of stretching explored here (Figure 5b).  

Overall, we concluded from Figure 5 that RBCs sustain increased or decreased surface area 

depending on their initial orientation in the gel on stretching the sample, while the volume did 

not change significantly. The extent of area change is much less than would occur with a 

sphere; and this helps explain why the biconcave disc shape has been naturally selected. 

Specifically, the particular shape enables volume and surface area preservation during passage 

of the RBC through the capillaries of the peripheral tissues and lungs [2, 29, 30, 32]. 

 

Colour-coded curvatures for different values of �T and �[. Figure 6 shows RBCs that were 

tilted at 45o around the x-axis and progressively strained from no extension to a maximum of 

�[ = 1.75. The changes in curvature are indicated by the changes in colour; the most notable 

feature for the Gaussian curvature (KG) is the increasing dominance of areas of red denoting 

increased area of lower values as the RBCs are stretched. On the other hand, the intermediate 

values (green) dominate the area of the values of k1 (the maximum Principal Curvature).  

Numerous other comparisons can be made, as are taken up in the Discussion. 
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Figure 6. Curvatures of RBC rotated 45o around the x-axis and stretched in the z-direction by the extents (�[) 

indicated above. 



 18 

 

Another way of depicting the changes in curvature with orientation and strain is via a form of 

histogram shown in Figure 7. The graphs show the fraction of the RBC area that is occupied 

by triangles with curvature (for each of the four types) in the neighbourhood of the mean values 

that correspond to 10 bins, arranged uniformly between the minimum and maximum values of 

the curvature.  

         

                         

 

Figure 7. Curvature graphs of an RBC rotated at 0o, 45o and 90o around the x-axis and stretched in the z-direction 

by the extents (�[) indicated on the right. The colours of the polygonal plots indicate: Gaussian Curvature KG, red; 

Principal Curvature (maximum), k1, orange;  Principal Curvature (minimum), k2, green;  and Mean Curvature KM, 
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blue. Each discontinuity of the polygons denotes the mean value in curvature of the bin in the given curvature 

domain.   

 

The values of the curvatures span different ranges in all scenarios of orientation and strain. 

When there is no strain (top row of Figure 7, and Figure 3) the triangles with k1 (orange line) 

of smallest value occupy the largest area. When the RBCs at 0o are stretched the minimum of 

k1 decreases in value but occupies a much larger area of the cell as stretching is increased. 

Another notable feature at 45o orientation is the shift in k2 and the mean curvature (green and 

blue lines) to larger values as stretching was increased, with the maximum area occupied by 

triangles of intermediate values. Also, there is a clearly defined maximum value in these 

polygonal graphs. For the RBCs at 90o orientation k1 and k2 both decrease with increased 

stretching with the maximum area occupied by large values. Overall, the patterns of all four 

polygonal graphs shift progressively as stretching is increased, but at each of the angles of 

orientation the patterns are distinctly different.  

This is but a snapshot of three angles; for a continuous distribution of angles we would expect 

a smooth transition from the left hand column of polygonal graphs through the middle column 

to the right hand column. 

 

Edge length distribution as a function of extent of stretching. Figure 8 shows that for 0o 

orientation the median value of edge length of the triangularization decreased on stretching by 

75% more than the original value. This is consistent with the fact that Figure 5 shows that for 

�T = 0o the surface area decreased with increasing �[. The main feature for the RBCs at 45o is the 

emergence of a broad bimodal distribution of edge lengths that is most clearly evident in the 

bottom of the middle column of the histograms. On the other hand, when the RBCs were at 90o 

the distribution of edge lengths remained relatively narrow all the way to �[ = 1.75. From Figure 

5 it is at this orientation that most increase in area took place and it is especially clear in the 

bottom right-hand histogram that the median edge length was ~70 nm; this is similar to the 

second maximum in the second column. Consistent with this observation is that both RBC 

orientations display increases in surface area as well (Figure 5). 
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Figure 8. Histograms of the lengths of the 121,000 edges in the triangularization of an RBC at each of three 

rotations about the x-axis with no stretching (�[ = 1), and 75% stretching (�[  = 1.75). The colour coding was used 

to distinguish the three groups of data according to the rotations: green 0o, red 45o, and blue 90o. The bin numbers 

were 20 and 200 for the upper and lower pair of histograms at each value of stretching, �[, respectively. The insets 

show the RBC shapes from which the histograms were made; they are the same as given in Figures 4, S4 and S5. 

 

Discussion 

Triangularization. The fully extended �D- and �E-spectrin heterotetramer has an end-to-end 

length of ~200 nm [23]; but the filaments of unstretched RBC membranes have an average 

distance between the nodal F-actin helices of 60 �± 70 nm [33], and up to 85 nm [28]. The 
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automatic triangularization, that we used here to model the RBC cytoskeleton was controlled 

to correspond to the 121,000 �D- and �E-spectrin heterotetramers; and this gave ~65 nm as the 

mean value of the distance between two neighbouring nodes. This would imply that native 

spectrin has its filaments in a bent or serpentine form that more than halves the end-to-end 

distance of the tetramer. This state of the struts could be maintained by the central complex 

coordinated by ankyrin-1 [23] imposing curvature on them.   

Given that the fully extended struts of the cytoskeleton are ~200 nm long [23], basic geometry 

(triangle side a gives area = a2 �—3/4 ) yields an estimate of the area of the resulting tessellation 

as follows: a single equilateral triangle of 200 nm on each side has an area of 0.0173 �Pm2. With 

a closed single-sheet surface like the RBC, each edge in the tessellation is shared with two 

triangles, and since there are three edges per triangle the number of triangles is 2/3 the number 

of edges. This implies that there are 80,667 triangles, which when multiplied by 0.0173 �Pm2, 

gives a total area of 1397 �Pm2, a number 10.9 times greater than for the real/actual RBC. 

On the other hand, if we assume there are 80,667 cytoskeletal triangles, this implies a triangle 

area of 128/80,667 = 0.0016 �Pm2, which translates (using the triangle area formula above) to a 

side length of 60.8 nm. In other words, the internodal distance of the RBC cytoskeletal network 

should be ~60 nm.  This number compares favourably with what we obtained as the mean 

distance of the edges in the tessellation analysed in Figure 2: viz., 75% of the edges span 60 - 

70 nm. 

While the observation of a less-than-fully-extended triangular spectrin mesh could have been 

deduced without the complex triangularization process used here, the analysis nevertheless 

adds credibility to the ab initio triangularization process; while the discussion above confirms 

the consistency of the numerical values reported in the literature with a (fairly) regular 

triangular tessellation [23]. 

 

Curvature. In its present form the analysis of curvature and its graphical representation 

conveys as semi-quantitative impression of how the distorted RBCs might transmit the locally 

altered shape of the membrane to Piezo1. However, the range-of-influence of membrane 

curvature on Piezo1 remains to be determined. Perhaps a finer mesh of triangularization is 

needed to explore this. The approaches adopted here should be extendable to such situations. 

At the level of formal 3D differential geometry it was important to check for conformity of the  

total curvature with the Gauss-Bonnet Theorem [16], which states that the integral of the 

Gaussian curvature over a closed surface will be 4 �S for surfaces like the RBC, even with its 
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dimples that have regions of negative curvature. Notebook 5 shows an example of this outcome 

in which the Gaussian curvature in each triangle was multiplied by the area of the respective 

triangle and then the sum taken over them all. This is tantamount to a finite difference 

approximation to the surface integral and was a gratifying verification of the overall curvature 

analysis.  

 

Conclusions 

There are many aspects of RBC shape, volume and flexibility that are ripe for (crying out for 

(!) according to [34, 35], and we agree) explanation and inevitably these studies will tap into 

recent findings on Piezo1, and new analytical methods including computational modelling 

[35]. 

At a deeper conceptual level the work described here is an exploration of the geometrical 

constraints on 'biological form' (e.g.,[27, 36]); in this case the particular shapes are those taken 

up by an RBC in a strain field. The linear strain field used here is the simplest of all, being in 

a single direction: but it is consistent with that imposed by a stretched gel as used in our NMR 

experiments [14]. Much more complicated deformations occur in flowing systems, in which 

some domains of the RBC membrane are stressed into more positive curvature while others 

simultaneously undergo more negative curvature [37-40]. The ability of the RBC to 

accommodate these contortions decreases with the age of the cell and is posited as a major 

factor in what determines its survival, for ~120 days in the circulation [32]. Transient, distorted 

shapes exist in RBCs when they are in regions of high velocity that impose non-laminar flow  

around prosthetic and even healthy heart valves. Flow changes occur during valve development 

in cardiogenesis, in particular, and this flow is modified around calcified or diseased valves not 

just prosthetic ones [39, 40], so there is considerable merit in having a computationally 

accessible means of modelling RBC shape changes with the methods presented here. 

The RBC shapes in various in vivo situations have begun to yield to computation. For example 

it is known that the stresses can be so extreme around prostheses as to lead to cell rupture. To 

date, such outcomes really only yield to advanced supercomputing e.g., [41]. 

The other critical aspect of simulations for surface deformation is the distance scale of the 

deformations that are required to activate mechanosensitive ion channels like Piezo1 [10, 13]. 

The changes in curvature invoked at the tip of a patch-clamp pipette are quite extreme across 

a diameter of ~1 �Pm or an area of 0.79 �Pm2 implying that 80,667(number of triangles) �u 0.79* 

(�Pm2, area of patch)/128 (�Pm2, total area of RBC) ���# 500 cytoskeletal triangles are spanned. 
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The resolution of the present simulations and the curvature near the rim of the RBC are in the 

same range. Therefore, if increased membrane bending activates Piezo1 then it will be those 

molecules at the rim of the cells (as in Figure 6, right) that would be activated. On the other 

hand, if  a decrease in curvature (increased area of flatness) is what activates them, then it will 

be also found in the stretched cells. More interestingly is the fact that the two Principal 

Curvatures k1 and k2 both increase on stretching the cell (Figure 6 right).  

However (as alluded to in the Introduction), in patch clamp experiments the visible curvature 

appears not to be what activates the channel. The inflation of the membrane dome is driven by 

the confinement by the micro-pipette that is on the micron scale. It is the tension (and 

presumably flattening at the nm scale below the resolution of a confocal microscope) that 

drives the channels to open [42-45]. Whereas in stretched/compressed gel experiments, the 

morphological forms taken up by the RBCs will be like those shown here. However, further 

curvature of the membrane on the length scale seen in membrane flickering [46, 47] would be 

superimposed on these shapes. 

Future directions for this work will involve larger scale simulations of population-averaged 

curvatures in cells under strain, and in strain fields that are not simply unidirectional and linear. 

Then, correlations could be made with experimental measurements like those already reported 

on stretched/compressed gels [1, 2], and in electrophysiological measurements on whole RBCs.   
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