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Abstract
Background: Ethanol have been linked to atrophic gastritis and gastric carcinoma. Although it is well
known that ethanol can result in hypochlorhydria, the molecular mechanisms underlying this
phenomenon remain poorly understood.

Results: Here we used gastric organoids to show that ethanol permeabilized the apical membrane of
gastric parietal cells and induced ezrin hypochlorhydria. The functional consequences of ethanol on
parietal cell physiology were studied using organoids. Gastric organoids were pre-incubated in the basic
medium or with EGTA or E64 , and incubated at 37℃ in either medium alone, or medium containing 6%
ethanol. We assessed ezrin proteolysis. Ethanol permeabilization induced activation of calpainⅠand
subsequent proteolysis of ezrin, which resulted in the liberation of ezrin from the apical membrane of the
parietal cells. Significantly, expression of calpain-resistant ezrin restored the functional activity of parietal
cells in the presence of ethanol.

Conclusion: Taken together, our data indicated that ethanol disrupted the apical membrane-cytoskeletal
interactions in gastric parietal cells and thereby caused hypochlorhydria.

Background
The stomach tends to be exposed to various toxic factors, and ethanol is the most common factor that
might contribute to the pathogenesis of various gastrointestinal (GI) dysfunctions, including gastritis,
gastric ulcer, even gastric carcinoma1. Currently, the majority of knowledge about the cellular and
molecular mechanisms of toxicity caused by ethanol relies on experiments performed in animal or cell
models. However, the stomachs of different species vary widely in their morphology, the intricacy of their
stomach networks and their topographical organizations. Therefore, it is difficult to gain a precise
understanding of the effects of acute alcoholic-induced parietal injury in humans.

Gastric acid secretion and the process of regulation by the cAMP-dependent protein kinase, protein kinase
A (PKA) pathway are involved in phosphorylation of the cytoskeletal protein ezrin, which was an 80-kDa
microvilli-rich micro vessel. Ezrin protein belongs to the family of widely distributed cell membrane-
associated proteins, the ERM protein family, whose initial isolation is based on the dependence of ezrin
on the phosphorylation of PKA in stimulated parietal cells2,3. Ezrin protein is highly expressed in the
stomach, lung, small intestine, and kidney, and also expressed in the spleen, thymus, bone marrow, and
lymph nodes, but is extremely low in heart, brain, muscle, and testis4.It is mainly expressed in epithelial
cells and distributed prior to the protrusion part of the cell surface: such as microvilli rich in actin, folds of
cell membranes, filamentary pseudopodia rich in skeletal protein, stretched cell front, and various local
adhesions and so on. Ezrin is polarized in the apical membrane of gastric parietal cells and is an
essential component of gastric acid secretion5. When ezrin proteins were knocked out in mice, the
vesicles of the proton pump to the apical membrane were unable to form and the normal functions were
lost6, leading to severe defects in gastric acid secretion and death within three weeks7.
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Elevated intracellular calcium concentration [Ca2+] is the trigger for many cellular processes in response
to external stimuli. Calpain, a calcium-dependent calpain found in the mammalian cytoplasm, plays a
role in the regulation of intracellular signal transduction cascades of calcium ions. In many animal cells,
the calcium-dependent proteolytic system consists of at least three proteins: the micromolar calcium
demanding protease (calpain I), the millimolar calcium demanding protease (calpain II), and natural
endogenous inhibitor, calpain inhibitor which is the specific inhibitor that inhibits calpain I and II. Calpain
is critical for the development of pathology and is a unique and powerful therapeutic target.

Human adult stomach stem cells have been recently reported to enable the self-organization of
millimeter-size, complex 3D stomach tissues with unprecedented morphogenetic and histological realism
in vitro, referred to as gastric organoids8–9. This near-physiological and self-renewing 3D organoid
sustain similar organ functionality as the stomach. Although reductionist in nature, organoids have great
potentials to bridge between traditional 2D culture and animal models, and open up new avenues for
stomach study and disease modeling. To date, gastric organoids have been used to establish various
models of gastric diseases including H. pillory infection10 and proved to be powerful as a 3D platform for
the investigation of psychiatric disease origin and pathology in vitro. Herein, we presented a stem cell-
based gastric organoid model that allows the exploration of acute ethanol-induced pathogenesis of
gastric development in vitro(Fig. 1).When exposed to ethanol, gastric organoids were significantly
impaired in comparison with the controls, including the diameter and morphology, and as ezrin
proteolysis.

Results
Murine gastric organoid culture.

To observe the changes of protein markers in the growth process of gastric organoids, we fixed the
murine gastric organoids on day 1, 3, 5 and 7 respectively, and H+, K+ - ATPase, ezrin, F-actin and DAPI of
parietal cells were stained, and photos were taken with confocal microscope (Fig. 1). Ezrin protein, a
marker of the parietal membrane, indicated that the parietal membrane of murine gastric organoids was
oriented towards the lumen and had polar distribution. The presence of H+, K+ - ATPase, a marker of
parietal cells, suggested that the model system could be used to study the physiological and pathological
characteristics of parietal cells.

In order to further semi quantitatively observe the changes of protein markers in the growth process of
stomach organoids, murine gastric organoids were established, and collected on the 1st, 3rd, 5th, 7th, 9th

and 11th day respectively, and the distribution of H+, K+ - ATPase, ezrin and F-actin markers in the parietal
cell were detected. The results showed that the protein markers of murine gastric organoids remained
stable in Day 5-9 (Fig. 1, d).

Ethanol impaired gastric organoids.
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In order to observe the effect of different concentrations of ethanol on gastric organoids, final
concentrations of 0%, 2%, 4%, 6%, and 8% EtOH were added to the culture medium to impair murine
gastric organoids. One hour later, we stained them with 0.4% trypan blue solution and took photos under
inverted fluorescence microscope (Olympus X81). Statistical analysis of organoids with positive trypan
blue staining was carried out. As shown in Figure 2, the final concentration of EtOH was 6%. Trypan blue
staining was found in 50% of the gastric organoids one hour after injury. However, when the
concentration of EtOH exceeded 10%, the Matrigel was easy to dissolve and collapse, which affected the
next observation and experiment.

In order to dynamically observe the impairment of 6% ethanol on the gastric organoids, the living gastric
organoids were stained with Hoechst for 30 minutes, and then were placed under the microscope. Ethanol
with the final concentration of 6% was added and the images were taken at the same time. The imaging
time was 30 minutes. 30 minutes later, the nuclei of murine gastric organoids shrank and the lumen
became narrower (Fig. 2, b).

Considering that the center of the gastric tube was a cystic luminal structure, and due to the
concentration limitation of ethanol added to the medium, microinjection was used to inject the ethanol
into the lumen of the gastric organoids (Fig. 2, c). One hour later. The samples were subjected to western
blotting or immunofluorescence staining to observe impairment on gastric organoids. However, one hour
after 6% ethanol was injected into the gastric organoids, no obvious impairment was observed. Next, we
increased the concentration of ethanol to 50%. After 1 hour, we observed the death of organoids. As
shown in Fig. 2, c, the gastric organoids were cultured, and microinjections of ethanol at different
concentrations were performed on Day 6 of the organoids. One hour after microinjection of 50% ethanol
into the organoids, the apical membrane marker ezrin and the parietal cell marker H+, K+-ATPase were
destroyed, and the lumens of the organoids collapsed.

Next, the murine gastric organoids were impaired with EtOH added to the medium at a final concentration
of 6%, and western blotting was performed at 0,15,30,45, and 60 minutes. It was found that there was a
cleaved ezrin in 55kDa and the band had a tendency of becoming more and more obvious over time
(Fig.2, d).

Immunofluorescence staining of ezrin, F-actin and DAPI (Fig. 3, a), or H+-K +-ATPase, ezrin and DAPI (Fig.
3, b) was performed 1 hour after gastric organoids were impaired by 6% ethanol added to the medium
with a time gradient of 0-90 min. As can be seen from Fig. 3, a, with the prolongation of time, the location
of the parietal membrane of ezrin gradually became diffuse, and the lumen of organoids shrunk.

Ethanol-induced organoids impairment was caused by calcium-dependent calpain activation.

To investigate whether the impairment of ethanol-mediated gastric organoids was caused by calcium-
dependent calpain activation, gastric organoids were divided into four groups: 1.8 mM CaCl2 group, 1.8
mM CaCl2+ 6% ethanol group, 1.8mM CaCl2+6% ethanol + 100μM E64 group and 30μM BAPTA+1.8mM



Page 5/19

CaCl2+6% ethanol group. The murine gastric organoids were injured for 1 hour, and then samples were
taken to run western blot to detect calpain I, ezrin and F-actin. Image J was used to measure the gray
value of the strips. As a result, the hydrolyzed band of ezrin in the 1.8 mM CaCl2 + 6% ethanol group
increased, and the difference was statistically significant(p<0.001) (Fig. 3, d).

To investigate whether alcohol-mediated gastric organoid damage is caused by calcium ions, we divided
murine gastric organoids into four groups: 1.8 mM CaCl2 group, 1.8 mM CaCl2+6% EtOH group, 1.8 mM
CaCl2+6. % EtOH + 2 mM EGTA group and 30 μM BAPTA + 1.8 mM CaCl2 + 6% EtOH group. Murine

gastric organoids were impaired for 1 hour, and then samples were taken for western blot analysis of H+,
K+-ATPase, Ezrin and F-actin. Image J was used to measure the gray value of the strips. Compared with
the 1.8 mM CaCl2+6% EtOH group, the hydrolysis bands of Ezrin in BAPTA+1.8 mM CaCl2+6% ethanol
group and 1.8 mM CaCl2+6% EtOH +2 mM EGTA group were significantly decreased, and the difference
was statistically significant(p<0.001) (Fig. 3, d).

Effects of ethanol-mediated calcium ion impairment on the localization of ezrin, H+, K+-ATPase and F-
actin in murine gastric organoids.

To investigate the effects of ethanol-mediated calcium impairment on the localization of ezrin and F-
actin in murine gastric organoids, we divided murine gastric organoids into five groups: 1.8 mM CaCl2
group,1.8 mM CaCl2+6. % EtOH group, 1.8 mM CaCl2+ 6% EtOH + 2 mM EGTA group, 30 μM BAPTA + 1.8
mM CaCl2+ 6% EtOH group and 1.8 mM CaCl2+ 6% EtOH + 100 μM E64 group. The murine gastric

organoids were impaired for 1 hour, followed by sample fixations, and the expressions of H+, K+-ATPase,
ezrin and F-actin were detected by in situ immunofluorescence, and photographed by confocal
microscopy LSM880.

Over time, the localization of ezrin in the apical membrane of organoids in the 1.8mM Ca2++6% EtOH
group became blurred and diffused, while the localization of ezrin in the groups of 1.8mM Ca2++6% EtOH
+ EGTA group, 1.8mM Ca2+ +6% EtOH + BAPTA group and the 1.8 mM Ca2++ 6% EtOH + E64d group
remained mostly in the apical membrane and was clear (Fig. 4).

To investigate the effects of ethanol-mediated calcium damage on the localization of ezrin and H+, K+-
ATPase in murine gastric organoids, murine gastric organoids were divided into five groups: 1.8 mM
CaCl2 goup,1.8 mM CaCl2. +6% EtOH group, 1.8 mM CaCl2+ 6% EtOH + 2 mM EGTA group, 30 μM BAPTA
+ 1.8 mM CaCl2 + 6% EtOH group and 1.8 mM CaCl2+ 6% EtOH + 100 μM E64 group. One hour later, the

impaired murine gastric organoids were fixed and the expressions of H+, K+-ATPase and ezrin were
detected by in situ immunofluorescence and photographed by confocal microscopy LSM880.

Over time, the localization of ezrin in the apical membrane of 1.8mM Ca2++6% EtOH group became
blurred and diffused, while the localization of ezrin remained clear in the 1.8mM Ca2++6% EtOH + EGTA
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group, 1.8mM Ca2+ +6% EtOH + BAPTA group and the 1.8 mM Ca2++ 6% EtOH + E64d group, and the
localization of H+, K+-ATPase did not change significantly (Fig. 4,b).

To investigate the effect of ethanol-mediated calcium ion on ezrin expression in human gastric
organoids, we injured human gastric organoids either with 1.8 mM CaCl2, 1.8 mM CaCl2+6% EtOH, or with
1.8 mM CaCl2+6% EtOH + E64, respectively. After 1 hour, samples were collected for western blot, and the
expressions of ezrin and actin were detected, and the values of the bands were measured with Image J
(Fig. 5).

As can be seen from Fig. 5, ezrin in the 1.8 mM CaCl 2 + 6% EtOH group showed significant hydrolysis,
suggesting an increase in the activity of calpain I. In the E64d group, no significant hydrolysis of ezrin
was observed. There was no significant increase in calpain I activity, and the difference was statistically
significant in the E64 group compared with the alcohol group (p < 0.05).

Discussion
Before the origin of organoid system, the studies of gastric diseases were mostly modeled using cell lines
or animal models or explants, but these model systems have their own limitations11.

The gastric epithelial cell line is a commonly used model system for studying gastric diseases, which was
originally derived from gastric tumors. Their advantages are immortalized, readily available, easy to
culture and can be applied to a variety of experiments. However, its molecular characteristics have been
modified, including tumor suppressor genes, oncogenes, and cell cycle regulatory genes, and thus there is
a certain gap with epithelial cells in physiological state. Cell lines accumulate mutations during in vitro
culture for decades, and some cell lines are infected with viruses, such as AGS cell lines, which are
usually infected with type Ⅴ parainfluenza virus, affecting pathways involved in immunity, proliferation
and tumorigenesis, and interferon responses12.

Conventional tumor cell culture is two-dimensional, but studies have shown that whether cell lines grew in
2D or 3D can affect drug efficiency13. This suggests that 3D is an important feature of tissue response.
However, 3D cell spheres cultured from a single cell line lack a combination of different cell types typical
of tissues and organs, while gastric organoids may include parietal cells, chief cells, cervical mucus cells,
stem cells, and endocrine cells, etc.

Primary cell culture models are often a good alternative to tumor cell lines because they have not been
transformed. Primary cultured gastric parietal cells have polarized structural features and polarized
exocytosis and endocytosis, and were easy to access to large amounts. However, these cells are unable
to self-renew and cannot be cultured and expanded for a long time, and all of the original cells need to be
freshly isolated for each experiment.

The animal model system is more holistic and dynamic than the cell line, but some human stomach
diseases cannot be responded to by animal models. For example, after mice were infected with
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Helicobacter pylori, they often only have mild gastritis and would not progress to gastric ulcer or stomach
cancer. Mongolian gerbils can progress to gastric cancer after infection with Helicobacter pylori, but its
distant line limits its researches and applications14.

The gastric organoids include parietal cells, chief cells, cervical mucus cells, stem cells, and endocrine
cells which are also contained in the fundic glands. The parietal cells secrete hydrochloric acid and
internal factors; the chief cells secrete pepsinogen; the enterochromaffin-like (ECL) cells in endocrine cells
secrete histamine, G cells secrete gastrin, D cells secrete gastrin, and cervical mucus cells Secrete mucus.
The organoids can last for more than a year without losing the ability to expand or differentiate15.

In addition, the three-dimensionally cultured gastric organoids have complex 3D structures with structures
and functions similar to those of internal organs8,16. The gastric organoids are mostly cystic, and some
will gradually grow a bud-like structure around the cyst. There is no difference in the culture time, the
expansion ratio, the expression of the gene markers of each constituent cell, or the cell type in the gastric
organoids derived from a single gastric stem cell and from the gastric gland17.

Organoids can also be cultured in two dimensions, and electron microscopic observation reveals that the
apical membrane of the stomach of the two-dimensional culture is oriented toward the medium18. Since
the gastric epithelium is a special polar epithelial cell, we found that the apical membrane of the gastric
organoid faces the inner cavity by staining the apical membrane marker ezrin, and the polarity
distribution is in consistency with the gastric mucosal epithelial cells.

The gastric organoids both replicate the complexity of the disease phenotype in vivo while retaining the
accessibility of in vitro. Gastric organoids that can be cultured in vitro for a long time have enabled
researchers to overcome many obstacles and conduct basal and translational studies19,20. Because it is
closer to the environment in vivo, it is more faithful to the various physiology and pathology. Although
organoids have their own limitations, bioengineering methods such as time-dependent and spatial-
temporal materials can control the growth of organoids toward the desired structural form and self-
organization, and other studies are already available. Vascular networks are added to organoid cultures
to increase nutrients in a nearly physiological way21,22. Co-culture methods for organoids can also mimic
multiple organ lesions23.

In this study, after different concentrations of EtOH were added to murine gastric organoids for 1 hour
and after trypan blue staining, murine gastric organoids showed different degrees of positive trypan blue
staining, indicating the impairment caused by EtOH. The extent of the damage of the gastric organoids
depended on the concentration. Ethanol increases the permeability of parietal cell membranes24 and
triggers an increase in Ca2+. Ethanol and endogenous aldehydes impaired chromosomal and variant
stem cells25.

Clinically, a variety of diseases and gastric acid secretion abnormalities are related, including
gastroesophageal reflux disease, chronic gastritis, gastric ulcer, benign and malignant tumors of the
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gastrointestinal tract, anemia and so on.

In vivo methods for detecting gastric acid secretion in animal models often require an invasive procedure
after anesthesia is fixed in the animal, and the secreted gastric acid is collected after catheterization into
the stomach and is subsequently measured26. The in vitro gastric acid detection method is more
commonly used in the 14C aminopyrine experiment which was first proposed by Berglindh and Obrink in
197627. Due to the investigator's radioisotope experimental qualifications, the 14C aminopyrine test was
temporarily unable to detect gastric acid.

Despite this, we observed that the number and location of most H+, K+-ATPase were not significantly
changed in western blotting and immunofluorescence experiments, but in repeated experiments, we
observed H+, K+-ATPase is activated in the control group and diffused in the alcohol group(data not
shown), suggesting that alcohol inhibition of gastric acid secretion may be related to the activation of H+,
K+-ATPase, possibly due to its short spontaneous activation time. A statistically significant number of
activated H+, K+-ATPases are to be further explored in future experiments using H+, K+-ATPase lentivirus-
infected organoids.

From the results of western blot and immunofluorescence, we found that ethanol mediated the hydrolysis
of ezrin, which was indicated by a specific hydrolysis zone at 55kD.After being impaired by 6% EtOH with
different time intervals, a similar trend also emerged. The wrapping of Matrigel may have a certain
physical protection effect on gastric organoids.

In this study, two methods were used to establish the ethanol-impairment models. The first one was to
add ethanol to the medium to simulate the effect of alcohol concentration in the blood on murine gastric
organoids. The advantage of this method was that it was more feasible. The disadvantage was that
when the ethanol concentration is greater than or equal to 10%, the Matrigel collapsed.

In the view of the fact that the gastric organoids are similar to the stomach and are hollow cystic
structures of the lumen, we have explored the use of microinjection techniques to directly inject ethanol
into the internal gastric organoids to simulate gastric gavage. It was found that this modeling method
could avoid the influence of Matrigel on the drug, and can be used to study the direct interaction of
alcohol or pathogen-host, and at the same time, due to the surface tension of murine gastric organoids
and the tight connection between cells, when the concentration of EtOH reached up to 50%, the Matrigel
remained intact. The downside was that when 6% alcohol is injected into the cavity, no obvious
impairment was observed, and it may be related to the dilution of the ethanol concentration with a small
amount of liquid in the cavity. Because the intracavitary volume of the stomach was temporarily unable
to be accurately estimated, it was difficult to determine the specific final concentration of ethanol injected
into the cavity. In addition, it took a certain time to microinject the organs of each stomach, and it is
inconvenient to carry out protein immunization after drug stimulation. So, we chose the first modeling
method that was more suitable for our experimental purposes.
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BAPTA-AM is a cell permeable chelating agent with high selectivity for Mg2+ and Ca 2+, which can be
used to control intracellular Ca2+ levels and chelate intracellular calcium ions. BAPTA has a higher
selectivity for Ca2+ than EDTA and EGTA, and its metal binding is also less sensitive to change of pH
result. In this experiment, BAPTA chelated intracellular calcium ions, and the decrease of intracellular
calcium ions caused the hydrolysis of ezrin to be significantly reduced compared with the alcohol group.
EGTA chelated extracellular calcium ions, which reduced the influx of calcium ions, and decreased the
intracellular calcium ion, so hydrolysis of ezrin was significantly reduced compared with the alcohol
group.

E64d (molecular formula C17H30N2O5, relative molecular mass 342.4) is a specific calcium-activated
neutral cysteine-based endopeptidase inhibitor with good cell membrane permeability and high selectivity
for cysteine proteases. It can form a covalent bond with the cysteine thiol group at the active site of
calpain, inhibiting its hydrolysis ability, and has a protective effect on alcohol-mediated gastric mucosal
epithelial damage. In the E64d group, the hydrolysis of ezrin was significantly reduced, indicating that
inhibition of calpain I activity was a factor determining the hydrolysis of ezrin, and demonstrated the role
of calpain I-ezrin interaction in the mechanism of alcohol-mediated impairment of gastric organoids.

Calpain digests ezrin on parietal cells and impaired gastric acid secretion24,28. Ezrin in parietal cells binds
to the apical membrane during resting and stimulating phases29,30, while some studies have suggested
that ezrin was released from the apical membrane into the cytosol at rest in parietal cells31.

Conclusion
In summary, hydrolysis of gastric ezrin reflects Ca2+-dependent protease activity. The in-situ hydrolysis of
ezrin was blocked by the transmembrane cytoplasmic protease inhibitor E64d, which enhanced the
important role of calpain I in the hydrolysis of parietal cells Ezrin. Our results indicated that calpain I was
present in gastric parietal cells and that ezrin was a substrate within the cell of calpain I, and the
impairment by EtOH was demonstrated by protein immunoblotting from the level of the human organoids
as well, which indicated that this mechanism may also applicable in human.

Methods
Ethics Statement

Mouse experiments were performed in accordance with the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health and following the International Guiding Principles for
Biomedical Research Involving Animals. Protocols were approved by the Institutional Animal Care and
Use Committee of Beijing University of Chinese Medicine.

Source of animals

All animals were obtained from Vital River Laboratory Animal Technology Co., Ltd.
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Establishment of gastric organoids

Mice were euthanized by CO2 asphyxiation. Cultures were kept at 37°C in a 5% CO2 incubator and the
medium were refreshed every 2 days. Organoids were passaged every 6-7 days at a ratio of about 1:4.
Statistical significance was defined as p<0.05. All statistical analyses were calculated using GraphPad
Prism (Version 5.2). All experiments were performed with at least 3 biological replicates (n≥3), each
analyzed in at least 2 technical replicates.

Trypan blue staining

For vital staining, gastric organoids were incubated with trypan blue for 2-5 min, washed 3 times with
PBS, left in 37℃for another 15 min with PBS, washed again and visualized.

Immunofluorescence

Gastric organoids were fixed with 4% FA for 10 minutes. For wholemount analysis, organoids were
permeabilized with 0.2% Triton X-100 and blocked in 5% BSA for 30min. Ezrin (1:200, abcam, USA), H+,
K+-ATPase (LCD, USTC,1:1000), were incubated with the organoids overnight at 4°C. Next, organoids were
incubated with Alexa Flour 488 or 633 (1:1000; Invitrogen) for 1h at room temperature, followed by
nuclear stain (DAPI, Invitrogen) for 10 min. Whole mount sections were obtained via Z-stack
reconstruction using the Zeiss LSM880.

Western blotting

Gastric organoids were cultured for 6 days and removed from Matrigel using Cell Dissociation Solution.
Cell lysates were prepared in RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.5%
deoxycholate, 0.1% sodium dodecyl sulfate) with protease inhibitors. After separation by SDS-PAGE,
immunoblots were probed for Ezrin6H11 (abcam,1:1000 dilution) antibody, Anti- H+, K+-α-ATPase
antibody (LCD, USTC,1:1000), or GAPDH antibody (sungene biotech,1:5000) and visualized with
chemiluminescence.

Statistical analysis

The statistical analysis was performed using the statistical package for the social sciences (SPSS,
version 13.0, Chicago, IL). The non-normally distributed data were expressed as the median (quartile
range). The within group differences were assessed using a non-parametric test while the Wilcoxon rank
test was used to compare two groups. The normally distributed data and homogeneous variances were
expressed as the mean±standard deviation (SD). Multiple comparisons were performed using a one-way
analysis of variance (ANOVA) followed by the least significant difference (LSD) test. A p value <0.05 was
considered statistically significant for the analyses.

Abbreviations
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EtOH
ethyl alcohol
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Figure 1

Murine gastric organoid culture. a DIC images of murine gastric organoids in Day 1，Day 3，Day 5，and
Day 7.b Immunofluorescent images of H+, K+ - ATPase in Day 1，Day 3，Day 5，and Day 7.c
Immunofluorescent images of ezrin in Day 1，Day 3，Day 5，and Day 7.d Western blotting results of the
changes of protein markers in murine gastric organoids.
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Figure 2

Ethanol impaired gastric organoids. a Trypan blue staining results of gastric organoids injured by EtOH
with different concentrations (Bars= 200 μm). b Statistics of live cell photographs of gastric organoids
impaired by EtOH. **p< 0.01.c Immunofluorescent images of gastric organoids at 0 min and 60 min after
being injured by 50% EtOH by microinjection. d Western blot results of 6% EtOH-induced impairment to
murine gastric organoids. **p <0.01.
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Figure 3

Ethanol-induced gastric organoids impairment was caused by calcium-dependent calpain activation. a
Immunofluorescence of ezrin and F-actin in murine gastric organoids impaired by time gradient of 6%
ethanol (bars= 50 μm).b Immunofluorescence of ezrin and H+, K+-ATPase in murine gastric organoids
with 6% ethanol by time gradient (bars = 50 μm).c Western blotting and statistical analysis of murine
gastric organoids of CaCl2 group, 6% ethanol group, E64 group and BAPTA group. d Western blotting and
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statistical analysis of murine gastric organoids of CaCl2 group, 6% ethanol group, EGTA group and
BAPTA group. ***p<0.001.

Figure 4

Ethanol-mediated calcium ion impairment on the localization of ezrin, H+, K+-ATPase and F-actin in
murine organoids. a Immunofluorescence staining of ezrin, actin and DAPI in murine gastric organoids
with ethanol-mediated calcium ion impairment (bars = 50 μm). b Immunofluorescence staining of ezrin,
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H+, K+-ATPase and DAPI in murine gastric organoids with ethanol-mediated calcium ion impairment
(bars = 50 μm).

Figure 5

Western blot results of ethanol-mediated calcium ion impairment in human gastric organoids. * p <0.05
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