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With the definitions shown in Table 1, the formulations describing the Pearson’s correlation coefficients at the single-cell () or the population level (), as well as the correlation-within () were as follows:
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By assuming that , ,  and  were mutually independent, the correlation coefficient at single-cell level was yielded
	
	
	(S4)


Using Equations S2-S4 and assuming might be close to but not zero, one could compare the correlations by calculating their ratio:
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Thus, Equation 1 in the main text was derived, which indicated the ratio of the aggregated correlation to the individual correlation. 
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Next, we would demonstrate that when the correlation within is weaker than individual correlation, or the signs of correlation within and individual correlation differ (one is positive and the other is negative), the correlation at bulk level is stronger than it at single cell level.
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Under the condition that
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Using Equations S1and S3, Equation S6 could be written as 
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By taking the assumption that  and ,  and  were independent and combining Equation S2, Equation S7 was derived as 
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Next, we would like to solve this quadratic inequality. We replaced  in S8 by  and get the function:
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The quadratic inequation S8 indicates that Function S9 is negative, since Function S9 is negative between the two solutions of :
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Therefore,  locates between these two solutions, i.e.
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As , 
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Since  and , we got
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The inequation S12 could be simplified as
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When we replace  by  back,

Up to now, we demonstrated that when the value of correlation-within is weaker than the individual correlation, the correlation at the bulk level is stronger than it at the single cell level.
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As ,
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In summary, when the condition of  meets, the correlation at the bulk level is stronger than it at the single-cell level.
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We developed two toy models to represent two typical biological regulatory systems respectively: Model1 described a multi-step signaling cascade (Figure 2A) and Model2 characterized a multi-regulator controlled gene expression (Figure 2B). The ODEs and the respective parameters were list as follows.
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Table S1. Parameters for Model1
	Parameter
	Value
	Parameter
	Value

	
	2.5
	
	10

	
	0.25
	
	8

	
	0.5
	
	15

	
	0.75
	
	15

	
	0.75
	
	15

	
	0.5
	
	15

	
	0.5
	
	15

	
	5
	
	15

	
	9
	
	1
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Table S2. Parameters for Model2
	Parameter
	Value
	Parameter
	Value

	
	2.5
	
	10

	
	0.25
	
	8

	
	0.5
	
	15

	
	0.75
	
	15

	
	0.75
	
	15

	
	0.5
	
	15

	
	0.5
	
	15

	
	5
	
	15

	
	9
	
	1
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This model was previously published(1). We used the same notation as published: S = growth signals, M = Myc, E = E2F, CD = Cyclin D, CE = Cyclin E, R = unphosphorylated (active) Rb, RP = unphosphorylated (inactive) Rb, RE = Rb-E2F complex.
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Table S3. Parameters for Model3
	Parameter
	Value
	Parameter
	Value

	
	0.4μM/hr 
	
	1.5/hr

	
	1.0μM/hr
	
	0.06/hr

	
	0.03μM/hr
	
	0.06/hr

	
	0.45μM/hr
	
	0.03/hr

	
	0.18μM/hr
	
	18/hr

	
	180μM/hr
	
	18/hr

	
	0.003μM/hr
	
	3.6μM/hr

	
	0.5μM
	
	0.15μM

	
	0.35μM/hr
	
	0.15μM

	
	0.7/hr
	
	0.92μM

	
	0.25/hr
	
	0.92μM

	
	1.5/hr
	
	0.01μM
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10000 cells were simulated.
Table S4. Initial conditions for Model1 and Model2
	Species
	Initial conditions
	Species
	Initial conditions

	X1
	～lognormal(-0.24, 0.198)
	X1*
	0

	X2
	～lognormal(-0.53, 0.198)
	X2*
	0

	X3
	～lognormal(-0.94, 0.198)
	X3*
	0

	Y
	～lognormal(-1.41, 0.198)
	Y*
	0
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30000 cells were simulated.
Table S5. Initial conditions for Model1 and Model2
	Species
	Initial conditions
	Species
	Initial conditions

	X1
	～lognormal(-0.24, 0.198)
	X1*
	0

	X2
	～lognormal(-0.53, 0.198)
	X2*
	0

	X3
	～lognormal(-0.94, 0.198)
	X3*
	0

	Y
	～lognormal(-1.41, 0.198)
	Y*
	0
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10000 cells were simulated.
Table S5. Initial conditions for Model3
	Species
	Initial conditions
	Species
	Initial conditions

	S
	～lognormal(-3.39, 0.198)
	CE
	～lognormal(-0.94, 0.198)

	M
	0
	R
	～lognormal(-0.62, 0.198)

	E
	～lognormal(-0.24, 0.198)
	RP
	0

	CD
	～lognormal(-0.53, 0.198)
	RE
	0
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