Primate Speciation Links to Massive and Directional Shrinkage of the Dinucleotide Short Tandem Repeat Compartment.
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Dinucleotide Short Tandem Repeat Finder (Di-Finder).
In order to find short tandem repeat sequences in a large sequence, a repeating loop is designed equal to the length of the large sequence Inside this loop.  All consecutive di-nucleotides are examined and their list is extracted. This process is checked by a regular expression algorithm. 
A regular expression is a sequence of characters that defines a search pattern. These patterns are usually used by sequence search algorithms to "find" operations on sequences. This is a technique used in computer science, especially in formal language theory. The following state machine automata represent all algorithm states.
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This process is repeated for the length of the sequence for each nucleotide pair.  The implemented algorithm does not support mismatches (only perfect/pure STRs are analyzed). Following is an overview of the algorithm and Pseudo-code used:
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Pseudo Code for Di-Finder:
  		         int len_seq = sequence.Length;
                for (int i = 0; i < len_seq ; i++)
                {
                    for (int j = min_length; j < max_length + 1; j++)
                    {
                        if ((i + j) > len_seq) { break; }
                        string sub_seq = sequence.Substring(i, j);
                        double len_sub_seq = sub_seq.Length;
                        string sub_seq_pattern = sub_seq;                       

                        int matches = 1;
    							                 while (Regex.IsMatch(sub_seq_pattern, sequence.Substring(i + j *matches, j)))
                        { 
                            matches++;
                        }

                        if (matches >= min_repeats && (j * matches) >= min_length_of_MR)
                        {
                            microsatellite.Add(sequence.Substring(i, j * matches).Substring(0,j));
                            i += j * matches;
                        }
                    }
                }
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