Engineering oxygen vacancies in Na$_2$Ti$_3$O$_7$ for boosting its catalytic performance in MgH$_2$ hydrogen storage

Huanhuan Zhang
Henan Polytechnic University

Qianqian Kong
Henan Polytechnic University

Song Hu
Henan Polytechnic University

Dafeng Zhang
Henan Polytechnic University

Haipeng Chen
Luoyang Normal University

Chunbao (Charles) Xu
Western University

Baojun Li (✉ lbjfcl@zzu.edu.cn)
Zhengzhou University https://orcid.org/0000-0001-8325-3772

Yanping Fan
Henan Polytechnic University

Baozhong Liu
Henan Polytechnic University

Article

Keywords: Oxygen Vacancy, Hydrogen Storage, MgH2, Hydrogen Sorption Kinetics, Catalytic Mechanism.

Posted Date: April 23rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-418385/v1

License: ☁️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Rational design of high-efficiency catalysts plays a critical role in improving the hydrogen storage performances of the MgH$_2$. Herein, flower-like Na$_2$Ti$_3$O$_7$ catalyst with rich oxygen vacancies (Na$_2$Ti$_3$O$_7$-O$_v$) was synthesized from Ti$_3$C$_2$-MXene and demonstrated to remarkably enhance the hydrogen storage of MgH$_2$. Specifically, with an addition of 5 wt.% Na$_2$Ti$_3$O$_7$-O$_v$, the initial dehydrogenation temperature of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ composite reduced substantially from 287 °C (for MgH$_2$) to 183 °C. Moreover, the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ composite exhibited fast hydrogen ab/desorption kinetics and superb reversible hydrogen storage performance with a retention rate of 90.1 % after 10 cycles attributed to the higher structural stability of Na$_2$Ti$_3$O$_7$-O$_v$. Both experimental and theoretical results confirm that the oxygen vacancies in Na$_2$Ti$_3$O$_7$-O$_v$ reduce the reaction activation energy during MgH$_2$ dehydrogenation, hence accounting for the excellent hydrogen sorption kinetics. This work would lead to new design and development of advanced defect-based nano-catalysts for the MgH$_2$ hydrogen storage system.

Introduction

Hydrogen has been commonly considered as a sustainable and clean energy carrier$^{1-3}$. Unfortunately, the efficient and safe storage of hydrogen with high gravimetric and volumetric capacity poses a major economical bottleneck for the emerging hydrogen economy4,5. Solid-state hydrogen storage technology, such as metal hydride6,7, metal-organic frameworks$^{8-10}$, or complex hydrides11, has deemed to be a promising method for hydrogen storage due to its high-volume hydrogen storage capacity, safety, free of high pressure and heat insulation vessels12. Among them, magnesium hydride (MgH$_2$) has been widely regarded as a most promising hydrogen storage material owing to its high gravimetric hydrogen storage capacity (7.6 wt.%), excellent de/rehydrogenation reversibility, low cost, and environmentally friendly$^{13-15}$. However, the sluggish kinetics of hydrogen ab/desorption of MgH$_2$ severely limits the practical application of MgH$_2$ for hydrogen storage$^{16-18}$.

Catalyst doping has proven to be an efficient pathway to enhance the reaction kinetics for hydrogen storage in MgH$_2$ and hence reduce the operating temperatures of the MgH$_2$ hydrogen storage system$^{19-21}$. Among all catalysts investigated, Ti-based materials are commonly recognized as the best-performing ones and have been widely used to improve the hydrogen storage performances of the MgH$_2$ system, via significantly reducing the activation energy of de/ab-hydrogenation of MgH$_2$ while unchanging the enthalpy and entropy in the hydride formation process22. In particular, titanate materials, such as NiTiO$_3$,23 K$_2$Ti$_6$O$_{13}$,24 TiVO$_{3.5}$,25 etc., have attracted more attentions in MgH$_2$ hydrogen storage system. These materials were commonly loaded to MgH$_2$ via a ball-milling process using sacrificial agents that would in situ decompose into catalytic-inert substance. Thus, the rational design of highly efficient catalysts and development of more stable Na$_2$Ti$_3$O$_7$ in the MgH$_2$ hydrogen storage system would play a vital role in the hydrogen storage system.
As evidently demonstrated in the literature, defect engineering is an effective strategy to expose more active sites and tune the structural regularity and band structure of nanostructured catalysts26,27. The defect could function as active sites for the capture of H\textsubscript{2} molecules and the diffusion of H atoms, which would facilitate MgH\textsubscript{2} activation and result in high catalytic performance in hydrogen storage28. Oxygen vacancy on the Ce\textsubscript{6}O\textsubscript{11} surface in the Mg\textsubscript{2}Ni/Ce\textsubscript{6}O\textsubscript{11} composite was reported to be a highly efficient site for trapping H\textsubscript{2} molecules29. However, the correlation between defects and catalyst activity, and the mechanism of the defects in hydrogen storage are still not well understood30,31,32. Therefore, it is highly desirable to elucidate the roles of defects in improving the catalytic performance of the MgH\textsubscript{2} hydrogen storage.

In this work, oxygen vacancy-stabilized material structure was designed and the catalytic behavior in MgH\textsubscript{2} hydrogen storage system was realized without catalyst sacrifice. A flower-like Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} catalyst with rich oxygen vacancies (Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-O\textsubscript{v}) was successfully synthesized from Ti\textsubscript{3}C\textsubscript{2} MXene. Considering the abundance of the active sites on the Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-O\textsubscript{v} catalyst, we attempted to introduce it into the MgH\textsubscript{2} system and systematically investigate the dehydrogenation, rehydrogenation, thermodynamics, and kinetics behaviors of the system. The catalytic dehydrogenation was realized due to the existence of oxygen vacancy Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-O\textsubscript{v} catalyst following an excellent hydrogen storage performance. Moreover, first-principles calculation was also performed so as to reveal the roles of Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-O\textsubscript{v} catalyst in reducing the reaction barrier during the dehydrogenation of MgH\textsubscript{2} and improving its hydrogen storage performances.

Results And Discussion

Preparation and Characterization. As illustrated in Fig. 1a, the Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-O\textsubscript{v} catalyst was synthesized via the acid-etching and hydrothermal reaction method. Specifically, the Ti\textsubscript{3}C\textsubscript{2} MXene was first prepared by HF etching (Fig. S1). Subsequently, the Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-O\textsubscript{v} was obtained by hydrothermally treating the Ti\textsubscript{3}C\textsubscript{2} MXene in a NaOH aqueous solution in the presence of H\textsubscript{2}O\textsubscript{2}. Figure 1b shows the XRD patterns of the as-prepared Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-O\textsubscript{v} and Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} samples. Clearly, these peaks can be well assigned to the monoclinic Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} phase (JCPDS No. 72–0148), which confirms that the treatment did not alter the crystal structure. XPS measurements were performed to investigate the surface chemistry of the fabricated Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-O\textsubscript{v} samples. As illustrated in Fig. S2, a survey-scan spectrum verifies the existence of Na, Ti, and O in the Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-O\textsubscript{v}. In the high-resolution O 1s XPS spectra (Fig. 1c), the peaks at 532.5 eV, 531.0 eV, and 530.2 eV can be attributed to the adsorbed oxygen (O\textsubscript{A}), oxygen vacancy (O\textsubscript{V}), and lattice oxygen (O\textsubscript{L}), respectively33–35. However, in the Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} sample, the oxygens exist dominantly in the form of O\textsubscript{L} (529.9 eV) with a very weak peak of O\textsubscript{V} (530.94 eV)36,37,38. Furthermore, oxygen vacancies were also confirmed by the room-temperature electron paramagnetic resonance (EPR) spectroscopy, as shown in Fig. 1d. In Fig. 1d, a strong symmetrical signal peak can be observed in the Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}-O\textsubscript{v} sample and the
value of g is 2.00339, while there are no obvious peaks in Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}, implying that the electrons should be captured in oxygen vacancies.

SEM image illustrates that the prepared Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} presents a flower-like structure with abundance of nanosheets (Fig. 1e) and high specific surface area, which would hence afford a better catalytic property. TEM image (Fig. 1f) further reveals that the nanosheets are ultrathin. The lattice spacings, 0.298 and 0.558 nm, as determined by the high-resolution TEM images of Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}}, are consistent with (003) and (101) planes of Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} (Fig. 1g), respectively. X-ray dispersive analysis (EDS) confirms that Na, Ti, and O elements are distributed uniformly throughout the flower-like structure (Fig. 1h). For comparison, the Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} with different amounts of oxygen vacancies were synthesized and presented in Fig. S3-S6.

De/re-hydrogenation Kinetics Evaluation. To investigate the catalytic performances of Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} and Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} catalysts in the MgH\textsubscript{2} hydrogen storage system, MgH\textsubscript{2} was mixed with 5 wt.% catalysts employing a high-speed ball-milling system. The resulting composites are denoted as MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} and MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7}, respectively. Firstly, the TPD analysis of these composites was performed. As displayed in Fig. 2a, the initial dehydrogenation temperature of the MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} is 183 °C, significantly lower than that of the MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} (205 °C) and the MgH\textsubscript{2} (287 °C) (Fig. 2b). Impressively, the hydrogen capacity of the MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} (7.3 wt.% and the MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} (7.1 wt.%), almost identical to that of the MgH\textsubscript{2} (7.5 wt.% (Table S1). Obviously, the dehydrogenation capacity of the MgH\textsubscript{2} catalyzed by Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} is lower to Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}}. Thus, the O\textsubscript{v}-assisted Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} catalyst presents a higher dehydrogenation capacity in the MgH\textsubscript{2} hydrogen storage system, which could decrease the dosage of Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} and improve the utilization efficiency of MgH\textsubscript{2}. Synchronously, the TPD curves and hydrogen capacity of Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7} with different oxygen vacancy amounts were tested and are shown in Fig. S7 and Table S1. The isothermal dehydrogenation profiles of the MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} at different temperatures are shown in Fig. 2c. It can be found that the MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} composite can release 6.9 wt.% hydrogen within 14.0, 6.5, 3.5, and 2.0 min at 220, 240, 260, and 280 °C, respectively. Even at a low temperature of 200 °C, 4.0 wt.% hydrogen could be released from the MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}}. By contrast, the pure MgH\textsubscript{2} exhibited a sluggish de/re-hydrogenation rate even at a high temperature of 300 °C (Fig. S8).

To explore the kinetics of hydrogen absorption, the isothermal rehydrogenation of the dehydrogenated MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} were examined at different temperatures (Fig. 2d). As clearly shown in the figure, the MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} reached the maximum hydrogen absorption within 2 min at 200 °C, while it took 10 and 20 min at 150 and 100 °C, respectively. Even when the temperature reduced to 50 °C, the dehydrogenated MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} could absorb 3.6 wt.% hydrogen. As well known, the cycling stability is one of the key crucial parameters for practical application of hydrogen storage materials. To examine the stability of our samples, the cycle durability of the MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} was performed at 280 °C under 2.2 MPa for hydrogen release and at 200 °C for hydrogen absorption. As shown in Fig. 2e, the MgH\textsubscript{2} + 5Na\textsubscript{2}Ti\textsubscript{3}O\textsubscript{7-O\textsubscript{v}} exhibited an excellent reversibility of hydrogen. Specifically, the hydrogen...
release capacity of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ remained 90.1 % of the original capacity even after 10 cycles (Fig. 2f).

Furthermore, the impact of the Na$_2$Ti$_3$O$_7$-O$_v$ catalyst on the dehydrogenation kinetics of MgH$_2$ was also explored at different heating rates (5, 10, 20, and 40 °C min$^{-1}$). As shown in Fig. S9a and S9b, the decomposition temperature of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ is significantly lower than that of the pure MgH$_2$ at the same heating rate, which is consistent with the analysis results of TPD. The activation energies (E_a) were calculated in accordance to the method as reported in the literature from the slope of Kissinger plots as illustrated in Fig. 2g for both the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ and pure MgH$_2$. The E_a of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ was calculated to be 108.16 kJ mol$^{-1}$, which is much lower than that of the pure MgH$_2$ (175.34 kJ mol$^{-1}$), indicating obvious catalytic effect of the Na$_2$Ti$_3$O$_7$-O$_v$ added to the MgH$_2$. To the best of our knowledge, the hydrogen storage performances of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ composite are superior to those of the Ti-based MgH$_2$ systems reported in the literature (Table S2).

To investigate the kinetic mechanism of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ system, the normalized isothermal dehydrogenation curves were obtained at 240, 260, and 280°C with the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$, as presented in Fig. S9c. It was observed that the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ released 90 % hydrogen at 240°C, and it only took 0.80, 1.45, and 3.04 min to reach 50 % of the dehydrogenation capacity at 280, 260, and 240°C, respectively. Subsequently, the dehydrogenation dynamics were investigated according to the nine kinetic models proposed in our previous report. It should be noted that $f(\alpha) = A(t/t_{0.5})$, where $t_{0.5}$ is the time when $\alpha = 0.5$ and A is a constant depending on the kinetic model, and $f(\alpha)$ is a term for the reaction rate depending on the reaction mechanism. Plotting the value of $(t/t_{0.5})_{\text{exp}}$ against the $(t/t_{0.5})_{\text{the value of the R2 model led to good linear lines with slopes close to 1 for the MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v$ at 280°C (Fig. 2h). Based on Jone’s investigation, we propose that the hydrogen desorption of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ involves phase-boundary-controlled reactions with a nucleation step occurring virtually instantaneously. Moreover, from the time dependence of kinetic modeling equations $f(\alpha)$ for the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ at 240, 260, and 280°C, one can observe that all values of R^2 are greater than 0.98 (Fig. 2i), which confirms the time dependence of the R2 model equation at different temperatures and also suggests the optimal dynamic performance of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ in hydrogen ab/desorption.

The thermodynamic properties were investigated by the Pressure-Composition-Isotherm (PCT) measurement technology. As shown in Fig. S10a, the equilibrium pressures of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ are 1.997, 3.006, and 5.370 bar at 280, 300, and 320 °C, respectively. Furthermore, Van’t Hoff plots (Fig. S10b) were fitted to calculate the decomposition enthalpy change (ΔH) of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$. As shown, the ΔH value of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ was calculated as 67.30 ± 8.09 kJ mol$^{-1}$, which is close to the reported literature. This result confirms that the impact of the addition of Na$_2$Ti$_3$O$_7$-O$_v$ on the thermodynamic behavior of MgH$_2$ is minimal.
Hydrogen Storage Mechanism and DFT Analysis. To investigate the catalytic mechanism, XRD, SEM, and TEM measurements of the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) composite in different states (pristine, dehydrogenated, and rehydrogenated) were carried out. As shown in Fig. 3a, MgH\(_2\) is the main phase in the pristine and the rehydrogenated \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) samples. After dehydrogenation, MgH\(_2\) is completely converted into Mg. Furthermore, XPS results indicate that O\(_v\) vacancies are present in the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) in all three different states. It is worth noting that the peaks of O\(_v\) (530.5 eV) for the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) show a negative shift compared with that of \(\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \), likely caused by the mechanical milling. The SEM image and EDS mapping of the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) after dehydrogenation are presented in Fig. 3c, clearly illustrating that Mg, Na, Ti, and O elements are homogeneously distributed. Moreover, the TEM and high-resolution TEM images confirm that the \(\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) catalyst can stably exist in the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) in different states, which demonstrates the high stability of the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) system (Fig. 3d-f and Fig. S11).

DFT calculations were employed to elucidate the roles of \(\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) in catalytic dehydrogenation of \(\text{MgH}_2\). The (101) plane of \(\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) was constructed by DFT calculations. Since the (101) plane in \(\text{Na}_2\text{Ti}_3\text{O}_7 \) has multiple divulged oxygen and the oxygen can easily form hydroxyl with hydrogen, the surface oxygen is removed in this \(\text{O}_v \) calculation model, which can keep consistent with the actual experimental situations.

As shown in Fig. 4a, Fig. S12, Table S3, the bonding lengths of Mg-H at the Na-Ti site of the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) (3.241 Å) is the longest among those at all sites examined (Na, Ti, O and Na-Ti sites), and 0.23 Å longer than that of in the \(\text{Na}_2\text{Ti}_3\text{O}_7 \) (101) (3.011 Å). Such a long bond length is easy to break, thereby improving the hydrogen storage performances. Moreover, the Na-Ti site in the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) exhibits much larger adsorption energy (\(E_{\text{ads}} = -1.379 \text{ eV} \)) than that of the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7 \) (\(E_{\text{ads}} = -0.155 \text{ eV} \)), indicating that the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) presents stronger adsorption of hydrogen toward MgH\(_2\) than that of the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7 \). The optimal adsorption structures for MgH\(_2\) molecule at the Na-Ti active sites of the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) and MgH\(_2\) + \(5\text{Na}_2\text{Ti}_3\text{O}_7 \) with different adsorption sites are presented in Fig. 4b and Fig. S13-S14.

Furthermore, the energy profiles of dissociation and decomposition of MgH\(_2\) molecule on the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) and MgH\(_2\) + \(5\text{Na}_2\text{Ti}_3\text{O}_7 \) composites were also calculated and are presented in Fig. 4c and Fig. S15, respectively. MgH\(_2\) is firstly adsorbed on the catalyst surface to form an adsorbed species: MgH\(_2^*\). Subsequently, the Mg-H bond in MgH\(_2^*\) dissociates into Mg\(^*\) and H\(^*\). Finally, H\(_2\) is produced by combing two H\(^*\). Clearly, the transition from the initial MgH\(_2\) to TS1 is a rate-limiting step (RLS), where the Gibbs free energy (\(\triangle G \)) value of the RLS in the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) was calculated as 0.501 eV, significantly lower than that of the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7 \) (\(\triangle G = 0.785 \), Table S4), which suggests that the \(\text{Na}_2\text{Ti}_3\text{O}_7\text{-O}_v \) in the \(\text{MgH}_2 + 5\text{Na}_2\text{Ti}_3\text{O}_7 \) composite would contribute to a substantial reduction of the reaction barrier during the dehydrogenation of MgH\(_2\) and hence result in greatly improved hydrogen
storage performances. The corresponding schematic diagram is presented in Fig. S16. These results show that Na$_2$Ti$_3$O$_7$ has a higher catalytic effect on MgH$_2$ dissociation. The bonding lengths of Mg-H of MgH$_2$ molecule and the corresponding adsorption energy (E_{ad}) on the different adsorption site of Na$_2$Ti$_3$O$_7$ (101)-O$_{1v}$ were also calculated. As expected, the results indicate that O$_v$ shows less desorption barrier than O$_{1v}$ (Table S5). Additionally, the ΔG of MgH$_2$ dissociation on the Na$_2$Ti$_3$O$_7$-O$_v$ (101) surface (0.501 eV) is also lower than that on Ti (110) surface (0.529 eV) and more detailed results are shown in Fig. S17-S20 and Table S6. Armed with the above results, it can be concluded that Na$_2$Ti$_3$O$_7$ derived through defect-engineered strategy can efficiently boost the hydrogen storage performance of MgH$_2$.41,42

Conclusions

In summary, the catalytic dehydrogenation was designed and realized on oxygen vacancy-engineered Na$_2$Ti$_3$O$_7$ catalysts with greatly improved catalytic performances in MgH$_2$ hydrogen storage system. A flower-like Na$_2$Ti$_3$O$_7$ catalyst with rich oxygen vacancy was successfully synthesized via a facile method. Experimental and DFT theoretical calculations confirm that the oxygen vacancies on the Na$_2$Ti$_3$O$_7$ catalyst can enhance hydrogen storage performances via reducing the Gibbs free energy of MgH$_2$ dehydrogenation, reducing the initial dehydrogenation temperature of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ composite to 183 °C, which is significantly lower than that of the MgH$_2$ (287 °C). Moreover, the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$ composite exhibits fast kinetics of hydrogen ab/desorption and superb reversible hydrogen storage performance with a retention rate of 90.1 % after 10 cycles. This work provides a promising strategy for designing highly efficient catalysts for hydrogen storage materials.

Methods

Synthesis of Ti$_3$C$_2$. First, Ti$_3$AlC$_2$ powders were synthesized according to our previous report.[20] Specifically, 1.0 g Ti$_3$AlC$_2$ was slowly added into 20 mL of 49 wt.% hydrofluoric acid (HF) solution under magnetic stirring at 500 rpm. Subsequently, the above solution was stirred at 60°C in an oil bath under a constant speed. After 24 h, the sample was washed with deionized water until the liquid supernatant reaching neutral. Finally, the Ti$_3$C$_2$ MXene was obtained by ultrasonic treatment with ice water for 2 h under Ar atmosphere.

Synthesis of Na$_2$Ti$_3$O$_7$-O$_v$. Na$_2$Ti$_3$O$_7$-O$_v$ was synthesized using a hydrothermal method. Specifically, 50 mg of Ti$_3$C$_2$ was added into a mixed solution containing 30 mL of 1 M NaOH and 0.68 mL of 30 % H$_2$O$_2$ solution following by magnetic stirring for 1 hours. Subsequently, the resulting solution was transferred into a 50 mL Teflon-lined stainless steel autoclave and heated at 180°C for 12 h. Then, the reaction products were washed repeatedly with deionized water and ethyl alcohol. Finally, the Na$_2$Ti$_3$O$_7$-O$_v$ catalyst was obtained via drying in air in an oven at 60°C for 12 h. For comparison, Na$_2$Ti$_3$O$_7$ with different amounts of oxygen vacancies were synthesized by changing the hydrothermal reaction temperature to 160 and 200°C. They are denoted as Na$_2$Ti$_3$O$_7$-O$_v$-160 and Na$_2$Ti$_3$O$_7$-O$_v$-200, respectively.
Additionally, Na$_2$Ti$_3$O$_7$ was also prepared by removing the oxygen vacancies in Na$_2$Ti$_3$O$_7$-O$_v$ by heat treatment at 300°C for 5 h in an air atmosphere.

Synthesis of composite of MgH$_2$ + 5 wt.% and Na$_2$Ti$_3$O$_7$-O$_v$. The composite of MgH$_2$ + 5 wt.% Na$_2$Ti$_3$O$_7$-O$_v$ (denote as MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$) was prepared by high-speed ball-milling the mixture (95 wt.% commercial MgH$_2$ + 5 wt.% Na$_2$Ti$_3$O$_7$-O$_v$) at 500 rpm for 12 h under 1.5 MPa H$_2$ atmosphere. The ball-to-powder ratio was optimized as 60:1. To avoid the friction heat occurring during the ball milling, the ball mill travel and resting time were carefully controlled. Similarly, the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$-160 and MgH$_2$ + 5Na$_2$Ti$_3$O$_7$-O$_v$-200 composites and pure MgH$_2$ were prepared by the same method as described above. All the experimental processes were handled in an Ar-filled glovebox, and the concentrations of H$_2$O and O$_2$ were below 0.1 ppm.

Physical Characterization. The phase compositions of samples were analyzed using X-ray diffraction (XRD, Smart-lab Rigaku) with Cu-K$_\alpha$ radiation (40 kV, 40 mA). An air-sensitive samples holder (Rigaku) covered by an airtight hood accompanying in a glove box was employed to prevent contact with air moisture and oxygen. The morphologies of materials were studied on a scanning electron microscope (SEM, Zeiss Supra 50 VP) and a transmission electron microscope (TEM, JEM-2100). X-ray photoelectron spectra (XPS) were collected on a PHI quantera SXM spectrometer with a monochromatic Al K$_\alpha$ X-ray source (1486.60 eV). The reference C1s peak (284.8 eV) was used to calibrate the binding energies. Raman spectra were recorded on a Renishaw-in via using a 532 nm laser. Differential scanning calorimetry (DSC, STDQ600) measurements were implemented to analyze the decomposition activation energy, where the sample was heated from room temperature to 500°C in 50 mL min$^{-1}$ Ar flow at a heating rate of 5, 10, 20, and 40°C min$^{-1}$, respectively.

De/re-hydrogenation performances. The de/re-hydrogenation behavior and temperature-programmed desorption (TPD) were measured by a Sieverts’ apparatus (purchased from Zhejiang University). In a typical test, 0.1 g of the MgH$_2$ + 5Na$_2$Ti$_3$O$_7$ composite was loaded into a stainless-steel tube reactor and all the operations were performed in a vacuum glove box. During the TPD experiment, the sample was heated from ambient temperature to 350°C at a heating rate of 3°C min$^{-1}$. In isothermal experiments, under constant hydrogen pressure of 2.2 MPa the samples were heated to the desired temperature and maintained at the temperature during the following tests.

Declarations

Data availability

All data are available from the authors, please refer to author contributions for specific data sets. Source data are provided as a Source Data file. Source data are provided with this paper.

Acknowledgment
This research is financially supported by the National Natural Science Foundation of China (52071135, 51871090, U1804135, 51671080 and 21805071), Plan for Scientific Innovation Talent of Henan Province (194200510019) and Key Project of Educational Commission of Henan Province (19A150025) as well as the Program of Processing and Efficient Utilization of Biomass Resources of Henan Center for Outstanding Overseas Scientists (GZS2018004).

Author contributions

Prof. B.L., Prof. B.L., H.Z., Q.K., and Prof. Y.F. initiated the project and conceived the experiments. Prof. B.L., Prof. B.L., H.Z., and Q.K., performed the synthesis, characterization and testing of the catalyst. H.Z., Q.K., S. H., D.Z., and H.C. carried out all the experiments and data analysis. H.Z., Q.K. wrote the manuscript together with Prof. B.L., Prof. B.L., Prof. C.X., and Prof. Y.F. gave guidance on the language logic part of the manuscript. All the authors contributed to and commented on this paper.

Competing interests

The authors declare no competing interest.

Additional information

Supplementary information is available for this paper at

Correspondence and requests for materials should be addressed to B.L.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

Figures
Figure 1

The morphology and structure characterizations of Na2Ti3O7-Ov: (a) Schematic illustration of the material process; (b) XRD patterns; (c) High-resolution O 1s XPS spectra; (d) EPR spectra; (e) SEM image; (f, g) TEM images; (h) High-resolution SEM image; (i) SEM image and the corresponding EDS mapping.
Figure 2

Hydrogen storage performance characterizations of MgH2 in the presence of Na2Ti3O7-Ov and Na2Ti3O7 catalysts: (a) TPD curves; (b) The onset of dehydrogenation temperature histogram comparison plots; (c) Isothermal dehydrogenation profiles of the MgH2 + 5Na2Ti3O7-Ov; (d) Isothermal hydrogenation profiles at different temperatures of the dehydrogenated MgH2 + 5Na2Ti3O7-Ov; (e, f) Cycle performance of the dehydrogenation (280 °C) under 2.2 MPa and the corresponding hydrogen content and capacity retention rate for the MgH2 + 5Na2Ti3O7-Ov; (g) Kissinger plots of the MgH2 + 5Na2Ti3O7-Ov and the pure MgH2; (h) (t/t0.5)theo vs (t/t0.5)exp of the MgH2 + 5Na2Ti3O7-Ov at 280 °C for various kinetic models; (i) Time dependence of kinetic model equations f(α) for the MgH2 + 5Na2Ti3O7-Ov at different temperatures.
Figure 3

Morphology and structure characterizations of the MgH2+5Na2Ti3O7-Ov composite in different states: (a) XRD patterns; (b) High-resolution XPS spectra; (c) SEM image and EDS mapping of the MgH2 + 5Na2Ti3O7-Ov after dehydrogenation. HRTEM images of the (d) pristine, (e) dehydrogenated, and (f) rehydrogenated MgH2 + 5Na2Ti3O7-Ov composite.
Figure 4

DFT calculations: (a) The adsorption energy (Eads) and bond lengths of Mg-H at different active sites on the MgH2 + 5Na2Ti3O7-Ov (101) surface; (b) the optimal adsorption structures for MgH2 molecule at the Na-Ti active sites; (c) The energy profiles of the dissociation and decomposition of MgH2 molecule on the MgH2 + Na2Ti3O7 and MgH2 + Na2Ti3O7-Ov composites as well as the corresponding model structures.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
• FinalSMCommunicationsMaterials.doc
• GraphicAbstract.pdf