Identification of the First C1 Subgenotype of Enterovirus 71 in Mainland of China in a Retrospective Study

Fenfen SI
National Institute for Viral Disease Control and Prevention

Dongyan WANG
National Institute for Viral Disease Control and Prevention

Tianjiao JI
National Institute for Viral Disease Control and Prevention

Yong ZHANG
National Institute for Viral Disease Control and Prevention

Shuangli ZHU
National Institute for Viral Disease Control and Prevention

Junhan LI
National Institute for Viral Disease Control and Prevention

Wenbo XU
National Institute for Viral Disease Control and Prevention

Zexin TAO
Shandong Center for Disease Control and Prevention

Dongmei YAN (dongmeiyan1976@163.com)
National Institute for Viral Disease Control and Prevention

Short report

Keywords: C1 sub-genotype of Enterovirus 71, Retrospective study, Guillain-Barre syndrome, Acute Flaccid Paralysis.

Posted Date: January 12th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-421089/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The C4 sub-genotype of Enterovirus 71(EV71) is identified as the most dominant sub-genotype circulating in Chinese mainland since 1998, while the circulation situation of EV71 before 1998 is not well established due to insufficient experimental data. The C1 sub-genotype of EV71 has not been reported in Chinese mainland by now. Based on AFP surveillance system of the mainland of China, this study performed a retrospective study of AFP cases for 1985-1999: A strain of EV-A71 C1 sub-genotype was found. To our knowledge, this strain (SD92-41) is the first C1 sub-genotype reported in Chinese mainland. This study proves that the C1 gene subtype also appeared in Chinese mainland, but it is not clear whether it is an imported or a local epidemic strain. With sufficient information from retrospective studies, the source of the SD92-41 strain will be identified, and the prevalence of EV-A71 in Chinese mainland before 1998 will be clearer.

Introduction

As a member of the human Enterovirus species A (genus Enterovirus, family Picornaviridae), Enterovirus 71 (EV71) is a small, non-enveloped, positive-stranded RNA virus. Based on the VP1 coding region, the worldwide circulation of EV71 can be divided into seven genotypes designated A to G, where the two major genotypes B and C are classified into 14 subgenotypes respectively designated B0 to B7 and C1 to C6(1). The sub-genotype C4 has been identified as the most dominant sub-genotype circulating in Chinese mainland since 1998, however the circulation situation of EV71 before 1998 is not well established due to insufficient experimental data(2). It is reported that the sub-genotype C1 of EV71 circulated only in the Western Pacific, Europe and the United States before 2000. After 2000, it was reported that C1 genotype was prevalent in Southeast Asia, such as Malaysia, Thailand, Hong Kong, however the sub-genotype C1 of EV71 has not been reported in Chinese mainland by now(3). China established AFP (Acute Flaccid Paralysis, AFP) surveillance system to monitor cases that acute onset, decreased muscle tension, decreased muscle strength and weakened or disappeared tendon reflex. Based on AFP surveillance system of the mainland of China, this study performed a retrospective study of AFP cases for 1985-1999: A strain of EV-A71 C1 sub-genotype was found.

Material And Methods

172 human rhabdomyosarcoma (RD) cell positive virus isolates from AFP surveillance system in Chinese mainland from 1985 to 1999 were retrospectively studied and molecular typing method was performed. Primer pair Y7/Q8 was used for poliovirus screening, and for the isolates with negative results, primer pairs 486/488 and 040/011 were used to amplify the partial VP1 sequences and the combination of the two sequences yielded the entire VP1 coding region. 164 polioviruses and 8 (4.7%) NPEV strains were identified. 8 NPEVs included 2 Coxsackievirus B5, 2 Echovirus 1, 1 EV71, 1 Echovirus 26, 1 Coxsackievirus B1 and 1 Enterovirus-B.

Results
The EV71 strain (named SD92-41) was isolated from a 7-year-old male patient with AFP in Shandong Province in 1992. The AFP case was diagnosed as Guillain-Barre syndrome (GBS) by a polio diagnosis expert panel, and the patient had no residual paralysis during the 60-day clinical follow-up. Phylogenetic analysis based on entire VP1 coding regions of EV71 was conducted with the maximum-likelihood (ML) method revealed that the SD92-41 strain belonged to the C1 sub-genotype (Fig. 1). The VP1 genome sequence of the SD92-41 strain and the EV-71 prototype strain showed 96.9% similarity in nucleotide sequence and 80.8% similarity in amino acid sequence. Homologous comparison revealed that the VP1 genome sequence of the SD92-41 strain had the highest homology with the strain 9718-TX-89 from U.S. in 1989 and had 99.7% similarity in nucleotide sequence and 96.2% similarity in amino acid sequence.

The whole genome sequence of the SD92-41 strain was determined to be 7411 nt long. The ORF of the SD92-41 strain is 6582 nt in length, encoding a polypeptide of 2193 amino acids, with a 746nt 5'-UTR and a 83nt 3'-UTR. Phylogenetic trees based on VP1, P1, P2, P3 coding regions of prototypes strains of the human enterovirus species A and EV71 typical strains were constructed with the maximum-likelihood (ML) method (Fig. 2). The topology of the phylogenetic tree based on the nucleotide sequences of the P1 region was similar to that of the VP1 region, the SD92-41 strain and other sub-genotypes of EV71 were clustered into a large cluster (Fig. 2a and Fig. 2b). However, SD92-41 and CVA8 were clustered into one branch in P2 and P3 regions, indicating that SD92-41 and CVA8 may be recombined. Simplot analysis showed that SD92-41 and CVA8 had highly gene recombination in P2 and P3 regions (Fig. 3). It’s worth noting that SD92-41 and the other two EV71 strains (480/Netherlands/1991-AB115492 and 5746/Taiwan/1998-AF304457) were clustered in the same branch in P2 and P3 regions. This means that two EV71 strains have high similarity to SD92-41 in the P2 and P3 regions.

Discussion

Since 1998, the C4 subgenotype strains of Enterovirus 71 have been persistently circulating in Chinese mainland for 22 Years, where only one or two imported subgenotypes were reported. Reports on the circulation situation of EV71 before 1998 are few. One sequence from Heilongjiang in 1997 and one sequence from ShanDong in 1996 were identified as C3 and C2 subgenotype respectively, indicating that the C3 and C2 subgenotypes appeared in mainland of China. To our knowledge, SD92-41 is the first C1 subgenotype reported in Chinese mainland, which showed high sequence similarity in VP1 region to the strain 9718-TX-89 from U.S. in 1989, but there is no direct evidence supporting the association with the American strain. SD92-41 has a sequence homology in the whole genome region to the two other EV71 strains (480/Netherlands/1991-AB115492 and 5746/Taiwan/1998-AF304457), we inferred from the experimental fact that the recombination events might occur first in the common ancestor and then they spread to different countries. This study proves that the C1 gene subtype also appeared in Chinese mainland, but the source of the SD92-41 strain is not clear because of insufficient information.

Abbreviations
EV71
Enterovirus 71
AFP
Acute Flaccid Paralysis
RD
rhabdomyosarcoma
GBS
Guillain-Barre syndrome

Declarations

Ethics approval and consent to participate:

Animal and Human Rights Statement This study did not involve human experimentation. Biosafety evaluations were approved by the National Institute for Viral Disease Control and Prevention, China CDC. All experimental operations were handled following the Standard Operational Protocol approved by China CDC.

Consent for publication

Written informed consent for specimen collection, testing and publication was obtained from all individuals (or their parents) in the study population.

Availability of data and materials

Condensed anonymized data are available from the corresponding author on reasonable request. Whole genome nucleotide sequences for the strain determined in this study have been deposited in the GenBank nucleotide sequence database under accession numbers MW473684.

Competing interests

The authors declare no competing interests.

Author Contributions

Conceptualization, Fenfen Si, Dongmei Yan; formal analysis, Fenfen Si, Dongyan Wang, Tianjiao Ji, Yong Zhang, Shuangli Zhu, Junhan Li, Wenbo Xu, Dongmei Yan; Writing—original draft preparation, Fenfen Si; Writing—review and editing, Dongmei Yan; Project administration, Dongmei Yan; funding acquisition, Dongmei Yan. All authors have read and agreed to the published version of the manuscript.

Funding:

This study was supported by the National Key Technology R&D Program of China (Project No. 2017ZX10104001). We also acknowledge the funding received from the Key Technologies R&D Program
of the National Ministry of Science (Project Nos. 2018ZX10101002-004-006)·Taishan Scholar Program for Young Experts (tsqn202103187)·National key R & D plan (2021YFC0863000) and Municipal Natural Science Foundation of Beijing of China (L192014). The funding body was not involved in the study design, clinical sample collection, data analysis, and interpretation or writing of the manuscript.

Acknowledgements:

We thank the National Institute for Viral Disease Control and Prevention, for the unidentified isolate from AFP surveillance.

References

Figures
Figure 1

Phylogenetic Tree Based on Entire VP1 Coding Regions of EV71.

Note: The SD92-41 strain is marked with a black solid circular.
Figure 2

Phylogenetic Tree Based on the VP1, P1, P2, and P3 sequences of EV-A.

Note: Maximum likelihood trees were constructed using the GTR + G model and were implemented in MEGA7.0 with 1000 bootstrap replicates. The close circle represents the SD92-41 strain. The scale bars indicate the genetic distance. (a) VP1 coding sequence; (b) P1 coding sequence; (c) P2 coding sequence; (d) P3 coding sequence.
Figure 3

Similarity and Bootscanning Analysis of the SD92-41 Strain and Other EV-A Strains.

The SD92-41 strain was used as a query sequence.