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Abstract

Purpose
The role of soil biotic and abiotic factors in crucial ecosystem services such as primary production,
organic matter dynamics, nutrient cycling, and soil biota community structure in the Araucaria ecosystem
remains poorly quantified. We aimed to quantify the role of site quality on the development of organic
horizons, root growth, soil chemical properties, and the entire soil biota community in even-aged and
monospecific Araucaria angustifolia plantations.

Methods
We collected and dissected soil monoliths to describe layers of organic matter and the complex soil food
web into these layers. We determined soil pH, soil moisture, total nitrogen, available P, and total organic
carbon into each layer (litter, F-layer, H-layer, and A horizon), the biomass of fine roots, the community
structure of soil biota, arbuscular mycorrhizal fungi, and nematodes, as well as the microbial biomass
carbon.

Results
In the high-productivity site, there was significantly higher organic matter formation, nutrient cycling (N
and P), root growth, soil moisture, soil biota diversity, arbuscular mycorrhizal fungi, nematodes, and
microbial activity evaluated by the microbial biomass carbon compared to the low-productivity site.

Conclusions
High-productivity sites promote the development of organic horizons, root growth on superficial layers
that provide plant nutrient release, the A horizon nutrient contents, and the entire soil biota community in
monospecific Araucaria angustifolia plantations located on humid subtropical Cambisols. This creates a
positive plant-soil feedback that maintains soil quality and increases primary production, nutrient cycling,
and habitat and food for the soil food web.

1. Introduction
It is well documented that biotic and abiotic factors significantly influence above- and belowground
ecosystem primary production through positive plant-soil feedback (Bennett and Klironomos 2018). Even
after decades of intensive research, it remains unclear and difficult to quantify such crucial ecosystem
services in monodominance ecosystems such as Araucaria angustifolia (Bert.) O. Kuntze plantations
(Marchioro et al. 2020). The role of soil biotic and abiotic factors remain far from being understood,
primarily because of a wide range of complex compartments into soil ecosystems and a lack of scientific
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studies gathered from long-term field experiments (Bowsher et al. 2018; Santos et al. 2018; Souza et al.
2019). Ecosystem services, such as primary production, organic matter dynamics, nutrient cycling, and
soil biota activity are among the most important services that promote soil quality and generate positive
soil-plant feedback (Tateno et al. 2017). The ecological significance of these services is attributed to their
characteristics to promote habitat and energy that enable soil biota and microbiota to create positive soil-
plant feedback into the soil ecosystem (Souza and Freitas 2018). For instance, primary production is
known to increase litter deposition, thus stimulating organic horizon development past over the years
(Santos et al. 2018; Santos-Heredia et al. 2018). This first pathway creates a habitat for soil biota and
microbiota; thus, they act by transforming and decomposing the organic matter through mechanisms
such as a “priming effect”. Finally, a solid soil food web is created promoting soil biota community
structure, microbial growth, and plant uptake in a way similar as to the soil quality and nutrient content
hypothesis described by Souza and Freitas (2018) and Melo et al. (2019). Therefore, the abundance and
diversity of soil organisms may, in turn, be regulated by primary production, further modulating plant-soil
feedback (Tateno et al. 2017; Bennett and Klironomos 2018).

Despite such positive plant-soil feedback between the soil organic horizon, plants and functionally
diverse groups of soil biota, arbuscular mycorrhizal fungi, and soil nematodes, most of the experimental
findings on the role of abiotic and biotic factors are often based on only one of these properties, gathered
from pot experiments, or often in the absence of adult tree plant species (Bennet and Klironomos 2018;
Gebremikael et al. 2016;Santos et al. 2018; Souza et al. 2019; Zhang et al. 2018). Such studies have been
used by soil ecologists in soil biology and have increased our understanding of the role of soil biotic and
abiotic factors in the processes of organic horizon formation, nutrient cycling, primary production, and
soil food web (Ojeda et al. 2018; Yang et al. 2018). However, these findings do not consider the whole
potential of the soil biotic and abiotic characteristics as driven factors for site quality and are far from
representing the reality in the field. Yet, long-term studies in the presence of adult tree plant species
considering these aspects are rare (Rasmussen et al. 2019).

After roughly 100 years of timber exploitation during the 20th century, A. angustifolia is currently defined
as a critically endangered species (Thomas 2013; Marchioro et al. 2020) and only in-line plantations can
be economically used after governmental permission. Besides this historic interest in its timber, and the
recognized productive potential (Nutto et al. 2005; Dobner Jr. et al. 2019), the soil bio-chemical factors
that influence the growth of A. angustifolia are still little known. Moreover, due to the lack of knowledge
about the ecology of the A. angustifolia, mistakes were made firstly in selecting sites for establishing
monospecific stands of this plant species (Breuninger et al. 2008) and secondly in managing them (Seitz
1986; Nutto et al. 2005).

This study aimed to quantify the role of Araucaria site quality on the development of organic horizons,
root growth, soil chemical properties, and the entire soil biota community. To this end, we analyzed soil
monoliths, the soil’s main chemical properties, soil biota and microbiota community structure, and
microbial biomass carbon for two types of A. angustifolia plantations (e.g., low- vs. high-productivity
sites). With this approach, we sought to shed light on how soil quality/productivity influences the
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formation of organic matter in humid-subtropical highland soil and the macro- and microbiota that
provide ecosystem services into this condition. We hypothesized that sites with high productivity are the
ones characterized as follows: high biological activity in soil and with high cation exchange capacity
resulting in an increased release of available nutrients as well as a concomitant increase in fine roots
production and plant growth, thus creating a positive plant-soil feedback.

2. Material And Methods
Soil samples were collected inside even-aged and monospecific Araucaria angustifolia plantations of the
Florestal Gateados Enterprise. The experimental area is located at the highlands of Southern Brazil (800–
1,200 m.a.s.l.). The climate is humid-subtropical (Cfb type according to the Köppen climate
classification), with 1,750 mm of total annual precipitation and annual mean air temperature of + 15°C
(Alvares et al. 2013). Soils in the area were classified as Cambisols (WRB 2006). In July 2019, fifty soil
samples were collected at the 0–20 and 20–40 cm soil depths. The samples were homogenized, air-dried,
and organic residues were removed manually by each layer. Then, soil samples were dried in an oven at
60°C, sifted in a 2-mm mesh sieve, and subjected to analyses. Clay content was 540 and 405 g kg− 1 at
the 0–20 and 20–40 cm of soil depths, respectively. Soil pH (H2O) was 5.6 to 6.3 at 0–20 cm, and 5.2 to

5.7 at the 20–40 cm soil depth; cation exchange capacity values at soil pH were 16.4 and 19.3 cmolc kg− 

1 at the 0–20 and 20–40 cm soil depths, respectively. Total organic carbon and available P (Mehlich 1)
ranged from 20.6 to 14.5 g kg− 1 and from 3.8 to 1.4 mg kg− 1, at the 0–20 and 20–40 cm soil depths,
respectively (EMBRAPA 1997; Tedesco et al. 1995).

Within the 530 ha of plantations, seventy-five sample plots with the highest and seventy-five plots with
the lowest quality were selected. At this point, site quality was selected only in terms of dominant height,
i.e., according to the accumulated productivity. The relationship between dominant height (h100) and age
as a measure of site quality (Skovsgaard and Vanclay 2008) was obtained from 460 sample plots (500
m²). Stands were selected as closest as possible to 30 years of age, thus representing a well-established
stand. Additional stand characteristics are given in ESM_1. In terms of dominant height, at the age of 30
years, an 8-m difference was verified, which, when translated to mean annual increment (MAI) in volume,
represents 14 to 31 m³ ha− 1 yr− 1. Both stands were not thinned and thus allowed robust comparisons in
terms of growth and yield.

To characterize the litter compartment and layers of organic matter at intermediate stages of
decomposition (F-layer and H-layer), four soil monoliths in each studied plot were collected accordingly to
Fassbender (1993). Before collecting the soil monoliths, an area of 20 × 20 cm on the soil surface was
delimited for separately sampling the litter layer. After that, we extract soil monoliths with the following
dimensions 20 × 20 × 20 cm. Next, we wrapped them with plastic film and transported all the monoliths
with minimal disturbance until analysis. During our analysis, the monoliths were dissected into the litter,
F-layer, H-layer, and A horizon. We considered the F-layer to be the material composed of partly
decomposed litter, the H-layer the material with well-decomposed litter, and the A horizon composed
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exclusively of mineral material (Toutain 1987). The ratio of organic matter layers was calculated using
the following equation: ROMLi = dmi/Tm, where dmi is the dry mass of each layer (e.g., litter, F-layer, H-
layer, and A horizon), and Tm are both the total dry mass of the soil monolith (20 × 20 × 20 cm) and dry
biomass of litter.

To estimate fine root (diameter: <2 mm) dry biomass, we collected roots from the soil samples of each
layer (e.g., litter, F-layer, H-layer, and A horizon) during the monoliths processing described above. Fine
roots in these layers were washed using a 0.5-mm nylon mesh bag. We sorted fine roots into living and
dead roots based on morphology and condition. Only living roots were considered to estimate dry
biomass. Fine roots included both tree and herbaceous species because it was difficult to distinguish
between these precisely. Fine root dry biomass (g) was determined after drying the samples for 48 h at
70°C. Samples of each layer (litter, F-layer, H-layer, and A horizon) from monoliths were air-dried and
passed through a 2-mm sieve. We determined soil pH in a suspension of soil and distilled water (1:2.5
ratio) (Black 1965). Total soil nitrogen and soil organic carbon were estimated according to the
methodology described by Okalebo et al. (1993). Phosphorus (Psbe) was determined using the Olsen’s P
protocol (Olsen et al. 1954). The soil moisture was measured by the gravimetric method, where a fresh
soil sample was weighed, oven-dried until no further mass loss, and then reweighed (Black 1965).

At the end of the summer, we sampled four soil monoliths (20 × 20 × 20 cm) to extract and characterize
the soil fauna community per studied plot (e.g., low- and high-productivity sites), and collected the
organisms manually using metal clips. They were stored in containers with 70% alcohol until
identification as recommended in Tropical Soil Biology and Fertility (Anderson and Ingram 1989). These
were later counted and identified under a stereoscopic microscope, at the level of a major taxonomic
group. The term “taxonomic group” was used in the soil macroarthropod study, meaning either a Class,
as Order or even Family, to comprise a set of individuals with a similar life form. The communities were
characterized based on the following parameters: (a) richness and (b) Shannon Diversity Index (H)
(Shannon and Weaver 1949). We assessed the frequency of occurrence of each taxonomic group by both
studied sites. In addition, we classified the taxonomical groups according to their functional groups as
described by Souza and Freitas (2018). The frequency of occurrence was calculated using the following
equation: FOi = ni/N, where ni is the number of times an organism was observed, and N is the total
arbuscular mycorrhizal fungi (AMF) spores observed from each studied ecosystem.

To sample the spores of arbuscular mycorrhizal fungi and soil nematodes, we sampled undisturbed soil
cores (n = 6 per studied plot and 300 g of soil each core), wrapped them, and stored them with minimal
disturbance until specimen’s extraction as recommended by Souza and Freitas (2018). For AMF
extraction, spores and sporocarps from the field were extracted by the wet sieving technique (Gerdemann
and Nicolson 1963) followed by sucrose centrifugation (Jenkins 1964). Initially, the extracted spores were
examined in water under a dissecting microscope and they were separated based on morphological
characteristics. Subsequently, they were mounted in polyvinyl alcohol in lacto-glycerol (PVLG) with and
without the addition of Melzer’s reagent (Walker et al. 2007). Species identification was based on the
descriptions provided by Schenck and Perez (1987), and by consulting the online AMF collection of the
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Department of Plant Pathology, the University of Agriculture in Szczecin, Poland
(http://www.agro.ar.szczecin.pl/~jblasxkowski/) and the International Culture Collection of Arbuscular
Mycorrhizal Fungi Database—INVAM (http://invam.caf.wvu.edu). The AMF communities were
characterized based on the following parameters: (a) richness and (b) Shannon Diversity Index (H)
(Shannon and Weaver 1949). We assessed the frequency of occurrence of each taxonomic group at both
studied sites.

Soil nematodes were extracted as described for the AMF spore extraction. Additionally, we used the
method described by Buchan et al. (2013), to separate free-living nematodes from soil components (e.g.,
organic matter and clay). We counted the soil nematodes under a binocular microscope. Next, the soil
nematodes were fixed with a 4% hot (70ºC) formaldehyde solution. Finally, nematode identification using
trophic groups was carried out according to Yeates et al. (1993).

Soil samples were put into pots. They were brought to and maintained at ca. 50% water-filled porosity
and incubated at 18°C for 45 days. The amount of distilled water was based on the bulk density and
initial moisture content of the soil. Water reposition was calculated weekly using a mass balance of each
pot. Four replications from each studied site were sampled after 5, 15, 30, 45, and 60 days of incubation.
Microbial biomass carbon (Cmic) was determined using the fumigation-extraction protocol described by
Vance et al. (1987). We divided the soil (20 g of fresh soil per pot) into fumigated and non-fumigated
controls. The Cmic was extracted with 40 mL of 0.5 M K2SO4 and stored at − 18°C until analysis. Organic
carbon contents of the extracts were determined by the rapid dichromate oxidation method described by
Okalebo et al. (1993).

Before analysis, all the variables were tested for normality (e.g., by Shapiro-Wilk test) and
homoscedasticity (e.g., by the Bartlet test), and log transformations were applied to meet both required
criteria. To find possible spatial autocorrelation, we used the Moran.I function (Gittleman and Kot 1990).
We did not detect any relationship between the variables and the sampling points, indicating spatial
independent samples. Soil properties, soil biota, and microbiota community composition, and microbial
biomass carbon were analyzed with a non-parametric paired t-test followed by the Monte Carlo test (1000
permutations). The dissimilarities between the productivity sites (e.g., by Bray-Curtis distance measure)
were analyzed using non-metric multidimensional scaling (NMDS), which provided a graphical ordination
of the variables that when presenting a measure of stress less than 0.01, indicate an excellent fit of the
model (Zuur et al. 2007). It also enables us to reduce the number of the variables used to determine
which abiotic or biotic variable explained most of the variation in the productivity sites (Oksanen et al.
2013). All analyses were run using R 3.4.0 statistical software (R Core team 2018).

3. Results
The ratio of litter and organic matter layers (e.g., F-layer and H-layer) on soil monoliths was significantly
higher in the high-productivity site (n = 16, t = 11.54, p < 0.01, n = 16, t = 17.33, p < 0.001; n = 16, t = 21.45, p 
< 0.001, respectively), while the A horizon was significantly higher in the low-productivity site (n = 16, t = 
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20.56, p < 0.001). There were significant differences on total nitrogen (n = 16, t = 21.28, p < 0.001), and P
by sodium bicarbonate extraction (n = 16, t = 20.19, p < 0.001) between low- and high-productivity sites,
reaching the lowest average of total nitrogen and P by sodium bicarbonate extraction (Psbe) in the A
horizon. For all studied layers (litter, F-layer, H-layer, and A horizon), the total N and Psbe were higher at
high-productivity site than at the low-productivity site. Differently than observed for the soil layers, at least
numerically, we did not find any significant differences between the studied sites on total organic carbon
(n = 16, t = 2.07, p = 80.798) by analyzing soil monoliths. Overall, litter presented 206% and 6% more total
nitrogen and Psbe at the high-productivity site than at the low-productivity one. For the A horizon, total
nitrogen and available Psbe tended to be higher (135% and 166%) at the high-productivity site than at the
low-productivity one. Fine root dry biomass was significantly higher in litter (n = 16, t = 11.34, p < 0.01) and
the A horizon (n = 16, t = 14.82, p < 0.01) at the high-productivity site that at the low-productivity one.
Whereas, for the H-layer, we found the significant highest fine root dry biomass at low-productivity site (n 
= 16, t = 14.27, p < 0.01). The soil pH was not observably different for the litter at both low- and high-
productivity sites. There were significant differences between sites for the soil pH of the F-layer (n = 16, t 
= 8.13, p < 0.05), H-layer (n = 16, t = 8.02, p < 0.05) and A horizon (n = 16, t = 7.45, p < 0.05). For moisture,
we found significant differences between low- and high-productivity sites in the litter (n = 16, t = 17.38, p < 
0.01), H-layer (n = 16, t = 15.37, p < 0.01), and A horizon (n = 16, t = 19.81, p < 0.01) (Table 1).
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Table 1
Variation in the soil productivity site on the ratio of organic matter layers (%), total nitrogen (g kg− 1, b),
available P (mg kg1), total organic carbon (g kg− 1, d), fine roots dry biomass (g), soil pH (1:2.5 v:v), and

soil moisture (%)

Sitesa Ratio of
organic matter
layers (%)

Total
nitrogen

(g kg− 1)

Available
P (mg kg− 

1)

Total
organic
carbon

(g kg− 1)

Fine root
dry
biomass
(g)

Soil pH
(1:2.5
v:v)

Moisture
(%)

  Litter

Low 1.4 ± 0.3 3.01 ± 
0.02

10.2 ± 0.5 89.3 ± 
0.2

1.9 ± 0.4 5.0 ± 
0.5

37.9 ± 
5.4

High 3.5 ± 0.5** 9.57 ± 
0.09**

15.3 ± 
0.4**

90.5 ± 
0.1

47.4 ± 2.2** 5.0 ± 
0.5

70.2 ± 
11.2**

  F-layer

Low 5.0 ± 0.5 2.56 ± 
0.22

5.5 ± 0.1 41.4 ± 
0.2

11.8 ± 0.9 4.7 ± 
0.1

11.0 ± 
1.2

High 7.4 ± 0.7** 6.77 ± 
0.17**

13.5 ± 
0.3**

45.5 ± 
0.3*

11.0 ± 0.8 6.6 ± 
0.2*

11.0 ± 
1.0

  H-layer

Low 19.1 ± 1.2 1.99 ± 
0.43

4.3 ± 0.3 39.7 ± 
0.4*

44.9 ± 5.4** 4.7 ± 
0.3

14.6 ± 
1.3

High 36.5 ± 2.3** 3.97 ± 
0.19*

10.5 ± 
0.2**

35.6 ± 
0.2

21.0 ± 4.3 6.3 ± 
0.2*

22.9 ± 
3.6**

  A horizon

Low 74.5 ± 5.1** 0.99 ± 
0.17

3.7 ± 0.2 25.7 ± 
0.5

16.5 ± 3.9 4.1 ± 
0.1

3.6 ± 0.6

High 52.6 ± 3.7 2.01 ± 
0.05*

6.9 ± 0.5* 30.5 ± 
0.4*

34.6 ± 0.9** 5.9 ± 
0.3*

15.9 ± 
0.2**

aLitter height (Low: +3.5–0.0 cm; High: +4.2–0.0 cm); F-layer depth (Low: 0.0–2.7 cm; High: 0.0–3.2
cm); H-layer depth (Low: 2.7–16.5 cm; High: 3.2–17.1 cm); A horizon depth (Low: 16.5–20.0 cm;
High: 17.1–20.0 cm); *, ** significant at 5% and 1% by paired t-test, respectively.

Our results about soil fauna revealed the general effects of soil quality on the average fauna abundance,
occurrence of functional groups, richness, and diversity. The high-productivity site had the highest
richness and diversity. In this site, we identified exclusively soil organisms from Blattidae, Scarabaeidae,
Spirobolidae, Enchytraeidae, Acaridae, Acerentomidae, Filistatidae, Scutigeridae, Forficulidae, and
Procampodeidae. The results from functional groups showed a similar pattern for ecosystem engineers,
litter transformers, microregulators, and predators, with the high-productivity site having the highest
values of soil fauna abundance and the exclusive presence of some families of these groups (Table 2).
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Table 2
Soil fauna abundance (of individual monoliths), richness, diversity (Shannon’s index),

and functional groups at low- and high-productivity sites.
Taxonomic group / Family PRODUCTIVITY LEVELS Functional groups

Low High

Blattodea / Blattidae - 2 Ecosystem engineer

Blattodea / Termitidae 1 8** Ecosystem engineer

Hymenoptera / Formicidae 17** 9 Ecosystem engineer

Coleoptera / Scarabaeidae - 3 Litter transformers

Diplopoda / Spirobolidae - 2 Litter transformers

Enchytraeidae - 17 Litter transformers

Acari / Acaridae - 1 Microregulator

Collembola / Isotomidae 2 27** Microregulator

Protura / Acerentomidae - 3 Microregulator

Araneae / Filistatidae - 8 Predator

Chilopoda / Scutigeridae - 3 Predator

Dermaptera / Forficulidae - 5 Predator

Strepsiptera / Myrmecolacidae 2 - Predator

Diplura / Procampodeidae - 3 Herbivore

Larvae of Coleoptera 6 - Herbivore

Richness 5 13** -

Diversity (Shannon index) 1.12 2.15** -

Soil monolith dimensions: 20 × 20 × 20 cm; Functional groups classification was done according to
Souza and Freitas (2018); ** Significant at 1% by paired t-test.

Collectively, we identified eight arbuscular mycorrhizal fungi (AMF) species in all samples. Eight AMF
species were found at the high-productivity site, and four at the low-productivity one. There were
differences between the AMF frequencies of occurrence between low- and high-productivity sites. Across
all the samples, Funneliformis mosseae was the most abundant identified AMF species. Acaulospora
morrowiae, C. pellucida, G. gigantea, and R. coralloidea were AMF species found exclusively at the high-
productivity site (Table 3).
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Table 3
Frequency of occurrence (%) of arbuscular mycorrhizal fungi at low- and high-

productivity sites.
Arbuscular mycorrhizal fungi species Productivity levels

Low High

Acaulospora morrowiae

Spain & N.C. Schenck

- 12.33

Cetraspora pellucida

(T.H. Nicolson & N.C. Schenck) Oehl, F.A. Souza & Sieverd.

- 8.03

Claroideoglomus claroideum

(N.C. Schenck & G.S. Sm.) C. Walker & A. Schüßler

16.30** 9.63

Funneliformis mosseae

(T.H. Nicolson & Gerd.) C. Walker & A. Schüßler

53.60** 25.39

Glomus sp. 14.90* 10.90

Gigaspora gigantea

(T.H. Nicolson & Gerd.) Gerd. & Trappe

- 5.34

Racocetra coralloidea

(Trappe, Gerd. & I. Ho) Oehl, F.A. Souza & Sieverd.

- 21.33

Rhizophagus intraradices

(N.C. Schenck & G.S. Sm.) C. Walker & A. Schüßler

15.20** 7.05

Richness 4 8**

Diversity (Shannon index) 1.19 1.94*

*, ** Significant at 5% and 1% by paired t-test, respectively.

The abundance and functional composition of nematodes in the low-productivity site were dissimilar (36
vs. 76 ind. g− 1 soil) to the high-productivity site. In the site with low productivity, we did not find
Carnivores and Omnivores. The total abundance and abundances of bacterivores, carnivores, omnivores,
and fungivores were significantly higher (p < 0.01) at the high-productivity site than at the low one. Only,
the abundance of herbivores was significantly higher (p < 0.01) at the low-productivity site than at the
high one (Fig. 3A). Microbial biomass carbon showed similar dynamics between low- and high-
productivity sites. The highest values were at 5 days of incubation, and then they started to decline until
reaching a stable line after 45 and 30 days for high- and low-productivity sites, respectively. In our study,
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Cmic was lower at the low-productivity site than at the high- one, and was significantly different (p < 0.001)
(Fig. 3B).

According to the NMDS analysis, the soil productivity sites were significantly dissimilar (Fig. 4). The
ordination of the soil chemical characteristics (e.g., ratio of A horizon, ratio of H-layer, P contents in A
horizon, F-layer, and H-layer, and N content in litter), soil biota abundance (e.g., Formicidae, and
Isotomidae), soil microbiota abundance (e.g., F. mosseae, and Bacterivores) and microbial biomass
carbon in each productivity site had a good fit (stress value = 0.18). Formicidae, the ratio of the A horizon,
and F. mosseae were highly correlated with the low-productivity site, whereas Isotomidae, Bacterivores,
microbial biomass carbon, litter N content, P content in the A horizon, F-layer, and H-layer, and the ratio of
H-layer were highly correlated with the high-productivity site. Formicidae, the A horizon, F. mosseae, PA−H,
Cmic, Bacterivores, Isotomidae, NL, H-layer, PF−L, and PH−L explained 87.2, 79.8, 0.94, 0.90, 0.91, 0.94, 0.94,
0.95, 0.86, 0.82, and 0.76 of the variation in the productivity sites (Fig. 4).

4. Discussion
The soil quality of even-aged A. angustifolia plantations on the highlands of Southern Brazil impacts the
soil biotic and abiotic properties. Our results indicate a promotion in soil organic matter formation (e.g.,
litter, F- and H-layers), plant nutrient release (e.g., total N and Psbe), and fine root production at the litter
and A horizon of high-productivity sites. This can be explained by the high productivity amplitude
observed in A. angustifolia plantations in southern Brazil. While high productive sites and stands are
available, with mean annual increments ~ 25 m³ ha− 1 yr− 1 (Nutto et al. 2005), or even > 30 m³ ha− 1 yr− 1

as was the case for the evaluated one, there are also sites and stands where productivity is negligible by
Brazilian standards (< 10 m³ ha− 1 yr− 1). Unfortunately stands with low productivity are way more
common than highly productive ones. In low-productivity sites, the low cover rate leads to decrease both
the soil organic matter, and nutrient cycling by the exposure of soil to wind and rainfall. This is the reason
for the low commercial interest in t A. angustifolia and why many A. angustifolia plantations were
converted into other land uses. It is important to note that the site quality classification proposed by
Schneider et al. (1992), and employed for the classification of the 530 ha of plantations regarded for
stand selection, shows that the productivity level of A. angustifolia can be even lower than the low-
productivity stand evaluated in the present study (14 m³ ha− 1 yr− 1). On the other hand, the studied high-
productivity site had a dominant height at age of 30 years beyond the values given by Schneider et al.
(1992), indicating that this site delivered an impressive production even beyond those authors’ best
stands. Recent results of A. angustifolia genetic breeding started in the 1970s by EMBRAPA are now
delivering promising perspectives (Silva et al. 2018; Sousa and Aguiar 2012), which will probably be the
genetic base of a new plantation wave. Nevertheless, this new enhanced genetic material will only deliver
its maximum potential if accompanied by a deeper understanding of site quality. Thus, the abiotic and
biotic characterization of the studied sites delivers a wider understanding of which factors are the drivers
for the productivity of A. angustifolia plantations over a long period (30 years), as discussed in detail as
follows. The decrease in soil organic matter formation and nutrient cycling is consistent with the findings
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of previous studies for cultivated tree species in the highland of southern Brazil (Hoogh and Dietrich
1979; EMBRAPA 1988; Horst et al. 2018; Koehler et al. 2010).

As we originally hypothesized, the productivity level of the soil was explained by the biotic and abiotic
properties, which were likely caused by an increase in the soil organic matter formation (e.g., by providing
habitat), plant nutrient release (e.g., by improving N and P contents on litter, F-layer, and H-layer) as
described by Eslamdoust and Sohrabi (2018), which promoted soil biota, arbuscular mycorrhizal fungi,
and soil nematode abundance (Gebremikael et al. 2016; Moreira et al. 2007). However, differently than
hypothesized, a soil depth of ≥ 1 m is not a crucial factor for A. angustifolia or, at least, it could be
compensated for by other soil properties, such as N and P content and soil biota abundance and activity.
Here we presented important evidence on the effects of soil history and quality sites on a variety of
compartments into the soil profile in a long-term subtropical Araucaria ecosystem. Our results support the
evidence that soil quality promotes the formation of layers of organic matter at the intermediate stage of
decomposition (F- and H-layer), and nutrient cycling, which may influence the soil food web. Most of the
variables analyzed in this study (e.g., layers of organic matter, nutrient cycling, and fine roots production)
responded positively to the high-productivity site (Mishra et al. 2019). Productivity level (e.g., high- and
low-productivity sites) was an important variable to understand all studied variables, indicating that site
quality influences the nutrient cycling, fine root production, and soil biota diversity and activity.

Site differences considering soil biodiversity were discussed in previous studies performed around the
world (Bennett and Klironomos 2018; Beretta-Blanco et al. 2019). Our study provided evidence that high-
productivity sites, when compared to low-productivity sites, had the highest values of organic matter
layers, total N, Psbe, fine root production, and soil moisture. Considering all these variables, we may
consider that ecological processes, such as litter deposition, soil organic matter formation, primary
production, and nutrient cycling, were dissimilar between the studied sites, indicating robust associations
regardless of the soil quality on high-productivity sites and land degradation on low-productivity sites
(Bini et al. 2013; Huangfu et al. 2019; Mauda et al. 2018; Roy et al. 2018; Mishra et al. 2019). This
indicates that the abundance of soil biota, arbuscular mycorrhizal fungi, and functional-groups of soil
nematodes might be playing an important role in high-productivity site sustainability (Gebremikael et al.
2016; Souza et al. 2019). The high-productivity site showed a better-quality residue and, consequently, the
cycling of nutrients is faster in this environment, which can influence the productivity of A. angustifolia. In
addition, the higher N and P contents in the monoliths may be due to the greater accumulation of
residues in the high-quality site, since the litter in reforestation of A. angustifolia may be higher than the
litter in native forests of southern Brazil (Bini et al. 2013). The N content in the araucaria residue is 13 g
kg− 1 (Pereira et al. 2013), which can bring about 200 kg of N to the soil per hectare.

Results on the high-productivity site were significant for soil biota abundance (e.g., Formicidae,
Isotomidae, and Termitidae), arbuscular mycorrhizal fungi (e.g., C. claroideum, Funneliformis mosseae,
Glomus sp., and Rhizoglomus intraradices), functional-groups of soil nematodes (e.g., bacterivores,
carnivores, fungivores, herbivores, and omnivores), microbial biomass carbon, and ecological indexes
(e.g., richness and diversity by soil fauna and AMF). These results emphasize the influence of site quality
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on soil biodiversity, which in turn affected productivity levels in a subtropical Araucaria ecosystem
(Gebremikael et al. 2016; Forstall-Sosa et al. 2020; Souza et al. 2019). Essentially, we wanted to
understand how dissimilar sites (e.g., chosen by their productivity levels) promotes the soil food web in a
long-term field experiment, considering a monodominance of Araucaria angustifolia. A pioneer study
considering site quality for A. angustifolia was conducted by Hoogh and Dietrich (1979). These authors
reported that the best growth performance was obtained in soils where A. angustifolia was planted
immediately after the clear-cutting of the native forest. To our knowledge, our study is the first report in a
subtropical Araucaria ecosystem showing the role of nutrient cycling, soil fauna diversity, AMF diversity,
an abundance of soil nematodes, and microbial activity in sustain a positive plant-soil feedback as we
found in the high-productivity site. The significant differences between the studied sites for soil properties
may influence the soil biota community structure and function, consequently altering nutrient cycling and
plant productivity (Jones et al. 2019; Romanowicz et al. 2016). Allied to this, it is also important to
maintain soil moisture, adequate contents of plant-nutrients, and a constant supply of residues promoted
by litter deposition, which is common in the A. angustifolia ecosystem.

The results observed in this study revealed that there were significant differences between the studied
sites on soil biodiversity. Therefore, we may consider that the soil food web of the study sites is
completely different as proposed by Anyango et al. (2020). According to Roy et al. (2018) and Parsons et
al. (2020), soil organisms (e.g., here considering macro- and microbiota) may influence soil health, plant
growth, and litter palatability. These authors also report that litter palatability may attract a high diversity
of soil fauna functional groups (e.g., ecosystem engineers, and decomposers), which in turn may fuel
higher trophic levels (e.g., bacterivores, fungivores, omnivores, and predators). These results agree with
previous works (Beretta-Blanco et al. 2019; Gebremikael et al. 2016; Mauda et al. 2018; Mishra et al.
2019) that reported high litter deposition and rhizodeposition as the main factors increasing nutrient
availability, microbial activity, and abundance of higher tropic levels as observed in the high-productivity
site. By changing these two processes in the rhizosphere of A. angustifolia, a quality site may be
improved over the years, generating high productivity levels because of increased release of plant-
available nutrients (total N, and Psbe). These conditions would be responsible to promote soil nematode
and microbial activity, especially by microbial biomass carbon, as well as microbivorous nematodes (e.g.,
bacterivores and fungivores (Gebremikael et al. 2016; Impastato and Carrington et al. 2020; Jo et al.
2020). Our hypothesis that a high-productivity site presents high biological activity resulting in an
increased release of available nutrients and a concomitant increase in fine roots production in a specific
layer, and plant growth, and thus, creating a positive plant-soil feedback was supported. Overall, soil
fauna community composition in the high-productivity site was characterized by i) a high abundance of
ecosystem engineers (e.g., Termitidae) and predators (e.g., Isotomidae), which give us evidence of sites
with a high degree of bioturbation, organic matter decomposition, and biological control (Forstall-Sosa et
al. 2020; Melo et al. 2019); ii) a low abundance of symbionts (e.g., e.g., Claroideiglomus claroideum,
Funneliformis mosseae, Glomus sp., and Rhizoglomus intraradices) which reflect a high content of plant-
available nutrients, creating an independence of A. angustifolia plants in this site (Souza et al. 2019); and
iii) a high abundance of higher trophic levels of soil nematodes, which indicate that soil nematode
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community are promoting nutrient cycling, plant biomass, net N, and net P (Rosenfield and Müller 2020).
These three characteristics created a positive effect in the trophic structure by promoting some important
ecological processes such as nutrient cycling, biological control, mutualism, parasitism, and soil organic
matter formation (Barel et al. 2019; Cuassolo et al. 2020; Ge et al. 2019; Jo et al. 2020; Zhang et al. 2018).

5. Conclusions
High-productivity sites promote the development of organic horizons (e.g., F- and H-layers), root growth
on superficial layers which provide plant nutrient (e.g., P and N) release, soil chemical properties of the A
horizon (e.g., contents of P and total N) and the entire soil biota community (e.g., abundance, richness,
and diversity) in monospecific Araucaria angustifolia plantations located at humid subtropical
Cambisols.

High-productivity sites are accompanied by high activity of fauna and microorganisms in the soil that
can promote the nutrient cycling process, thus creating positive plant-soil feedback. Future studies could
be carried out to assess which abiotic factors are more important in A. angustifolia plantations at
different crop ages and if microorganisms could be inoculated to seedlings or sites to improve their
productivity level. The results of this study contribute to a deeper view of plant-soil feedback influencing
site quality that, in turn, may improve the interest in establishing new plantations of this endangered tree
species. Besides the commercial and economic motivations, this would be also an important in-situ
conservation strategy.
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Supplementary Material
Electronic supplementary material_1:  Stand characteristics including age (at field measurement of 2016) site

index (SI)  stocking (N), quadratic mean diameter at breast height (dg) dominant diameter at breast height

(d100), dominant height (h100), basal area (G), standing volume (V) and mean annual increment (MAI) in volume.

Productivity

level

Age

Years
SIa N

trees ha-1

dg

cm

d100

cm

h100

m

G
m² ha-1

V
m³ ha-1

MAI
m³ ha-1 yr-1

Low 31 16 2,281 17.7 28.0 14.2 56.6 420.2 13.6

High 30 26 1,488 26.0 40.2 22.0 79.0 922.7 30.9

amplitude 11-51   60-2,560 11-50 17-78 7-23 4-53 19-556 -

a  Site index, the dominant height at an index age of 40 years, according to the classification proposed by

Schneider et al. (1992).
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Figure 1

Mean nematode abundance of each trophic group (A) and microbial biomass carbon (B) at low- and
high-productivity sites

Figure 2
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Productivity site dissimilarities base on soil chemical characteristics (soil organic matter layers, and
nutrient cycling), soil biota and microbiota abundance, microbial C biomass (Cmic) plotted as non-metric
multidimensional scaling (NMDS) of the dataset from low- and high-productivity sites. The productivity
of sites is represented by the following symbols: low = gray triangles; and high = dark triangles. Vector
length and direction represent only probability values less than 0.01 (p < 0.01). A horizon (A-H) = Ratio of
A horizon (%); L = Litter; F-L and H-L = F- and H-layer


