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ABSTRACT 

Background: As of November 12, 2020, the mortality to incidence ratio (MIR) of COVID-19 

was 5.8% in the US. We utilized a longitudinal model-based clustering system based on the 

disease trajectories over time. We aimed to find the so-�F�D�O�O�H�G�� �³�Y�X�O�Q�H�U�D�E�O�H�´�� �F�O�X�V�W�H�U�� �R�I�� �F�R�X�Q�W�L�H�V��

where to dedicate additional resources by the US policymakers.    

Methods: County-level COVID-19 cases and deaths (Mar-Nov 2020), and a set of potential risk 

factors were collected for 3050 U.S. counties during the 1st wave (Mar25-Jun3, 2020), 1344 

counties (sunbelt region) during the 2nd wave (Jun4-Sep2, 2020), and 1055 counties (great 

plains) during the 3rd wave (Sep3-Nov12, 2020). We used growth mixture models to identify 

clusters of counties exhibiting similar COVID-19 MIR growth trajectories and risk-factors over 

time.  

Results: We identified the so-�F�D�O�O�H�G���³�P�R�U�H���Y�X�O�Q�H�U�D�E�O�H�´���F�O�X�V�W�H�U�V during the 1st, 2nd and 3rd waves 

of COVID-19. Tuberculosis (OR=1.3-2.1-3.2), drug use disorder (OR=1.1), hepatitis (OR=13.1), 

HIV/AIDS (OR=2.3), cardiomyopathy and myocarditis (OR=1.3), diabetes (OR=1.2), 

mesothelioma (OR=9.3) were significantly associated with increased odds of being in a more 

vulnerable cluster. Heart complications and cancer were the main risk factors increasing the 

COVID-19 MIR (range: 0.08%-0.5�������0�,�5�9���� 

Conclusion: We identified the so-�F�D�O�O�H�G�� �³�P�R�U�H�� �Y�X�O�Q�H�U�D�E�O�H�´ county-clusters exhibiting the 

highest COVID-19 MIR trajectories, indicating that enhancing the capacity and access to 

healthcare resources would be key to successfully manage COVID-19 in these clusters. These 

findings provide insights for public health policymakers on the groups of people and locations 

they need to pay particular attention while managing the COVID-19 epidemic. 

 

Keywords: COVID-19, Mortality to Incidence, County-level clustering, Longitudinal study, 

Latent Growth Model, Comorbidities 
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1 INTRODUCTION 

As of Nov 2020, the total number of confirmed COVID-19 (caused by the SARS-CoV-2 virus) 

cases and death worldwide were 50 676 072 and 1 261 075, respectively. COVID-19 was first 

discovered in Wuhan, China, on December 31, 2019. The outbreak of the disease was declared 

on Jan 30, 2020, and eventually was declared as a pandemic by World Health Organization 

(WHO) on Mar 11, 2020[1]. Shortly after, few countries, most notably Iran and Italy, experienced 

a significant increase in the number of confirmed cases and deaths[1]. 

  

As of Nov 2020, the total number of confirmed COVID-19 cases and death in the United States 

were 9 913 553 and 237 037, respectively. Mortality rate (MR) was 71.7 per 100 000 population, 

and mortality to incidence ratio was 2.4%, i.e., 2.4% of the COVID-19 confirmed cases 

experienced death as the outcome (U.S. population on Nov 2020 was 330.57 million) 

(https://usafacts.org). Within the United States, according to the Center for Disease Control and 

Prevention (CDC) report, the maximum number of confirmed cases and death were reported in 

Queens County in New York state and King County in Washington state, respectively. The first 

COVID-19 case in the United States was confirmed on Jan 19, 2020, in Washington State. After 

that, New York City became one of the epicenters of the disease spread. On Mar 17, 2020, all 

fifty states across the United States had at least one confirmed case of COVID-19. On Mar 26, 

2020, the United States became the leading country in the number of COVID-19 cases 

worldwide, replacing Italy that was previously in the lead of COVID-19 cases (Center for 

Infectious Disease Research and Policy, 2020, https://www.cidrap.umn.edu/). 

 

Studies have reported multiple risk factors mainly categorized into three groups: (1) 

comorbidities (including chronic lung disease, heart diseases, diabetes, cancer, and chronic liver 

disease), (2) demographics & social factors (including age, gender, ethnicity, and smoking 

status), and (3) environmental factors (including temperature, humidity, and air pollution). 

Understanding the associated risk factors can aid in future healthcare planning on where to 

dedicate additional and subject-specific resources for vulnerable people/areas. Despite numerous 

claims in the literature of the significant role that pre-existing conditions play, the studies to date 

are not conclusive given the fast-changing landscape of data and the current understanding of the 

disease. Moreover, to the best of our knowledge, longitudinal model-based clustering using the 

disease mortality pattern over time has not yet been considered in the published studies. Hence, 

https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://www.cidrap.umn.edu/
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this study using an appropriate modeling framework contributes to the literature by finding 

relevant clusters considering disease growth trajectories. To this end, we first determined the 

county-level risk factors of COVID-19 MIR in the United States using a longitudinal generalized 

estimating equations (GEE) model. Next, we trained a latent growth mixture model (LGMM) to 

cluster the U.S. counties and to identify significant risk factors for each cluster separately. This 

longitudinal model-based clustering approach enables us to incorporate the possible 

heterogeneity of COVID-19 MIR growth trajectories present due to the previously mentioned 

factors. Note that such heterogeneity is not accounted in other simpler but widely used models, 

such as the SIR (susceptible, infected, and recovered) model. Our methodology enables us to 

cluster different counties into distinctive subpopulations based on their similarities in COVID-19 

patterns over time (Mar 25-Nov 12, 2020).  

 

The proposed methodology aids in understanding the evolution of COVID-19 disease 

transmission and severity by examining MIR and developing a model-based clustering system 

that takes into consideration both the disease pattern over time and the pre-existing risk factors. 

Identifying the disease-specific clusters (vulnerable communities) and risk factors provides 

insights for public health policymakers on the groups of people and locations they need to pay 

particular attention while managing the COVID-19 epidemic. It can aid in future healthcare 

planning on where to dedicate additional resources by identifying clusters of communities 

�³�Y�X�O�Q�H�U�D�E�O�H�´�� �W�R�� �W�K�H�� �G�L�V�H�D�V�H�� Finally, the methodology is readily applicable to other countries if 

similar granularity data are available.   

 

We reviewed the primarily published evidence reporting associations between the risk mentioned 

above factors and COVID-19 incidence, mortality, and severity. We consider more severely 

impacted patients from COVID-19, those in need of requiring oxygen, hospitalization, or 

ventilation. Here we include part of the literature review. A full literature review is available in 

the Supplementary Materials.   

 

Comorbidities: 

Chronic lung diseases, CLD: COVID-19 is an acute respiratory disease that primarily affects 

the pulmonary alveolar epithelial cells, which can lead to respiratory failure and death[2]. There 

are different hypotheses about whether people with pre-existing CLD (especially chronic 
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obstructive pulmonary disease, COPD) would be at a higher risk of infection with the SARS-

CoV-2 virus and representing more severe symptoms than others. 

Halpin et al. showed that the CLD prevalence among COVID-19 cases was less than the general 

population's estimated prevalence[3]. In a study from Italy (Mar 23, 2020), COPD was not 

reported for any of the patients who died from COVID-19 (n=355, mean-age=79.5)[4]. Similarly, 

in data in the USA (Mar 31, 2020), chronic respiratory diseases were comorbidities in 8.5% of 

patients with COVID-19, compare to the GBD estimate of 11.3% for the same disease[5]. Several 

published studies show the synergistic effect of CLD in worsening the severity of COVID-19[6-

10]. Guan et al. reported that more than 50% of chronic pulmonary disease for COVID-19 

patients admitted to the ICU[11]. In a meta-analysis study on both Chinese- and English-language 

published articles, Zhao et al. showed that pre-existing COPD was significantly associated with a 

nearly 4-fold higher risk of developing severe COVID-19. The association remained significant 

in the subgroup of patients with death or ICU-required patients[7]. Moreover, in large case-series, 

they reported a higher prevalence of COPD in patients with severe presentation and worse 

outcomes[8]. In another meta-analysis (May 1, 2020), the reported prevalence of COPD patients 

was 2% in COVID-19 cases. They showed that although the COPD prevalence was low, it was 

significantly associated with a higher risk of more severe COVID-19 (63%) and higher mortality 

(60%)[12]. Brake et al. reported higher (upregulated) expression of the angiotensin-converting 

enzyme 2 (ACE2) in resected lung tissue from COPD patients compared to those with healthy 

lung function[9]. Some published evidence also indicates higher ACE2 expression in smokers 

compared to never smokers, which suggests that smokers can be more susceptible to infection by 

the SARS-CoV-2 virus[9, 10]. 

It is necessary to put all these findings into context and consider that people with CLD, 

especially past or current smokers, are more likely to have immune dysregulation. Therefore, 

these groups of people can be at higher risk of developing more severe symptoms out of a simple 

upper respiratory infection (similar to Bhat et al. suggestion[13]).  

 

Cardiovascular disease, CVD: In addition to respiratory complications, published studies are 

showing the impact of pre-exist CVDs on developing COVID-19 and on worsening its severity 

and clinical outcomes. Hendren et al. showed that COVID-19 might cause myocarditis-like 

syndrome and acute myocardial injury associated with reduced left ventricular ejection fraction 

(LVEF), which can also be complicated by heart failure[14]. A different analysis in China showed 
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that 8%-20% of the patients hospitalized with COVID-19 had abnormal cardiac troponin I (cTnI) 

who were also older and had more comorbid diseases[15, 16]. There is also published literature (not 

fully proven, though) showing that SARS-CoV-2 can infect fibroblasts and cardiomyocytes via 

the ACE2-pathway causing myocardial injury[17-21]. Moreover, it is shown that patients with viral 

myocarditis, which commonly follows by chest pain, can mimic a ventricular arrhythmia or 

coronary syndrome[22, 23]. Historically, research has shown a significant increase in SARS 

patients' mortality with pre-existing CVD[24-29].  

 

Demographic & Social Factors: 

Age: People 65 years of age and older are at significantly higher risk of experiencing COVID-19 

or hospitalization and death, especially if they have pre-existing comorbidities such as CVD, 

DM, CLD, Hypertensive heart disease, and obesity[30, 31]. Ferguson et al. reported that 27%-71% 

of patients older than 60 years needed special care in an ICU with an infection fatality rate of 

about 2%-9.5%[32, 33]. Stang et al. discussed a potential bias in age-significance in COVID-19 

patients due to overestimation caused by the limited testing capacity to more symptomatic 

patients. They showed that the fatality rate from COVID-19 started increasing after the age of 60 

years in Italy, Spain, and the USA[34, 35]. There is also a study on children with a median age of 7 

years in China (April 1, 2020) in which most of the cases were male (not significant, though) 

with mild symptoms[36]. 

Although, there is still not enough evidence and/or data to confirm whether this increase in 

mortality is directly related to age or other comorbidities that are not considered yet in the 

analysis.  

 

Gender: Most evidence suggests that men are infected at a higher rate than women by COVID-

19 and exhibit a higher mortality rate. However, most studies showed no significant differences 

in infection and mortality between men and women in COVID-19 cases[2, 37]. Wenham et al. 

indicated that although an equal number of male and female COVID-19 cases was observed, MR 

is different by gender. Wenham et al. also suggested that women can be at high risk of getting 

infected since they have more front-line interaction with communities and provide more informal 

care within families besides their physical and cultural differences[38, 39]. 

Further, selected studies report significantly different gender-distributions between male and 

female COVID-19 cases. For example, Zhao Y et al., using single-cell data, reported that ACE2 
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was upregulated in Asian males compared to women and other ethnicities, which may lead to 

more severe incidents of COVID-19[10, 40, 41].  

 

Environmental Factors: 

Air pollution: Exposure to air pollution and particulate matter (PM) can have a positive 

association with increased risk of certain viral respiratory diseases such as influenza and SARS 

pandemic 2003. Studies show that exposure to PM increased the MR from 2009 H1N1 and 

Spanish influenza[42-45]. Air pollution is also linked to cellular damage, inflammation, CVD, and 

CLD, which are potential comorbidities associated with COVID-19 severity[42, 46-48]. Ye et al. 

showed that air pollution could also play a role in infectious disease transmission, although it has 

not been studied for COVID-19 as of May 15, 2020[49].  

Wu et al. and Mollalo et al., in nationwide studies in the USA, showed that exposure to PM 

increased COVID-19 mortality and severity[42, 50, 51]. Setti et al. reported a significant relationship 

between PM and experiencing COVID-19 in Italy (Jan 1, 2020)[52].  

A number of studies did not confirm the association between air pollution and COVID-19 

severity, mortality, and transmission. However, they agreed that since exposure to air pollution, 

and PM has a link with other complications, there can be a risk factor in increasing COVID-19 

MR and disease severity[53-56].  

 

2 METHODS 

Data resources 

We collected county-level cumulative COVID-19 confirmed cases and death from Mar 25 to 

Nov 12, 2020, across the contiguous United States from USAFacts (usafacts.org). We considered 

Mar �������W�R���-�X�Q�������D�V���W�K�H���³��st �Z�D�Y�H�´�����-�X�Q�������W�R���6�H�S�������D�V���W�K�H���³��nd �Z�D�Y�H�´�����D�Q�G���6�H�S�������W�R���1�R�Y���������D�V���W�K�H��

�³��rd �Z�D�Y�H�´ of COVID-19. For the 2nd and 3rd waves, we analyzed the targeted counties in the 

sunbelt region (including AL, AZ, AR, CA, FL, GA, KS, LA, MS, NV, NM, NC, OK, SC, TX, 

TN, and UT states) and great plains region (including IA, IL, IN, KS, MI, MO, MN, ND, NE, 

OH, SD, and WI states), respectively. MIR, as a proxy for survival rate, is calculated by dividing 

the number of confirmed deaths in each county by the confirmed cases in the same county at the 

same time-period multiplied by 100. MIR ranges from 0%-100%, 100% indicating the worst 

situation where all confirmed cases have died. 

 

http://www.usafacts.org/
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Thirty-eight potential risk factors (covariates), including county-level MR of comorbidities & 

disorders, demographics & social factors, and environmental factors, were retrieved from the 

University of Washington Global Health Data Exchange (http://ghdx.healthdata.org/us-data). 

Comorbidities and disorders include CVD, cardiomyopathy and myocarditis and myocarditis, 

hypertensive heart disease, peripheral vascular disease, atrial fibrillation, cerebrovascular 

disease, diabetes, hepatitis, HIV/AIDS, tuberculosis (TB), lower respiratory infection, interstitial 

lung disease and pulmonary sarcoidosis, asthma, COPD, ischemia, mesothelioma, tracheal 

cancer, leukemia, pancreatic cancer, rheumatic disease, drug use disorder, and alcohol use 

disorder. Demographics & social factors include age, female African American%, female white 

American%, male African American%, male white American%, Asian%, smokers%, 

unemployed%, income rate, food insecurity, fair/poor health,  and uninsured%. Environmental 

factors include county population density, air quality index (AQI), temperature, and PM. A 

descriptive table, including all potential risk factors, is provided in Table S1).  

 

Analysis (descriptive methods and models) 

We first  provide summary statistics for COVID-19 data for the period under consideration. Full 

descriptive statistics for n=38 potential risk factors are provided in Table S1 in the 

Supplementary Materials.  

 

Second, we applied GEE marginal approaches to model the COVID-19 MIR over time and 

found significant risk factors. To this end, we first used the forward-selection method to select 

the most relevant risk factors (covariates) among the covariates using univariate GEE models[57], 

as follows: 

 

�Õ
�Ö
�Ô

�Ö
�Ó�ä�Ü�Ý

�:�5�;L �Ú�4 E �Ú�5�6�E�I�A E �Ú�6�:�5�;�: �:�5�;����������������

�ä�Ü�Ý
�:�6�;L �Ú�4 E �Ú�5�6�E�I�A E �Ú�6�:�6�;���:�:�6�;��������������

���������������
�ä�Ü�Ý

�:�7�<�; L �Ú�4 E �Ú�5�6�E�I�A E �Ú�6�:�7�<�;���:�:�7�<�;��
��

�á �E L �s�á �å �+���:�?�K�Q�J�P�E�A�O�;�â �������F L �s�á �å �á �,���:�S�A�A�G�O�;�ä (1) 

where �ä�Ü�Ý indicates the mean COVID-19 MIR for the �E�ç�Û county in week �F�ç�Û, �Ú�4 is the starting 

rate of MIR before considering the effect of any potential risk factor (intercept), �Ú�5 and �Ú�6s are 

the effects of time and risk factors �:  (such as Asthma) on the COVID-19 MIR. For variable 

selection purposes, we chose variables with (univariate) P-value<0.2 to be included in the final 

multivariate GEE model, as follows: 

https://nam11.safelinks.protection.outlook.com/?url=http%3A%2F%2Fghdx.healthdata.org%2Fus-data&data=02%7C01%7Ckrivera19%40bw.edu%7C48ace4e1e5d84b7a3c6f08d7ee14b1c9%7C3a9a104352cb404ebc8dcb2b5a92d3bc%7C1%7C0%7C637239644967196814&sdata=98X8vnTXFfiAVZJojexf5fFOFkOrqOQRSc2PK62f6Zw%3D&reserved=0
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 �ä�Ü�ÝL �Ù�4 E Í �Ù �ã�: �ã

�á�-

�ã�@�5

�á (2) 

where �ä�Ü�Ý indicates the overall marginal mean MIR for the �E�ç�Û county in the �F�ç�Û week. �Ù�4 is the 

intercept and �Ù�ã is the coefficient of the �L�ç�Û potential risk factor (�: �ã), �L L �s�á�t�á �å �á �J�5, where �J�5 

is the total number of the selected variables based on the univariate GEE model (Eq 1). Variables 

with (multivariate) P-value<0.05 will be selected as the potential risk factors. In each marginal 

model, an appropriate correlation structure (with the best goodness of fit index, QIC) was 

utilized. Statistical analysis and visualization for this step were performed using the geepack R-

package (https://cran.r-project.org/web/packages/geepack/). 

 

Third , we evaluated COVID-19 MIR growth trajectory over the study time (1st, 2nd, and 3rd 

waves) using a latent growth model (LGM). An LGM approach considers both the mean MIR 

differences between counties at each time point (inter-subject) and MIR growth trajectories over 

time (intra-subject). Specifically, suppose �U�ç�Ü is the COVID-19 MIR in the �E�ç�Û county at time �P; 

then, it can be modeled as follows[58]: 

 

�U�ç�ÜL �ß�4�ÜE �ß�5�Ü�ã�çE �Ý�ç�Ü�á 

�ß�4�ÜL �ß�4 E �Ý�4�Ü�á 

�ß�5�ÜL �ß�5 E �Ý�5�Ü�á 

(3) 

where �ß�4�Ü and �ß�5�Ü are two latent growth factors and �ã�çs are time scores (factor loadings); �Ý�ç�Ü is a 

normally distributed error term for the �E�ç�Û county at time �P; �ß�4 and �ß�5 indicate the estimated 

overall mean COVID-19 MIR in each county and the average rate of MIR change, respectively. 

We also employed a number of non-linear (quadratic) LGMs, based on a polynomial time 

function (quadratic or higher-order) of time scores[59] to decrease estimation bias to account for 

the MIR trajectories exhibiting non-linear behavior over time. The non-linear LGM using a 

quadratic time function is given by: 

 

�U�ç�ÜL �ß�4�ÜE �ß�5�Ü�ã�çE �ß�6�Ü�ã�ç
�6 E �Ý�ç�Ü�á 

�ß�4�ÜL �ß�4 E �Ý�4�Ü�á 

�ß�5�ÜL �ß�5 E �Ý�5�Ü�á 

�ß�6�ÜL �ß�6 E �Ý�6�Ü�á 

(4) 

where �ß�6 indicates the growth factor, which can be a concave or convex form of the COVID-19 

MIR pattern over the study time (1st, 2nd, and 3rd waves), and �I�ç
�6 are the squared time scores. 

https://cran.r-project.org/web/packages/geepack/


10 
 

Both linear and non-linear LGMs were applied to 1736 U.S. counties with MIR>0, i.e., counties 

with at least one confirmed death between Mar 25 to Nov 12, 2020. We then used information 

criteria (AIC, BIC) to find the best model among linear and non-linear LGMs to determine the 

COVID-19 MIR changes and patterns over the study time. Smaller AIC and BIC values indicate 

a better fit of the underlying models. We also calculated �0�R�U�D�Q�¶�V�� �,[60] to evaluate the spatial 

autocorrelation of COVID-19 MIR across the U.S. counties. 

 

Forth , we identified clusters of the U.S. counties based on the COVID-19 MIR growth trajectory 

over time using longitudinal LGMMs[58], as follows: 

 

�U�Ü�ç
�Þ L �ß�Ü�4

�Þ E �ß�Ü�5
�Þ�ã�ç

�ÞE �Ý�Ü�ç
�Þ�á 

�ß�Ü�4
�Þ L �ß�4�4

�Þ E �Ý�Ü�4
�Þ�á 

�ß�Ü�5
�Þ L �ß�5�4

�Þ E �Ý�Ü�5
�Þ�á 

(5) 

where �G is the upper bound of the number of the clusters, �ß�4�4
�Þ  indicates the initial COVID-19 

MIR at the beginning of the study, and �ß�5�4
�Þ  indicates the average rate of COVID-19 MIR change 

over time. To find the optimal number of clusters (�G), we fit a series of LGMMs with different 

numbers of clusters of counties and conducted tests for the adequacy of the reduced models with 

respect to the number of clusters. Information criteria such as AIC, BIC, and a bootstrap 

likelihood ratio test (BLRT) were used to compare the �G-cluster model to the �:�G F �s�;-clsuter 

model [61, 62]. Also, cluster sample sizes greater than 1% of the total sample size and a relative 

entropy (REN) statistic greater than 0.8 were considered as the qualified latent class membership 

classification criteria[63]. The REN statistic for a �G-class model is calculated as �4�'�0�:�G�; L �s F

�?�Ã �Ã �É�Ô�Ö�ß�á�É�Ô�Ö
�¼
�Ö�8�-

�¿
�Ô�8�-

�Ç�?�ß�á�Ä
, where �G and �E correspond to the number of clusters and counties, respectively, 

and �2�Ü�Þ indicates the posterior probability for the �E�ç�Û county to be in cluster �G. We then applied a 

multinomial logit model to find the significant risk factors in each cluster as follows: 

 �H�J
�L�:�U�ÜL �G�;

�L�:�U�ÜL �r�;
L �Ù�ÞE Í �Ú �ã�: �ã

�á�-

�ã�@�5

�á�����������������������G L �s�á �å �á �-���:�?�H�Q�O�P�A�N�; (6) 

where �U�Ü is a categorical variable with �-  possible categories (indicating the cluster number), �Ù�Þ 

is the intercept for cluster �G, �Ú�Þ is a vector of regression coefficients of the �L�ç�Û potential risk 

factor (�: �ã), �L L �s�á�t�á �å �á �J�5, where �J�5 is the total number of the selected variables based on the 

univariate GEE model (Eq 1).  
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Statistical analysis for LGMMs and multinomial logit model were performed using Mplus v6.12 

(Muthén & Muthén, CA, USA, www.statmodel.com) and the nnet R-package (https://cran.r-

project.org/web/packages/nnet/index.html), respectively. The clusters' geographical distribution 

was illustrated in a color-coded geographical map using ArcGIS 10.7 (ESRI, Redland, CA). 

 

3 RESULTS 

During the 1st wave, mean COVID-19 MIR in the contiguous United States significantly 

increased (P-value<0.001) from MIR=0.8% on Mar 25 to MIR=3.0% on April 22 (Table 1). 

Henceforth, the rate slightly increased (P-value=0.501) to MIR=3.2% on April 29 and remained 

at this level until Jun 3, 2020 (Table 1). During the 2nd wave, for the targeted counties (counties 

in the states of AL, AZ, AR, CA, FL, GA, KS, LA, MS, NV, NM, NC, OK, SC, TX, TN, and 

UT), there were two significant decreases in the mean COVID-19 MIR from Jun 25 to Jul 2 

(MIR=2.8% to MIR=2.4%, P-value=0.031), and from Jul 2 to Jul 9 (MIR=2.4% to MIR=2.2%, 

P-value=0.043). At the beginning of the 3rd wave (Sep 3), for the targeted counties (counties in 

the states of IA, IL, IN, KS, MI, MO, MN, ND, NE, OH, SD, and WI), mean COVID-19 MIR 

started from MIR=1.8% and decreased to MIR=1.4% by the end of the wave on Nov 12, 2020 

(Table 1).  

  [Insert Table 1 here] 

At the beginning of the 1st wave (Mar 25), about 93% (n=2830) of the U.S. counties had zero 

confirmed death (MIR=0%), which decreased to 42.9% (n=1311) by the end of the 1st wave (Jun 

3, 2020). This percentage at the beginning of the 2nd wave (Jun 4) was 32.9% (n=442) and 

decreased to 11.2% (n=150) by the end of this wave (Sep2, 2020). During the 3rd wave, this rate 

started from 30.3% (n=320) and decreased to 10.0% (n=105).     

On Jun 3, 2020, the median (Q1, Q3) population of the 3050 U.S. counties was 258 84 (11 027, 

67 644), with Loving county in Texas having the smallest population (n=169) and Los Angeles 

County in California the largest one  (n=1 039 107). Queens County in New York state had the 

maximum number of confirmed cases at the beginning of the study on Mar 25 (n=6420), while 

Cook County in Illinois had the maximum confirmed cases (n=80 204) at the end of the 1st wave 

on Jun 3, 2020. Whereas the maximum number of confirmed death was reported in King County 

http://www.statmodel.com/
https://cran.r-project.org/web/packages/nnet/index.html
https://cran.r-project.org/web/packages/nnet/index.html
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in Washington state on Mar 25 (n=100) and in Kings County in New York state on Jun 3 

(n=6774). On Jun 4 (the beginning of the 2nd wave), Los Angeles County in CA had the 

maximum number of both confirmed cases (n=59 650) and death (n=2531). This county had the 

maximum number of both confirmed cases (n=243 935) and death (n=5878) at the end of the 2nd 

wave (Sep 2), as well. During the 3rd wave, Cook County in IL had the maximum number of 

cases (n=128 012 on Sep 3 and n=227 425 on Nov12) and death (n=5080 on Sep 3 and  n=5667 

on Nov 12). 

 

[Insert Table 2 here] 

Based on the univariate variable selection method (Table 2), some potential risk factors were 

excluded from the final analysis of the 1st wave including, asthma (P-value=0.980), COPD (P-

value=0.703), leukemia (P-value=0.402), rheumatic disease (P-value=0.774), and age (P-

value=0.230). For the 2nd wave, interstitial lung disease & pulmonary sarcoidosis (P-

value=0.544), COPD (P-value=0.626), leukemia (P-value=0.619), drug use disorder (P-

value=0.306), and alcohol use disorder (P-value=0.344) excluded from the final multivariate 

analysis. For the 3rd wave, atrial fibrillation (P-value=0.788), rheumatic disease (P-

value=0.307), age (P-value=0.952), male AA% (P-value=0.367), and Asian% (P-value=0.444) 

excluded from the final analysis. The description table of the potential risk factors is provided in 

Table S1.  

 

[Insert Table 3 here] 

Results of the final multivariate GEE model for the 1st wave (Table 3) showed significant 

positive associations between COVID-�������0�,�5���D�Q�G���F�D�U�G�L�R�P�\�R�S�D�W�K�\���D�Q�G���P�\�R�F�D�U�G�L�W�L�V������� ��������������

P-�Y�D�O�X�H������������������ �K�\�S�H�U�W�H�Q�V�L�Y�H�� �K�H�D�U�W�� �G�L�V�H�D�V�H�� ����� �������������� �3-value=0.001), peripheral vascular 

�G�L�V�H�D�V�H������� ���������������3-value=0.038), �F�H�U�H�E�U�R�Y�D�V�F�X�O�D�U���G�L�V�H�D�V�H������� ���������������3-value=0.034), ischemia 

����� �������������� �3-�Y�D�O�X�H� ���������������� �P�H�V�R�W�K�H�O�L�R�P�D�� ����� �������������� �3-value=0.031), pancreatic cancer 

����� ������2%, P-value<0.001), �G�U�X�J�� �X�V�H�� �G�L�V�R�U�G�H�U�� ����� ��������%, P-value<0.001), and smokers% 

����� ��������%, P-value=0.019). Whereas, there were negative associations between COVID-19 MIR 

and �&�9�'�� ����� -0.08%, P-value=0.011), �W�U�D�F�K�H�D�O�� �F�D�Q�F�H�U�� ����� -0.03%, P-value<0.001), alcohol use 

�G�L�V�R�U�G�H�U������� -0.17%, P-value=0.002), and fair/poor health ����� -0.09%, P-value=0.024).  
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During the 2nd wave, there were positive associations between COVID-19 MIR and 

�F�D�U�G�L�R�P�\�R�S�D�W�K�\�� �D�Q�G�� �P�\�R�F�D�U�G�L�W�L�V�� ����� �������������� �3-value=0.004 ), hypertensive heart disease  

����� �������������� �3-�Y�D�O�X�H� ���������������� �F�H�U�H�E�U�R�Y�D�V�F�X�O�D�U�� �G�L�V�H�D�V�H�� ����� �������������� �3-value=0.025), HIV/AIDS 

����� ���������������3-value=0.020), is�F�K�H�P�L�D������� ���������������3-�Y�D�O�X�H� �����������������U�K�H�X�P�D�W�L�F���G�L�V�H�D�V�H������� ���������������3-

�Y�D�O�X�H������������������ �D�J�H�� ����� �������������� �3-�Y�D�O�X�H������������������ �X�Q�L�Q�V�X�U�H�G���� ����� �������������� �3-value=0.002), and 

�S�R�S�X�O�D�W�L�R�Q�� �G�H�Q�V�L�W�\�� ����� ������������������ �3-value=0.011). Whereas, there were negative associations 

between COVID-19 MI�5�� �D�Q�G�� �&�9�'�� ����� -0.06%, P-�Y�D�O�X�H� ���������������� �D�V�W�K�P�D�� ����� -0.75%, P-

�Y�D�O�X�H� �����������������D�Q�G���W�U�D�F�K�H�D�O���F�D�Q�F�H�U������� -0.02%, P-value=0.022).  

 

During the 3rd wave, there were positive associations between COVID-19 MIR and diabetes 

����� �������������� �3-value=0.044), �L�Q�W�H�U�V�W�L�W�L�D�O�� �O�X�Q�J�� �G�L�V�H�D�V�H�� �	�� �S�X�O�P�R�Q�D�U�\�� �V�D�U�F�R�L�G�R�V�L�V�� ����� �������������� �3-

value=0.046), female-�$�$���� ����� �������������� �3-�Y�D�O�X�H� ���������������� �V�P�R�N�H�U�V���� ����� �������������� �3-value=0.035), 

�D�Q�G���S�R�S�X�O�D�W�L�R�Q���G�H�Q�V�L�W�\������� �������������������3-value<0.001). Whereas, there were negative associations 

between COVID-1���� �0�,�5�� �D�Q�G�� �K�H�S�D�W�L�W�L�V�� ����� -3.31%, P-�Y�D�O�X�H� ���������������� �D�V�W�K�P�D�� ����� -0.65%, P-

�Y�D�O�X�H� ���������������� �D�O�F�R�K�R�O�� �X�V�H�� �G�L�V�R�U�G�H�U�� ����� -0.08%, P-value=0.030), male-�$�$���� ����� -6.88%, P-

�Y�D�O�X�H�������������������I�D�L�U���S�R�R�U���K�H�D�O�W�K������� -0.09%, P-�Y�D�O�X�H� �����������������D�Q�G���3�0������� -0.49%, P-value=0.015).  

 

The effect of time on the COVID-19 MIR was significant and negative for both 2nd ����� -0.09, P-

value<0.001) and 3rd ����� -0.03, P-value<0.001) waves, suggesting the use of longitudinal 

(repeated measures) approaches instead of cross-sectional studies to better evaluate the growth 

trajectory of COVID-19 MIR over time.  

 

[Insert Figure 1 here] 

Tables S2-S4 show the full result of the LGMs. Based on the information criteria, a non-linear 

LGM with a quadratic term exhibited a better fit than the linear LGM. Figure 1 shows the overall 

COVID-19 MIR non-linear growth trajectories for all three waves. The overall growth trajectory 

of the estimated mean COVID-19 MIR for 1736 U.S. counties (with MIR>0) during the 1st wave 

showed a sharp increase from MIR=1.9% on Mar 25 to MIR=5.6% on April 29. Henceforth, the 

rate slightly increased to MIR=5.9% on May 20 and then slightly decreased to MIR=5.7% till 

Jun 3, 2020 (Figure 1A, Table S2). During the 2nd wave, the estimated mean COVID-19 MIR 

showed a sharp decrease from MIR=3.5% on Jun 4 to MIR=2.1% on Jul 30. Hereafter, the rate 
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slightly increased to MIR=2.4% till Aug 27, 2020 (Figure 1B, Table S3). During the 3rd wave, 

mean COVID-19 MIR started from MIR=1.9% on Sep 3 and decreased to MIR=1.6% till Nov 

12, 2020 (Figure 1C, Table S4). 

 

A clustered pattern of COVID-19 MIR across the U.S. is confirmed by �0�R�U�D�Q�¶�V���, statistics (1st 

wave: MIR-�0�R�U�D�Q�V�¶�,=0.46, P-value<0.001; 2nd wave: MIR-�0�R�U�D�Q�V�¶�,=0.38, P-value<0.001; 3rd 

wave: MIR-�0�R�U�D�Q�V�¶�,=0.41, P-value<0.001).  

Based on the LGMM results, an 8-cluster non-linear model for the 1st wave, a 5-cluster non-

linear model for the 2nd wave, and a 4-cluster non-linear model for the 3rd wave were selected as 

the best models to find clusters of the U.S. counties. Detailed result of LGMM models is 

provided in tables S5-S9. Table 4 and Figure 2 show the detailed MIR information over time 

(factor loadings are reported in Table S6). 

[Insert Table 4 here] 

Details of the nine clusters (including a cluster of counties with zero MIR) during the 1st wave 

are as follows: Cluster 0 contains 1314 counties with zero confirmed death from COVID-19 

(i.e., MIR=0) during the study time (1st wave). 

Cluster 1, with 52 counties from 28 different states, had the highest MIR at the beginning of the 

study (intercept=12.9%±3.1%) compare to other clusters (Table 4). This cluster continued having 

the highest MIR at the end of the study, on Jun 3, 2020 (Table S7, MIR=13.2%). IA (Audubon, 

Floyd, and Guthrie counties), IL (Carroll, Clinton, and Jasper counties), NC (McDowell, Moore, 

Orange, and Polk counties), OK (Cotton, Le Flore, Mayes counties), and VA (Northumberland, 

Page, and Scott counties) were the most frequent states present in this cluster. Within this cluster, 

McHenry (ND), Crowley (CO), Terrell (GA), and Shelby (KY) counties had the highest COVID-

19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster showed a 5% decrease 

from Mar 25 (MIR=12.9%) to April 1 (MIR=7.9%) and stayed steady (flat) till April 8, 2020. 

From here, the rate slightly increased to MIR=9% and stayed at this level till May 6, and 

thereafter, had another increase to MIR=13.2% on Jun 3, 2020. 

Cluster 2 includes 74 counties from 27 different states. MI  (Delta, Grand Traverse, Iosco, 

Lapeer, Oscoda, and Wexford counties), and WI (Adams, Bayfield, Buffalo, Clark, Door, Grant, 

and Marquette counties) were the most frequent states present in this cluster. Within this cluster, 
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Winona (MN), Emmons (ND), and Lyon (KY) counties had the highest COVID-19 MIR. 

COVID-19 MIR growth trajectory for the counties in this cluster showed a 1.4% decrease from 

Mar 25 (MIR= 2.2%) to April 1 (MIR= 0.8%). From here, the rate slightly increased to MIR= 

15.4% till May 6. From here till May 20, the rate slightly decreased to MIR= 13.7%), and again 

increased to MIR= 15.5% till May 27. Hereafter, the rate decreased to MIR=9.1% till the end of 

the 1st wave (Jun 3, 2020). 

Cluster 3 includes 66 counties from 21 different states. IL  (Bond, Boone, Ford, Jackson, and  

Tazewell counties), KY (Sumner, Grant, Laurel, Lincoln, McLean, Meade, and Pike counties), 

NC (Craven, Hertford, Jones, Rockingham, Wilkes, and Yadkin counties), TN (Carter Hamblen 

Hamilton, Macon, and Obion counties), and TX (Cherokee, Crosby, Grimes, Hale, Howard, 

Kleberg, Medina, and Wise counties) were the most frequent states present in this cluster. Within 

this cluster, Hamilton (TN), Benton (OR), Appanoose (IA), Crosby (TX), and Dickinson (MI) 

counties had the highest COVID-19 MIR. COVID-19 MIR growth trajectory for the counties in 

this cluster showed a 1.2% decrease from Mar 25 (MIR= 1.9%) to April 1 (MIR= 0.7%). From 

here, the rate sharply increased to MIR= 22.3% on April 22 and then decreased to MIR=5.6% by 

the end of the 1st wave on Jun 3, 2020.  

Cluster 4 includes 39 counties from 21 different states. MN (Brown, Itasca, and Kanabec 

counties), TX (Fisher, Harrison, Jackson, Lamar, Panola, Red River, Walker, and Wood 

counties), and VA (Brunswick, Campbell, and Northampton counties) were the most frequent 

states present in this cluster. Within this cluster, Beadle (SD), Panola (TX), Brown (MN), and 

Wyoming (PA) counties had the highest COVID-19 MIR. COVID-19 MIR growth trajectory for 

the counties in this cluster showed a 0.3% increase from Mar 25 (MIR= 0.8%) to April 1 (MIR= 

1.1%) and stayed steady (flat) till May 13, 2020. From here, the rate sharply increased to MIR= 

14.4% till May 27, and thereafter, slightly decreased to MIR= 10.5% till Jun 3, 2020. 

Cluster 5 includes 1406 counties from 45 different states. GA (including 117 counties), TX 

(including 85 counties), MS (including 69 counties), IN (including 63 counties), NC (including 

62 counties), AL (including 54 counties), FL (including 53 counties), OH (including 51 

counties), PA (including 50 counties), LA (including 49 counties), NY (including 49 counties), 

MI (including 46 counties), and IL  (including 40 counties) were the most frequent states present 

in this cluster. Within this cluster, Pennington (SD), Dade (GA), Oglethorpe (GA), Marquette 

(MI), and Chaffee (CO) counties had the highest COVID-19 MIR. COVID-19 MIR growth 

trajectory for the counties in this cluster showed a slight increase from Mar 25 (MIR=1.0%) to 



16 
 

May 27 (MIR=5.0%) and thereafter, had a slight decrease to MIR=4.5% till the end of the 1st 

wave (Jun 3, 2020). 

Cluster 6 with 64 counties (from 28 different states) had the second-highest MIR at the 

beginning of the study (intercept=9.8%±3.0%) compare to other clusters. However, on Jun 3, it 

had the third-lowest MIR compare to other clusters. GA (with seven counties), KY (with four 

counties), MI (with five counties), OH (with six counties), and VA (with six counties) are the 

most frequent states in this cluster. Iron (WI), Gallia (OH), Bourbon (KY), and Missaukee (MI) 

had the highest COVID-19 MIR trajectories within this cluster. COVID-19 MIR growth 

trajectory had a sharp increase from MIR=9.8% on Mar 25 to MIR=36.0% on April 1, 2020. 

Then. The rate had a sharp decrease to MIR=9.5% till April 22 and continued decreasing with a 

gentle slope till Jun 3, 2020 (MIR=7.7%). 

Cluster 7 includes 12 counties from 11 different states. TX (Lavaca and Barbour counties) was 

the most frequent state present in this cluster. Within this cluster, Catron (NM) county had the 

highest COVID-19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster was 

MIR=1.5% on Mar 25 and stayed steady (flat) till April 15. From here, the rate had a sharp 

increase to MIR=26.2% till April 29, but thereafter, it had a sharp decrease to MIR=14.5% till 

May 6, 2020. This rate then had a slight decrease to MIR=11.6% till the end of the 1st wave (Jun 

3, 2020). 

Cluster 8 includes 23 counties from 13 different states. OH (Highland, Perry, and Putnam 

counties), and TX (Comanche, Hansford, Hartley, and Martin counties) were the most frequent 

states present in this cluster. Within this cluster, Shasta (CA), Clare (MI), Jackson (KY), 

Mahnomen (MN), Carlisle (KY), Comanche (TX), and Martin (TX) counties had the highest 

COVID-19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster was 

MIR=1.9% on Mar 25 and stayed steady (flat) till April 29, 2020. From here, the rate had a sharp 

increase to MIR= 18.6% till May 6, but thereafter, it had a sharp decrease to MIR= 12.7% till 

May 20, 2020. From here, this rate had a slight decrease to MIR=12.2% till the end of the 1st 

wave (Jun 3, 2020). 

[Insert Figure 2 here] 

 

Details of the six clusters (including the cluster of counties with zero MIR) during the 2nd wave 

are as follows: Cluster 0 contains 156 counties with zero confirmed death from COVID-19 

during the 2nd wave (i.e., MIR=0). Cluster 1, with 32 counties from 7 different states (AR, GA, 



17 
 

LA, MS, NM, SC, and TX), had the lowest MIR at the beginning of the 2nd wave 

(Intercept=1.5%±0.3%). However, by the end of the 2nd wave (Sep 2, 2020), it had the second-

highest MIR (MIR=4.8%) compare to other clusters (with the maximum increase in COVID-19 

MIR of 3.3%�9, Table S8). TX (Aransas, Atascosa, Bandera, Blanco, Burleson, Dickens, Duval, 

Fayette, Gillespie, Goliad, Grimes, Guadalupe, Hudspeth, Kenedy, Liberty, Marion, Medina, 

Newton, Sabine, San Jacinto, Stephens, Throckmorton, Upton, Wharton, and Zavala counties) 

was the most frequent state present in this cluster. Within this cluster, Blanco (TX), Sabine (TX), 

Marion (TX), and Throckmorton (TX) counties had the highest COVID-19 MIR. COVID-19 

MIR growth trajectory for the counties in this cluster showed a 0.9% decrease from Jun 4 

(MIR=1.5%) to Jun 18 (MIR=0.6%) and stayed steady (flat) till Jul 16, 2020. Hereafter, the rate 

sharply increased to MIR=6.3% till Jul 30, it slightly decreased to MIR=4.8% till Aug 27, 2020.  

Cluster 2 includes 1035 counties from 17 different states. TX (156 counties), GA (131 counties), 

NC (89 counties), and TN (87 counties) were the most frequent states present in this cluster. 

Within this cluster, Crosby (TX), Pearl River (MS), and Stonewall (TX) counties had the highest 

COVID-19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster was 

MIR=3.0% at the beginning of the 2nd wave (Jul 4) and steadily decreased to MIR=1.8% till Aug 

27, 2020. 

Cluster 3, with 43 counties from 11 different states, had the second-highest MIR at the 

beginning of the 2nd wave (intercept=10.6%±1.8%) compare to other clusters (Table 4). 

However, on Sep 2 (end of the 2nd wave), it had the highest MIR (MIR=8.0%) compare to other 

clusters. TX (Briscoe, Coke, Culberson, Floyd, Hall, Lamb, Lynn, Oldham, Reagan, Red River, 

San Augustine, and Washington counties), and GA (Butts, Early, Hancock, Mitchell, Randolph, 

Sumter, Terrell, Turner, Upson, and Wilcox counties) were the most frequent states present in 

this cluster. Within this cluster, Catron (NM), Hall (TX), and Morton (KS) counties had the 

highest COVID-19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster 

showed a 1.0% increase from Jun 4 (MIR=10.6%) to Jul 2 (MIR=11.6%). From here, the rate 

decreased to MIR=8.3% till Jul 30 and stayed steady till Aug 27, 2020.  

Cluster 4 includes 59 counties from 15 different states. TX (25 counties), GA (Candler, 

Glascock, Hart, Laurens, Warren, and Wheeler counties), and KS (Cloud, Jewell, Nemaha, 

Stafford, Stanton, and Trego counties) were the most frequent states present in this cluster. 

Within this cluster, Matagorda (TX), Lee (TX), Lowndes (MS), Newton (AR), and Trego (KS) 

counties had the highest COVID-19 MIR. COVID-19 MIR growth trajectory for the counties in 
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this cluster showed a 1.1% decrease from Jun 4 (MIR=1.8%) to Jun 18 (MIR=0.7%) and stayed 

steady (flat) till Jul 16, 2020. From here, the rate increased to MIR=3.5% till Aug 13, and 

thereafter, slightly decreased to MIR=3.3% till Aug 27, 2020. 

Cluster 5, with 19 counties from 9 different states, had the highest MIR at the beginning of the 

study (intercept=14.1%±4.5%) compare to other clusters (Table 4). However, on Aug 27, it had 

the third-lowest MIR compare to other clusters (Table S7, MIR=4.0%). TX (Brown, Callahan, 

Fisher, Hood, Martin, and Palo Pinto counties) and OK (Cotton, Delaware, Kiowa, and Latimer 

counties were the most frequent states present in this cluster. Within this cluster, Fisher (TX), 

Cotton (OK), and Jenkins (GA) counties had the highest COVID-19 MIR. COVID-19 MIR 

growth trajectory for the counties in this cluster showed a 1.0% increase from Jun 4 

(MIR=14.1%) to Jun 18 (MIR=15.1%) but thereafter, had a sharp decrease to MIR=5.2% till Jul 

16, 2020. This rate slightly decreased to MIR=4.0% till Aug 27, 2020. 

 

Details of the five clusters (including the cluster of counties with zero MIR) during the 3rd wave 

are as follows: Cluster 0 contains 111 counties with zero confirmed death from COVID-19 

during the 3rd wave (i.e., MIR=0). Cluster 1, with 125 counties from 11 different states, had the 

highest MIR at the beginning of the 3rd wave (intercept=5.2%±0.2%). However, by the end of 

the 3rd wave (Nov 12, 2020), it had the second-highest MIR (MIR=3.6%) compare to other 

clusters (also, with the maximum decrease in COVID-19 MIR of 1.6%�;, Table S9). IN (25 

counties) and MI (25 counties) were the most frequent states present in this cluster. Within this 

cluster, Morton (KS) and Monroe (OH) counties had the highest COVID-19 MIR. COVID-19 

MIR growth trajectory for the counties in this cluster showed a 1.6% decrease from Sep 3, 2020 

(MIR=5.2%) to Nov 12, 2020 (MIR=3.6%). 

Cluster 2 with 47 counties from 12 different states had the lowest MIR at the beginning of the 

3rd wave (intercept=1.0%±0.6%) compare to other clusters (tables 4 and S9). However, at the end 

of the 3rd wave (Nov 12, 2020), it had the third-highest MIR (MIR=2.5%) with the highest 

increase in COVID-19 MIR over time. ND (Bottineau, Bowman, Divide, Emmons, McHenry, 

Morton Nelson, Renville, Sargent, and Sheridan counties), KS (Cheyenne, Decatur, Kingman, 

Lane, Lyon, Ness, Rooks, Russell, and Wilson counties), and IL  (Clay, Edgar, Fayette, Greene, 

Hamilton, Marshall, and Wabash counties) were the most frequent states present in this cluster. 

Within this cluster, Jackson (SD), Bottineau (ND), and Ness (KS) counties had the highest 

COVID-19 MIR. COVID-19 MIR growth trajectory for the counties in this cluster was 
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MIR=1.0% at the beginning of the 3rd wave (Sep 3) and stayed steady (flat) till Sep 17, 2020. 

Hereafter, this rate had a sharp increase to MIR=3.1% till Oct 15. From here, the rate decreased 

to MIR=2.5% till Nov 12, 2020. 

Cluster 3, with 11 counties from 6 different states (IL, KS, MO, NE, ND, OH), had the second-

highest MIR at the beginning of the 3rd wave (intercept=3.5%±1.1%) compare to other clusters 

(Table 4). However, on Nov 12 (end of the 3rd wave), it had the highest MIR (MIR=3.8%) 

compare to other clusters. NE (Cherry, Dundy, and Perkins counties) was the most frequent state 

present in this cluster. Within this cluster, and Perkins (NE) counties had the highest COVID-19 

MIR. COVID-19 MIR growth trajectory for the counties in this cluster showed a sharp increase 

(3.9%�9) from MIR=3.5% on Sep 3 to MIR=7.4% on Sep 17. From here, the rate decreased to 

MIR=2.5% till Nov 12, 2020.  

Cluster 4 includes 761 counties from 12 different states. MO (99 counties), IA (83 counties), IL 

(75 counties), and MN (74 counties) were the most frequent states present in this cluster. Within 

this cluster, Phillips (KS) and Renville (MN) counties had the highest COVID-19 MIR. COVID-

19 MIR growth trajectory for the counties in this cluster was MIR=1.4% at the beginning of the 

3rd wave and decreased to MIR=1.2% till the end of the wave (on Nov 12, 2020). 

 

More information about the COVID-19 MIR estimation at both the beginning and the end of 

each wave, the amount of increase (or decrease) in this rate, and each cluster's rank are presented 

in tables S7-S9. One important point in Table S7 is that during the 1st wave, counties in cluster 4 

���0�,�5�������������:���������������D�Q�G���F�O�X�V�W�H�U���� ���0�,�5�������������:���������������K�D�G���W�K�H���K�L�J�K�H�V�W���L�Q�F�U�H�D�V�H���L�Q���&�2�9�,�'-19 

MIR from Mar 25 to Jun 3, 2020. During the 2nd wave, counties in cluster 1 (MIR: 1.5���: 4.8%) 

had the highest increase in COVID-19 MIR; whereas, counties in cluster 5 ���0�,�5���������������:������������

had the highest decrease in this rate from Mar 25 to Jun 3, 2020 (Table S8). During the 3rd wave, 

counties in cluster 2 (MIR: 1.0���: 2.5%) had the highest increase in this rate from Sep 3 to Nov 

12, 2020 (Table S9). C�R�X�Q�W�L�H�V�� �L�Q�� �F�O�X�V�W�H�U�� ���� ���0�,�5���� ���������:������������ �K�D�G�� �W�K�H�� �K�L�J�K�H�V�W�� �G�H�F�U�H�D�V�H�� �L�Q��

COVID-19 MIR; however, it had the second-highest COVID-19 MIR compare to other clusters. 

 

Tables 5-7 show the significant risk factors in each cluster during the 1st, 2nd, and 3rd waves, 

respectively. To find the odds ratios (ORs), we used cluster 0 as the baseline (with MIR=0) and 

compared all other clusters to it. The full results of the multinomial logit models are provided in 

the Supplementary Materials (tables S10-S12).  
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[Insert Table 5 here] 

For the 1st wave, hypertensive heart disease (OR=1.4), cerebrovascular disease (OR=1.4), 

hepatitis (OR=1.1), TB (OR=1.5), ischemia (OR=1.3), pancreatic cancer (OR=1.7), drug use 

disorder (OR=1.1), and PM (OR=1.6) are significantly associated exhibiting a 40%, 40%, 10%, 

50%, 30%, 70%, 10%, and 60% increase in the relative log-odds of being in �³�Y�X�O�Q�H�U�D�E�O�H���F�O�X�V�W�H�U��

���´�� �Y�V���� �F�O�X�V�W�H�U����, respectively (tables 5 and S10). Population density (OR=1.01) is significantly 

associated with a 1% increase in the relative log-odds of being in cluster 1 vs. cluster 0. 

Hepatitis (OR=2.1), mesothelioma (OR=2.1), pancreatic cancer (OR=1.5), female AA% 

(OR=2.0), male-AA% (OR=2.5), uninsured% (OR=1.1), and population density (OR=1.02) are 

significantly associated with 110%, 110%, 50%, 100%, 150%, 10%, and 2% increase in the 

relative log-odds of being in cluster 2 vs. cluster 0, respectively. TB (OR=2.3), drug use 

disorder (OR=1.1), female AA% (OR=2.1), male AA% (OR=1.6), and population density 

(OR=1.01) are significantly associated with 130%, 10%, 40%, 110%, 60%, and 1%  increase in 

the relative log-odds of being in cluster 3 vs. cluster 0, respectively. Diabetes (OR=1.1), 

hepatitis (OR=4.8), mesothelioma (OR=3.3), female-AA% (OR=1.7), and food insecurity 

(OR=1.1) are significantly associated with 10%, 380%, 230%, 70%, and 10% increase in the 

relative log-odds of being in cluster 4 vs. cluster 0, respectively. CVD (OR=1.1), hepatitis 

(OR=10.7), female-AA% (OR=17.9), male-AA% (OR=5.0), Asian% (OR=1.3), uninsured% 

(OR=1.1), population density (OR=1.02), and AQI (OR=1.7) are significantly associated with an 

increase in the relative log-odds of being in cluster 5 vs. cluster 0. Drug use disorder (OR=1.1), 

female AA% (OR=3.0), male AA% (OR=3.0), and population density (OR=0.01) are 

significantly associated with 10%, 200%, 200%, and 2% increase in the relative log-odds of 

being in cluster 6 vs. cluster 0, respectively. Hepatitis (OR=1.6), and mesothelioma (OR=3.7) 

are significantly associated with 60% and 270% increase in the relative log-odds of being in 

cluster 8 vs. cluster 0. Table S10 contains the detailed output of the multinomial logit model for 

all potential risk factors in each cluster separately.  

 

[Insert Table 6 here] 

For the 2nd wave, hepatitis (OR=13.1), HIV/AIDS (OR=2.3), TB (OR=2.1), unemployed% 

(OR=1.5), and temperature (OR=1.2) are significantly associated with a 1210%, 130%, 110%, 

50%, and 20% increase in the relative log-odds of being in �³�Y�X�O�Q�H�U�D�E�O�H���F�O�X�V�W�H�U�����´���Y�V�����F�O�X�V�W�H�U����, 
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respectively (tables 6 and S11). Diabetes (OR=1.1), hepatitis (OR=53.1), TB (OR=44.5), female 

AA% (OR=101.1), male WA% (OR=6.3), unemployed% (OR=1.1), population density 

(OR=1.01), and temperature (OR=1.1) are significantly associated with an increase in the 

relative log-odds of being in cluster 2 vs. cluster 0. HIV/AIDS (OR=2.9), rheumatic disease 

(OR=2.5), male AA% (OR=3.0), population density (OR=1.01), temperature (OR=1.1), and PM 

(11.7) are significantly associated with a 190%, 150%, 200%, 1%, 10%, and 1070%  increase in 

the relative log-odds of being in cluster 3 vs. cluster 0, respectively. Unemployed% (OR=1.6), 

population density (OR=1.01), and temperature (OR=1.1) are significantly associated with a 

60%, 1%, and 10% increase in the relative log-odds of being in cluster 4 vs. cluster 0. Hepatitis 

(OR=13.9), HIV/AIDS (OR=2.2), TB (OR=1.8), unemployed% (OR=1.5), and population 

density (OR=1.01) are significantly associated with a 1290%, 120%, 80%, 50%, and 1% increase 

in the relative log-odds of being in cluster 5 vs. cluster 0.  

 

[Insert Table 7 here] 

For the 3rd wave, cardiomyopathy and myocarditis (OR=1.3), diabetes (OR=1.2), TB (OR=3.2), 

mesothelioma (OR=9.3), female AA% (OR=33.4), smokers% (OR=1.3), and population density 

(OR=1.02) are significantly associated exhibiting an increase in the relative log-odds of being in 

�³�Y�X�O�Q�H�U�D�E�O�H���F�O�X�V�W�H�U�����´���Y�V�����F�O�X�V�W�H�U����  (tables 7 and S12). HIV/AIDS (OR=4.0), TB (OR=33.6), 

Lower respiratory infection (OR=1.1), and mesothelioma (OR=20.5) are significantly associated 

with an increased relative log-odds of being in cluster 2 vs. cluster 0. HIV/AIDS (OR=78.8), 

TB (OR=7.0), Lower respiratory infection (OR=1.1), and mesothelioma (OR=3.6) are 

significantly associated with an increased relative log-odds of being in cluster 3 vs. cluster 0. 

Cardiomyopathy and myocarditis (OR=1.2), TB (OR=31.4), mesothelioma (OR=8.7), female 

AA% (OR=22.9), male AA% (OR=1.3), population density (OR=1.02), and AQI (OR=1.4) are 

significantly associated with an increase in the relative log-odds of being in cluster 4 vs. cluster 

0. 

 

Figure 3 shows the geographical distribution of the clusters of the contiguous United States 

during the 1st (Mar 25 �± Jun 3, 2020), 2nd (Jun 4 �± Sep 2, 2020), and 3rd (Sep 3 �± Nov 12, 2020) 

waves, based on the estimated COVID-19 MIR growth trajectory over time. 

[Insert Figure 3 here] 
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4 DISCUSSION 

This study investigated the county-level COVID-19 confirmed cases and death from Mar 25 to 

Nov 12, 2020, in a longitudinal fashion in the contiguous United States. We considered Mar 25 

�W�R�� �-�X�Q�� ���� �D�V�� �W�K�H�� �³��st �Z�D�Y�H�´���� �-�X�Q�� ���� �W�R�� �6�H�S�� ���� �D�V�� �W�K�H�� �³��nd �Z�D�Y�H�´���� �D�Q�G�� �6�H�S�� ���� �W�R�� �1�R�Y�� ������ �D�V�� �W�K�H�� �³��rd 

�Z�D�Y�H�´�� �R�I�� �&�2�9�,�'-19. We assessed the growth trajectories of COVID-19 MIR and found the 

county-level clusters of the contiguous United States with similarities in COVID-19 MIR growth 

trajectory over time. We also considered the effects of different county-level potential risk 

factors on MIR (for each wave), including comorbidities & disorders, demographics & social 

factors, and environmental factors. We selected MIR as a measure of mortality since it also 

considers the number of confirmed cases to adjust the mortality rates. However, the estimates of 

all COVID-19 epidemiological-measures (i.e., incidence, prevalence, and mortality rates) are 

subject to bias due to the imprecise number of affected (confirmed) cases, especially those with 

mild or no disease symptoms. Moreover, there are yet not enough studies showing the 

association between different risk factors, especially pre-existing comorbidities, with COVID-19 

incidence and mortality.  

 

We found nine, six and 5 clusters of the U.S. counties (including a cluster of counties with zero 

MIR) based on the COVID-19 MIR pattern (growth trajectory) using a longitudinal LGMM in 

the 1st, 2nd and 3rd waves, respectively. All counties in the same cluster have a similar COVID-19 

MIR growth pattern over the study time. This approach considered both spatial and temporal 

heterogeneities in COVID-19 MIR due to pre-existing comorbidities, environmental factors, and 

demographics. We also identified significant risk factors associated with the identified clusters 

using a multinomial logit model. It is shown that different age and sex distributions in the U.S. 

counties impact differentially COVID-19 mortality and severity[64, 65]. Race is also a factor that 

leads to heterogeneity. For instance, several findings reported African Americans having a higher 

risk of getting infected, experiencing more severe COVID-19 and death[66]. In our study, about 

43% of the northern and central U.S. counties did not experience death from COVID-19 until 

Jun 3.  

 

During the 1st wave, nearly 116 counties in clusters 1 and 6 had the highest mean COVID-19 

MIR at the beginning of the study on Mar 25, 2020. On Jun 3, 2020, cluster 1 still had the 

highest mean COVID-19 MIR (MIR=13.2%), while counties in cluster 6 improved to the third 
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lowest (excluding the cluster with MIR=0). Counties in cluster 7 had a low level of COVID-19 

MIR at the beginning of the study on Mar 25 (MIR=1.5%). However, they had a very dramatic 

increase (10.1%�9) in COVID-19 MIR till Jun 3, 2020 (MIR=11.6%). Cluster seven became the 

cluster with second-highest COVID-19 MIR at the end of the study period on Jun 3, 2020. Based 

on the clustering result (as of Jun 2020), we considered clusters 1 and 7 as the so-called �³�P�R�U�H��

�Y�X�O�Q�H�U�D�E�O�H�´ clusters of counties requiring more attention to control disease mortality. Cluster 7 

includes the following counties: Marion (KS), Seward (NE), Churchil (NV), Catron (MN), 

Crater (OK), Benton (TN), Gonzales (TX), Lavaca (TX), and Barbour (WV). Most frequent 

states in cluster 1 were IA (Audubon, Floyd, and Guthrie counties), IL (Carroll, Clinton, and 

Jasper counties), NC (McDowell, Moore, Orange, and Polk counties), OK (Cotton, Le Flore, 

Mayes counties), and VA (Northumberland, Page, and Scott counties). In most frequent states in 

�³�P�R�U�H�� �Y�X�O�Q�H�U�D�E�O�H�´�� �F�O�X�V�W�H�U�V�������� �D�Q�G�������� �G�X�U�L�Q�J�� �W�K�H���I�L�U�V�W���Z�D�Y�H���� �W�K�H�U�H���Z�H�U�H no state-wide face-mask 

mandates. For instance, OK does not have any state mandate for public mask-wearing. A partial 

mask-wearing rule was announced in IW in Nov 2020 (for Iowans age 2 and up in indoor public 

places). Therefore, different face-mask mandates can be one reason for having higher COVID-19 

MIR in these vulnerable clusters and be managed by calling a state-wide full face-covering 

mandate.  

Another important point during the 1st wave is that we can see sharp increases, and then sharp 

decreases in the mean COVID-19 MIR during this time period. This could be due to the first 

stay-at-home order in these counties which took place between Mar 25 and Apr 7, 2020.  

TB (OR=1.3) and drug use disorder (OR=1.1) are two significant comorbidities associated with a 

30% and 10% increase in the odds of being in cluster 7 vs. cluster 0. Among the demographic 

and environmental factors, male-WA% (OR=1.8) and PM (OR=1.1) are significantly associated 

with an 80% and 10% increase in the relative log-odds of being in cluster 7 vs. cluster 0. 

Therefore, protecting subjects with TB and drug use disorder and managing the ���� �6�ä�9 level of 

the air (a mixture of solid particles and liquid droplets found in the air, such as dust, dirt, or 

smoke) can help ameliorate the COVID-19 mortality in these counties. Moreover, more than 

80% of the counties in clusters 1 and 7 were rural areas based on the U.S. Census Bureau 

definition (https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-

rural.html). Lack of access to health and critical care infrastructure and more limited resources, 

in general, may be responsible for higher COVID-19 MIR. Therefore, addressing these factors 

would be beneficial in the long run for managing the epidemic. 

https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html
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During the 2nd wave, nearly 62 counties in clusters 3 (MIR=10.6%) and 5 (MIR=14.1%) had the 

highest mean COVID-19 MIR at the beginning of the wave on Jun 4, 2020. However, on Sep 2, 

2020, cluster 3 had the highest mean COVID-19 MIR (MIR=4.8%), while counties in cluster 5 

improved to the third lowest (MIR=4.0%). Counties in cluster 1 had the lowest level of COVID-

19 MIR at the beginning of the 2nd wave on Jun 4 (MIR=1.5%). However, they had a dramatic 

increase (3.3%�9) in COVID-19 MIR till Sep 2, 2020 (MIR=4.8%), and therefore became the 

highest COVID-19 MIR at the end of the 2nd wave. Based on the clustering result (as of Sep 2, 

2020), we considered cluster 1 as the so-called �³�P�R�U�H���Y�X�O�Q�H�U�D�E�O�H�´ cluster of counties requiring 

more attention to control disease mortality. TX (Aransas, Atascosa, Bandera, Blanco, Burleson, 

Dickens, Duval, Fayette, Gillespie, Goliad, Grimes, Guadalupe, Hudspeth, Kenedy, Liberty, 

Marion, Medina, Newton, Sabine, San Jacinto, Stephens, Throckmorton, Upton, Wharton, and 

Zavala counties) was the most frequent state present in this cluster.  Cluster 1 includes the 

following counties: Marion (KS), Seward (NE), Churchil (NV), Catron (MN), Crater (OK), 

Benton (TN), Gonzales (TX), Lavaca (TX), and Barbour (WV). Moreover, Blanco (TX), Sabine 

(TX), Marion (TX), and Throckmorton (TX) counties had the highest COVID-19 MIR. Only in 

mid-July (middle of the 2nd wave), the TX governor signed the executive order requiring 

residents (>10 yo) to wear a face mask in public (state-wide), yet nearly 80 have opted out of the 

order, and others are not enforcing it. Therefore, the difference between face-mask mandates can 

also be one reason for having higher COVID-19 MIR in cluster 1.    

Hepatitis (OR=13.1), HIV/AIDS (OR=2.3), and TB (OR=2.1) are three significant comorbidities 

that are associated with an increase in the odds of being in cluster 1 vs. cluster 0. Among the 

demographic and environmental factors, unemployed% (OR=1.5) and temperature (OR=1.2) are 

significantly associated with a 50% and 20% increase in the relative log-odds of being in cluster 

1 vs. cluster 0 (tables S10-S12). Therefore, protecting subjects with hepatitis, HIV/AIDS, and TB 

and managing the unemployment rate can help ameliorate the COVID-19 mortality in these 

counties. The effect of temperature, however, could be due to other confounding variables. For 

instance, when the weather is cold, people spend more time indoors and together. Therefore, 

educating the residents of these counties about distancing and mask-wearing may help to 

improve the COVID-19 MIR. Moreover, about 60% of the counties in cluster 1 were rural areas 

based on the U.S. Census Bureau definition (https://www.census.gov). Lack of access to health 

and critical care infrastructure and more limited resources, in general, may be responsible for 

https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html
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higher COVID-19 MIR. Therefore, addressing these factors would be beneficial in the long run 

for managing the epidemic. 

 

During the 3rd wave, 125 counties in cluster 1 (MIR=5.2%) had the highest mean COVID-19 

MIR at the beginning of the wave on Jun 4, 2020. Although the mean COVID-19 MIR of the 

counties in cluster 1 decreased (MIR=3.6%) by the end of the wave, this cluster remained the 

second-highest compared to other clusters. Based on the clustering result (as of Nov 12, 2020), 

we considered cluster 1 as the so-called �³�P�R�U�H���Y�X�O�Q�H�U�D�E�O�H�´ cluster of counties requiring more 

attention to control disease mortality. IN (Bartholomew, Boone, Carroll, Daviess, Dearborn, 

Decatur, Floyd, Franklin, Greene, Hancock, Hendricks, Howard, Jennings, Johnson, Lawrence, 

Madison, Montgomery, Morgan, Newton, Ohio, Orange, Perry, Pike, Pulaski, and Tipton 

counties) and MI (Alcona, Alpena, Arenac, Bay, Clare, Crawford, Genesee, Gogebic, Gratiot, 

Hillsdale, Iosco, Jackson, Keweenaw, Lapeer, Macomb, Muskegon, Oakland, Ogemaw, Otsego, 

Saginaw, St. Clair, Sanilac, Shiawassee, Tuscola, and Wayne counties) were two most frequent 

states present in this cluster. Moreover, Morton (KS) and Monroe (OH) counties had the highest 

COVID-19 MIR. Regarding the face-covering rules in these two most frequent states in cluster 1, 

in MI mask-wearing order was issued only in Oct 2020 (for people age 5 and up, in most public 

places). IN governor ordered mask-wearing (for Hoosiers age 8 and up, in indoor and outdoor 

public) only in the beginning of Aug (middle of the 2nd wave). Therefore, having inadequate/no 

rules for face covering in these states can cause a worse COVID-19 MIR trend.  

Cardiomyopathy and myocarditis (OR=1.3), diabetes (OR=1.2), TB (OR=3.2), mesothelioma 

(OR=9.3) are four significant comorbidities that are associated with an increase in the odds of 

being in cluster 1 vs. cluster 0. Among the demographic and environmental factors, female AA% 

(OR=33.4), smokers% (OR=1.3), and population density (OR=1.02) are significantly associated 

with increased relative log-odds of being in cluster 1 vs. cluster 0 (tables S10-S12). Therefore, 

protecting subjects with diabetes, TB, mesothelioma and cardiomyopathy and myocarditis, and 

smoking history can help ameliorate the COVID-19 mortality in these counties. The effect of 

population density, however, could be complicated and due to other confounding variables. At 

the beginning of the COVID-19 pandemic, dense (urban) areas around the world such as New 

York (USA), Madrid (Spain), Milan (Italy), London (UK), and Tehran (Iran) were identified as 

disease hotspots. In our analysis, nearly 40% of the counties in cluster 1 (during the 3rd wave) 

were urban areas based on the U.S. Census Bureau definition (https://www.census.gov). One 

https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html
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reason that may explain the effect of population density on disease mortality/spread could be that 

the large cities are mostly connected with many other locations[67]. The crowding and transport 

infrastructure quality may stimulate the spread of the disease[68]. Therefore, addressing these 

factors and educating the residents about distancing, mask-wearing, and self-isolation (and 

household quarantine) would be beneficial in the long run for managing the epidemic in this 

region. 

 

Amongst the comorbidities, we found a significant positive association between COVID-19 MIR 

and heart diseases, including cardiomyopathy and myocarditis (�������������0�,�5�9 in the 1st wave, and 

0.12���� �0�,�5�9 in the 2nd wave), hypertensive heart disease (0.11���� �0�,�5�9 in the 1st wave, and 

������������ �0�,�5�9 in the 2nd wave), peripheral vascular disease (0.31���� �0�,�5�9 in the 1st wave), and 

cerebrovascular disease (0.07���� �0�,�5�9 in the 1st wave, and 0.07���� �0�,�5�9 in the 2nd wave). This 

finding is in accordance with recent studies on the topic, even though its etiology remains 

uncertain. This can be due to antiviral drugs (as a treatment of COVID-19), which can cause 

different cardiovascular disorders (such as cardiac insufficiency and arrhythmia)[69]. Moreover, 

most of the patients with pre-existing heart disorders use renin-angiotensin-aldosterone system 

(RAAS) blockers, which are suggested to increase the COVID-19 severity and MR[70, 71]. 

Additionally, SARS-CoV-2 infection can act as a precipitating factor that worsens the cardiac 

insufficiency and leads to death in patients with pre-existing heart complications[69]. 

Cardiovascular diseases can also increase the COVID-19 severity and MR via aggravating 

pneumonia[69]. Historically, it is shown that patients with pre-existing heart and lung diseases had 

a higher mortality rate from SARS[17, 24-29]. The same findings have been reported in China[15, 16, 

72] and the United Kingdom[73]. Lippi et al. showed that about 20% of hospitalized COVID-19 

cases had heart complications, as well[16]. A meta-analysis with 46248 confirmed COVID-19 

cases showed that patients with severe disease were more likely to have CVD (odds ratio=3.4) 

and hypertensive heart disease (odds ratio= 2.4)[74]. Recent studies have reported ACE2 as the 

coreceptor for the coronavirus in patients with different complications as well as heart and lung 

disorders compared with healthy individuals[29, 75]. There is also evidence showing the critical 

role of the ACE2 and its peptides in the inflammatory[76, 77] and oxidative organ activities[78, 79], 

which are significant triggers in the initiation and progression of cardiovascular disease, cardiac 

hypertrophy, lung complications, and acute pancreatitis. 
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We did not find a significant positive association between most of the respiratory diseases 

(including COPD, Asthma, and lower respiratory infection) and COVID-19 MIR, which is 

consistent with the Halpin et al. study[3], Onder et al. in Italy (Mar 2020)[4], and the CDC report 

�R�I���K�H�D�O�W�K���F�R�Q�G�L�W�L�R�Q�V�¶���S�U�H�Y�D�O�H�Q�F�H���L�Q���W�K�H���8�6�$�����$�S�U�L�O������������[5]. We only found a positive association 

between interstitial lung disease and pulmonary sarcoidosis during the 3rd wave. One possible 

explanation might be that having CLD causes a different immune response, which eventually 

protects against infection from SARS-CoV2[3]. Although, this is not supported by the other 

publications showing the significant association between COPD and an increased COVID-19 

MR. Another possibility is that treatments and therapies used by patients with CLD can protect 

against COVID-19 as well (for instance, topical intra-nasal sprays[80] and mPGES-1[81, 82]), or 

that CLD treatments can reduce symptoms and hence affecting COVID-19 diagnosis[3]. 

However, the Chinese CDC (http://www.chinacdc.cn/en/) has reported a 6.3% COVID-19 case-

fatality rate for cases with pre-existing chronic respiratory diseases. 

 

Besides heart diseases, we found significant positive associations between COVID-19 MIR and 

cancer, including mesothelioma (0.58���� �0�,�5�9 in the 1st wave) and pancreatic (0.51% �0�,�5�9 in 

the 1st wave) in the United States. Typically, patients with cancer are known to be at higher risk 

for community respiratory viruses (such as influenza and coronaviruses) due to their suppressed 

immune system and poor physiological baseline[83-85]. Based on a descriptive study from Wuhan, 

China (Mar 2020), the incidence of COVID-19 patients with pre-existing cancer was about 1%, 

which is five times higher than the general cancer incidence in China[56]. In a report of 72 314 

cases from the Chinese CDC (Mar 2020), the COVID-19 case fatality for cancer patients was 

3.5% higher than those without cancer[86]. In another report from Italy (April 2020), the 

prevalence of pre-existing cancer among COVID-19 death was 16.5%[4]. Du et al., in a multi-

omics study, indicated an indirect connection between the ACE2 pathway and cancer via 

Transforming Growth Factor Beta 1, TGFB1, association with colorectal cancer[87, 88].  

 

Our findings also indicated that demographics and social factors at the county level, such as 

mean age, drug use disorders, smokers%, uninsured%, and population density, significantly 

increased COVID-19 MIR by 0.12%, 0.08%, 0.11%, 0.08%, and 0.0003%, respectively. One 

possible explanation might be that uninsured patients or patients with drug use disorder, 

especially in the areas with more health disparities, are less likely to seek medical care. 

http://www.chinacdc.cn/en/
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Moreover, drug use disorders can result in increased inflammation of multiple organ systems, 

particularly lungs, which may lead to respiratory failure. In turn, it can directly contribute to the 

elevated mortality rate of COVID-19 among confirmed cases. Marsden et al. showed that people 

with opioid use disorder have a higher prevalence of co-occurrence of health problems, 

subsequently leading to an increased rate of COVID-19[89]. Regarding the effect of population 

density on disease mortality/spread, one reason could be that the large cities are mostly 

connected with many other locations[67]; plus, the crowding may stimulate the spread of the 

disease. 

 

This study has several limitations. First , the mortality and MIR estimates from the current 

COVID-19 related data are biased since most of the individuals with mild or no symptoms have 

not been tested for COVID-19 in most of the counties. Moreover, the COVID-19 reporting 

system appears to differ regionally, which introduces further inaccuracies in the available data. 

For example, for a small number of counties, we found MIR=100%, which is an unlikely event 

and can be due to an incomplete disease recording system. Timely sharing of information and 

collaboration between organizations and governors can partly solve this problem. There also 

needs to be additional testing and follow-ups to have higher quality data, especially for younger 

individuals with mild symptoms. Recent data (CDC Jun 19, 2020[90]) showed that more young 

people are testing positive for COVID-19 in the United States. Second, the reporting of disease 

data is mostly based on ICD9/10 codes, which can be fairly inaccurate[91]. Third , the analysis 

was based on county-level data. It would be beneficial to analyze individual-level and multi-

countries data to gain deeper insights into the impact of risk factors on COVID-19 progression. 

Forth , some of the counties, especially in Maine, were excluded from the study because some of 

the environmental factors such as climate and air pollution were not directly available. Fifth , 

different testing strategies (especially among health-care workers), re-opening, self-isolation, 

physical distancing, and mask policies can be cofounder in the analysis of COVID-19 MIR.  

 

In summary, accounting for heterogeneity in both risk factors and COVID-19 mortality patterns 

over time leads to a more informative clustering system, which can then be leveraged in 

managing the epidemic by identifying and informing groups of people at higher risk and also in 

managing healthcare resources (access to facilities, ICUs, vaccination, etc.) more judiciously. 

Findings of this study suggest that counties in clusters 1 and 7 (in the 1st wave), cluster 1 (in both 
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2nd and 3rd waves) experience higher COVID-19 MIR growth trajectories over time and are 

facing more challenges due to the prevalence of rural counties (60%-80%), and different face-

covering rules/mandates in managing the disease. Further, heart complications and cancer were 

statistically significant pre-existing comorbidities related to COVID-19 MIR across the U.S. TB, 

drug use disorder, HIV/AIDS, diabetes, and hepatitis were explicitly associated with an 

�L�Q�F�U�H�D�V�H�G���F�K�D�Q�F�H���R�I���E�H�L�Q�J���L�Q���D���P�R�U�H���³�Y�X�O�Q�H�U�D�E�O�H�´���F�O�X�V�W�H�U��  
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10 FIGURES 

 

 

Figure 1. Overall growth trajectories of observed and estimated COVID-19 MIR for the A. 1st 
wave, B. 2nd wave, and C. 3rd wave. Green lines indicate the estimated MIR trajectories using an 
LGM model (linear and non-linear). Orange lines indicate the observed mean MIR. 
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Figure 2. Estimated mean COVID-19 MIR growth trajectories for A. 8 clusters of the U.S. 
counties during the 1st wave (Mar 25 - Jun 3, 2020), B. 5 clusters of the targeted U.S. counties 
(sunbelt region) during the 2nd wave (Jun 4 �± Sep 2, 2020), and C. 4 cluster of the targeted U.S. 
counties (great plains) during the 3rd wave (Sep 3 �± Nov 12, 2020). 
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Figure 3. Geographical distribution of the clusters of U.S. counties based on the estimated COVID-19 
MIR growth trajectories at the: A. beginning of the1st wave (Mar 25, 2020), B. end of the 1st wave (Jun 3, 
2020), C. beginning of the 2nd wave (Jun 4, 2020), D. end of the 2nd wave (Sep 2, 2020), E. beginning of 
the 3rd wave (Sep 3, 2020), and F. end of the 3rd wave (Nov 12, 2020). Red color indicates the highest 
MIR, blue color indicates the lowest MIR, and green color shows the counties with MIR=0. 
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11 TABLES  
 
 
Table 1. Descriptive statistics of COVID-19 MIR in the United States for the 1st wave (Mar 25 - Jun 3, 
2020; n=3050 counties), the 2nd wave (Jun 4 �± Sep 2, n=1344) and the 3rd wave (Sep 3 �± Nov 12, n=1055) 

Wave Time* 
COVID-19 MIR 

P-
value*** Minimum (N, %) Maximum (N, 

%) 
Mean SD Mean 

Difference**  

1st 

Mar 25 0.0 (2830, 92.8%) 1.0 (9, 0.3%) 0.8% 6.5% NA NA 
Apr 1 0.0 (2507, 82.2%) 1.0 (11, 0.4%) 1.6% 7.5% 0.7% <0.001 
Apr 8 0.0 (2185, 71.6%) 1.0 (10, 0.3%) 2.1% 7.9% 0.5% 0.004 
Apr 15 0.0 (1936, 63.5%) 1.0 (7, 0.2%) 2.6% 6.4% 0.5% 0.002 
Apr 22 0.0 (1763, 57.8%) 1.0 (8, 0.3%) 3.0% 6.4% 0.4% 0.020 
Apr 29 0.0 (1643, 53.9%) 1.0 (4, 0.1%) 3.2% 5.4% 0.1% 0.501 
May 6 0.0 (1553, 50.9%) 0.55 (9, 0.3%) 3.2% 5.1% 0.08% 0.600 
May 13 0.0 (1487, 48.8%) 0.50 (3, 0.1%) 3.2% 5.2% 0.02% 0.900 
May 20 0.0 (1417, 46.4%) 1.0 (1, 0.0%) 3.2% 5.1% 0.02% 0.900 
May 27 0.0 (1376, 45.1%) 1.0 (1, 0.0%) 3.2% 5.2% -0.00% 0.989 
Jun 3 0.0 (1311, 42.9%) 1.0 (1, 0.0%) 3.2% 5.0% -0.01% 0.900 

2nd 

Jun 4 0.0 (442, 32.9%) 0.5 (2, 0.1%) 3.3% 4.6% NA NA 
Jun 11 0.0 (426, 31.7%) 0.5 (3, 0.2%) 3.2% 4.5% -0.1% 0.488 
Jun 18 0.0 (406, 30.2%) 0.5 (3, 0.2%) 3.0% 4.3% -0.2% 0.267 
Jun 25 0.0 (399, 29.7%) 0.5 (3, 0.2%) 2.8% 4.2% -0.3% 0.128 
Jul 2 0.0 (386, 28.7%) 0.5 (2, 0.1%) 2.4% 3.7% -0.3% 0.031 
Jul 9 0.0 (368, 27.4%) 0.5 (2, 0.1%) 2.2% 3.3% -0.3% 0.043 
Jul 16 0.0 (350, 26.0%) 0.5 (1, 0.1%) 2.0% 2.9% -0.2% 0.074 
Jul 23 0.0 (318, 23.7%) 0.3 (1, 0.1%) 1.8% 2.4% -0.1% 0.190 
Jul 30 0.0 (249, 18.5%) 0.2 (2, 0.1%) 1.9% 2.4% 0.1% 0.292 
Aug 6 0.0 (222, 16.5%) 0.5 (1, 0.1%) 2.0% 2.6% 0.1% 0.615 
Aug 13 0.0 (195, 14.5%) 0.5 (1, 0.1%) 2.1% 2.5% 0.1% 0.351 
Aug 20 0.0 (181, 13.5%) 0.5 (1, 0.1%) 2.1% 2.5% 0.05% 0.577 
Aug 27 0.0 (165, 12.3%) 0.5 (1, 0.1%) 2.2% 2.4% 0.1% 0.476 
Sep 2 0.0 (150, 11.2%) 0.4 (1, 0.1%) 2.2% 2.2% 0.02% 0.788 

3rd 

Sep 3 0.0 (320, 30.3%) 0.2 (1, 0.1%) 1.8% 2.3% NA NA 
Sep 10 0.0 (296, 28.1%) 0.3 (1, 0.1%) 1.8% 2.3% 0.0% 0.933 
Sep 17 0.0 (284, 26.9%) 0.3 (1, 0.1%) 1.7% 2.2% -0.1% 0.578 
Sep 24 0.0 (263, 24.9%) 0.3 (1, 0.1%) 1.7% 2.2% 0.0% 0.812 
Oct 1 0.0 (235, 22.3%) 0.3 (1, 0.1%) 1.7% 2.1% 0.0% 0.916 
Oct 8 0.0 (219, 20.8%) 0.3 (1, 0.1%) 1.7% 2.0% 0.0% 0.736 
Oct 15 0.0 (188, 17.8%) 0.3 (1, 0.1%) 1.6% 1.9% 0.0% 0.674 
Oct 22 0.0 (167, 15.8%) 0.2 (1, 0.1%) 1.6% 1.7% 0.0% 0.849 
Oct 29 0.0 (144, 13.6%) 0.2 (1, 0.1%) 1.6% 1.6% 0.0% 0.520 
Nov 5 0.0 (119, 11.3%) 0.2 (1, 0.1%) 1.5% 1.4% -0.1% 0.376 
Nov 12 0.0 (105, 10.0%) 0.2 (1, 0.1%) 1.4% 1.3% -0.1% 0.237 

* Year of 2020. 

** Mean difference between mean COVID-19 MIR at each time and the previous time. 

** P-values from the t-test comparing mean COVID-19 MIR in each time with the previous time. 
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Table 2. Univariate GEE variable selection results. COVID-19 MIR risk factors based on univariate 
longitudinal GEE models (Mar 25 to Nov 12, 2020, USA) 

 Variable 
1st Wave 2nd Wave 3rd Wave 

Est. P-value* Est. P-value Est. P-value 
 Time 0.21% <0.001 0.03% <0.001 -0.03% <0.001 

C
om

or
bi

di
tie

s 
&

 D
is

or
de

rs
 

CVD 0.004% 0.003 0.005% <0.001 0.01% <0.001 
Cardiomyopathy 
& myocarditis 0.21% <0.001 0.13% <0.001 0.12% <0.001 

Hypertensive heart disease 0.06% <0.001 0.05% <0.001 0.05% <0.001 
Peripheral vascular disease 0.42% 0.008 0.29% 0.010 0.37% <0.001 
Atrial fibrillation -0.14% <0.001 -0.20% <0.001 0.01% 0.788 
Cerebrovascular disease 0.01% 0.100 0.01% 0.073 0.01% 0.055 
Diabetes 0.08% <0.001 0.07% 0.001 0.08% <0.001 
Hepatitis 0.72% 0.158 -0.31% 0.146 4.54% <0.001 
HIV/AIDS 0.23% 0.022 0.17% 0.046 0.83% <0.001 
TB 2.02% <0.001 3.45% <0.001 0.38% 0.196 
Lower respiratory infection 0.02% 0.026 0.03% <0.001 0.02% <0.001 
Interstitial lung disease 
& pulmonary sarcoidosis 0.23% <0.0 

01 0.04% 0.544 0.19% <0.001 

Asthma 0.005% 0.980 0.93% <0.001 -0.60% 0.003 
COPD 0.002% 0.703 0.002% 0.626 0.03% <0.001 
Ischemia 0.002% 0.074 0.004% 0.030 0.01% <0.001 
Mesothelioma 0.83% 0.002 -0.44% 0.096 0.72% 0.003 
Tracheal cancer 0.02% <0.001 0.01% 0.144 0.02% <0.001 
Leukemia 0.08% 0.402 -0.05% 0.619 0.12% 0.086 
Pancreatic cancer 0.48% <0.001 0.28% <0.001 0.35% <0.001 
Rheumatic disease 0.02% 0.774 0.42% <0.001 -0.10% 0.307 
Drug use disorder 0.06% <0.001 -0.01% 0.306 0.08% <0.001 
Alcohol use disorder -0.08% <0.001 0.03% 0.344 -0.03% 0.137 

D
em

og
ra

ph
ic

s 
&

 S
oc

ia
l 

Age -0.34% 0.230 0.07% 0.039 0.0001% 0.952 
Female-AA% 3.82% <0.001 3.58% <0.001 5.68% <0.001 
Female-WA% -3.21% <0.001 -3.80% <0.001 -0.66% 0.143 
Male-AA% 3.86% <0.001 3.71% <0.001 4.38% <0.001 
Male-WA% -3.26% <0.001 -3.92% <0.001 -0.41% 0.367 
Asian% 0.13% <0.001 -0.03% 0.012 0.02% 0.444 
Smokers% 0.07% 0.004 0.09% <0.001 0.07% <0.001 
Unemployed% 0.18% <0.001 0.24% <0.001 0.21% <0.001 
Income Rate 0.40% <0.001 0.66% <0.001 0.13% 0.128 
Uninsured% -0.04% 0.008 0.06% 0.004 -0.03% 0.012 
Food insecurity 0.08% <0.001 0.13% <0.001 0.07% <0.001 
Fair/Poor health 0.03% 0.124 0.08% <0.001 0.05% <0.001 

E
nv

iro
n

m
en

ta
l Population density 0.004% <0.001 0.0002% 0.121 0.0001% <0.001 

AQI 0.10% <0.001 0.03% 0.028 0.04% <0.001 
Temperature 0.04% <0.001 0.005% <0.001 0.06% <0.001 
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PM 0.38% <0.001 0.11% 0.050 0.12% 0.002 

* P-value<0.2 is considered as significant. 
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Table 3. �0�X�O�W�L�Y�D�U�L�D�W�H�� �*�(�(�� �P�R�G�H�O�¶�V��results. COVID-19 MIR risk factors based on a multivariate 
longitudinal GEE model (Mar 25 to Nov 12, 2020, USA) 

 Variable 
1st Wave 2nd Wave 3rd Wave 

Est. P-value* Est. P-value Est. P-value 
 Time 0.01% 0.501 -0.09% <0.001 -0.03% <0.001 

C
om

or
bi

di
tie

s 
&

 D
is

or
de

rs
 

CVD -0.08% 0.011 -0.06% 0.036 0.01% 0.768 
Cardiomyopathy 
& myocarditis 0.15% <0.001 0.12% 0.004 0.00% 0.865 

Hypertensive heart disease 0.11% 0.001 0.09% 0.005 0.02% 0.461 
Peripheral vascular disease 0.31% 0.038 0.13% 0.321 -0.07% 0.717 
Atrial fibrillation 0.00% 0.961 -0.04% 0.418 - - 
Cerebrovascular disease 0.07% 0.034 0.07% 0.025 -0.01% 0.595 
Diabetes 0.02% 0.514 -0.01% 0.671 0.04% 0.044 
Hepatitis -0.27% 0.629 -0.15% 0.704 -3.33% 0.021 
HIV/AIDS 0.04% 0.497 0.09% 0.020 0.36% 0.264 
TB -0.30% 0.666 -0.30% 0.684 0.05% 0.951 
Lower respiratory infection 0.00% 0.976 0.01% 0.135 0.01% 0.237 
Interstitial lung disease 
& pulmonary sarcoidosis 0.06% 0.487 - - 0.15% 0.046 

Asthma - - -0.75% 0.011 -0.65% 0.029 
COPD - - - - 0.00% 0.890 
Ischemia 0.08% 0.017 0.06% 0.035 0.00% 0.994 
Mesothelioma 0.58% 0.031 -0.03% 0.915 0.32% 0.236 
Tracheal cancer -0.03% <0.001 -0.02% 0.022 -0.02% 0.091 
Leukemia - - - - -0.03% 0.784 
Pancreatic cancer 0.52% <0.001 0.13% 0.120 0.19% 0.061 
Rheumatic disease - - 0.42% <0.001 - - 
Drug use disorder 0.08% <0.001 - - 0.02 0.214 
Alcohol use disorder -0.17% 0.002 - - -0.08% 0.030 

D
em

og
ra

ph
ic

s 
&

 S
oc

ia
l 

Age - - 0.12% <0.001 - - 
Female-AA% 12.70% 0.241 -16.20% 0.199 6.85% 0.004 
Female-WA% 7.59% 0.398 -23.20% 0.095 0.29% 0.796 
Male-AA% -15.90% 0.165 15.40% 0.243 -6.88% <0.001 
Male-WA% -10.90% 0.254 20.40% 0.165 - - 
Asian% 0.01% 0.814 0.02% 0.436 - - 
Smokers% 0.11% 0.019 0.01% 0.783 0.08% 0.035 
Unemployed% 0.05% 0.466 0.09% 0.080 0.12% 0.108 
Income Rate 0.02% 0.891 0.13% 0.468 0.02% 0.559 
Uninsured% 0.00% 0.864 0.08% 0.002 0.00% 0.840 
Food insecurity 0.02% 0.580 0.04% 0.297 -0.03% 0.324 
Fair/Poor health -0.09% 0.024 -0.06% 0.074 -0.09% 0.016 

E
nv

iro
n

m
en

ta
l Population density 0.00% 0.196 0.0003% 0.011 0.0001% <0.001 

AQI 0.05% 0.720 -0.20% 0.072 0.11% 0.057 
Temperature 0.01% 0.501 0.02% 0.287 0.03% 0.110 
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PM 0.03% 0.953 0.63% 0.131 -0.49% 0.015 

significant. as consideredvalue<0.05 is -* P 
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Table 4. GLMM clustering results. Clustering (based on COVID-19 MIR>0) of the 1736 counties 
during the 1st wave (Mar 25 �± Jun 3, 2020), 1344 targeted counties (sunbelt region) during the 2nd wave 
(Jun 4 - Sep 2, 2020), and 1055 targeted counties (great plains region) during the 3rd wave (Sep 3 �± Nov 
12, 2020), USA 
Wave 

Cluster Cluster Size 
N (%) 

Intercept* Slope**  
Mean (SE) P-value Mean (SE) P-value 

1st 

0 1314 (43.1%) 0% (0%) NA 0% (0%) NA 
1 52 (1.7%) 12.9% (3.1%) <0.001 -1.0% (0.6%) 0.122 
2 74 (2.4%) 2.2% (0.8%) 0.010 3.5% (1.0%) <0.001 
3 66 (2.1%) 1.9% (0.9%) 0.027 2.8% (0.4%) <0.001 
4 39 (1.3%) 0.9% (0.5%) 0.089 2.0% (0.4%) <0.001 
5 1406 (46.1%) 1.0% (0.3%) <0.001 -3.0% (0.5%) <0.001 
6 64 (2.1%) 9.8% (3.0%) 0.001 3.4% (0.7%) <0.001 
7 12 (0.4%) 1.5% (1.3%) 0.236 -3.1% (0.5%) <0.001 
8 23 (0.8%) 1.9% (1.3%) 0.127 -4.2% (0.0%) - 

2nd 

0 156 (11.6%) 0% (0%) NA 0% (0%) NA 
1 32 (2.4%) 1.5% (0.3%) <0.001 10.6% (4.5%) 0.018 
2 1035 (77.0%) 3.0% (0.2%) <0.001 12.5% (4.3%) 0.004 
3 43 (3.2%) 10.6% (1.8%) <0.001 20.7% (12.7%) 0.102 
4 59 (4.4%) 1.8% (0.3%) <0.001 16.3% (6.5%) 0.012 
5 19 (1.4%) 14.1% (4.5%) 0.002 74.7% (0.0%) - 

3rd 

0 111 (10.5%) 0% (0%) NA 0% (0%) NA 
1 125 (11.8%) 5.2% (0.2%) <0.001 -3.7% (0.5%) <0.001 
2 47 (4.5%) 1.0% (0.6%) 0.082 3.1% (1.8%) 0.088 
3 11 (1.0%) 3.5% (1.1%) 0.002 -20.0% (3.2%) <0.001 
4 761 (72.2%) 1.4% (0.1%) <0.001 -0.9% (0.3%) 0.001 

* Intercept indicates the estimated mean MIR of COVID-19 at the beginning of the wave, for each cluster. 

** Slope indicates the overall change of MIR of COVID-19 during each wave, for each cluster. 
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Table 5. 1st Wave (Mar 25 �± Jun 3, 2020): significant risk factors and their odds ratios in each cluster 
compare to cluster 0 (counties with MIR=0). Blank spots indicate the insignificant risk factors 

 Variable 
Cluster 

1 2 3 4 5 6 7 8 

C
om

or
bi

di
tie

s 
&

 D
is

or
de

rs
 

CVD     1.1*  0.7  
Cardiomyopathy 
& myocarditis 

       
 

Hypertensive heart disease       1.4  
Peripheral vascular disease     0.5    
Atrial fibrillation     0.8    
Cerebrovascular disease     0.9  1.4  
Diabetes    1.1     
Hepatitis 0.3 2.1 0.5 4.8 10.7 0.1 1.1 1.6 
HIV/AIDS         
TB 0.7  2.3 0.6  1.3 1.5  

Lower respiratory infection 0.9        
Interstitial lung disease & pulmonary sarcoidosis         
Ischemia     0.9  1.3  
Mesothelioma 0.2 2.1  3.3   0.8 3.7 
Tracheal cancer         
Pancreatic cancer  1.5     1.7  
Drug use disorder   1.1   1.1 1.1  
Alcohol use disorder   0.8      

D
em

og
ra

ph
ic

s 
&

 S
oc

ia
l 

Female-AA%  2.0 2.1 1.7 17.9 3.0 0.9  
Female-WA% 0.2 0.1 0.1 0.3 0.1 0.1 0.5 0.4 
Male-AA%  2.5 1.6  5.0 3.0 0.8 0.8 
Male-WA% 0.2 0.1 0.1 0.3 0.4 0.1 0.5  

Asian%  0.5   1.3    
Smokers%         
Unemployed%         
Income Rate       0.3  
Uninsured%  1.1   1.1    
Food insecurity    1.1 0.9    
Fair/Poor health  0.8   0.9 0.8   

E
nv

iro
nm

en
ta

l 

Population density 1.01 1.02 1.01  1.02 1.01   
AQI     1.7  0.8  
Temperature    0.9     
PM     0.1  1.6 0.7 

* for instance, OR=1.1 means that 1% increase in CVD MR is associated with a 10% increase in the relative log odds of being in cluster 5 vs. cluster 0 (MIR=0).  
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Table 6. 2nd Wave (Jun 4 �± Sep 2, 2020): significant risk factors and their odds ratios in each cluster 
compare to cluster 0 (counties with MIR=0). Blank spots indicate the insignificant risk factors 

 Variable 
Cluster 

1 2 3 4 5 

C
om

or
bi

di
tie

s 
&

 D
is

or
de

rs
 

CVD      
Cardiomyopathy & myocarditis      
Hypertensive heart disease      
Peripheral vascular disease      
Atrial fibrillation      
Cerebrovascular      
Diabetes  1.1*    
Hepatitis 13.1 53.1  0.2 13.9 
HIV/AIDS 2.3  2.9  2.2 
Tuberculosis 2.1 44.5 0.2  1.8 
Asthma  0.3 0.1   
Lower respiratory infection      
Ischemia      
Mesothelioma      
Tracheal cancer      
Pancreatic cancer      
Rheumatic disease   2.5   

D
em

og
ra

ph
ic

s 
&

 S
oc

ia
l 

Age 0.9 0.8  0.9 0.8 
Female-AA%  101.1 0.4 0.2 0.1 
Female-WA%  0.1    
Male-AA%   2.9 0.2 0.2 
Male-WA%  6.3 0.3   
Asian%      
Smokers%      
Unemployed% 1.5 1.3  1.6 1.5 
Income Rate      
Uninsured%      
Food insecurity  0.9    
Fair/Poor health      

E
nv

iro
n

m
en

ta
l Population density  1.01 1.01 1.01 1.01 

AQI   0.4   
Temperature 1.2 1.1 1.1 1.1  
PM   11.7   

* for instance, OR=1.1 means that 1% increase in diabetes MR is associated with a 10% increase in the relative log odds of being in cluster 2 vs. cluster 0 

(MIR=0). 
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Table 7. 3rd Wave (Sep 3 �± Nov 12, 2020): significant risk factors and their odds ratios in each cluster 
compare to cluster 0 (counties with MIR=0). Blank spots indicate the insignificant risk factors 

 
Variable 

Cluster 
 1 2 3 4 

C
om

or
bi

di
tie

s 
&

 D
is

or
de

rs
 

CVD     
Cardiomyopathy & myocarditis 1.3   1.2 
Hypertensive heart disease     
Peripheral vascular disease     
Cerebrovascular     
Diabetes 1.2*    
Hepatitis 0.5 0.1 0.6 10099.2**  

HIV/AIDS  4.0 78.8  

Tuberculosis 3.2 33.6 7.0 31.4 
Lower respiratory infection  1.1 1.1  
Interstitial lung disease & pulmonary sarcoidosis  0.5   
Asthma   0.4  
COPD     
Ischemia     
Mesothelioma 9.3 20.5 3.6 8.7 
Tracheal cancer 0.9    
Leukemia     
Pancreatic cancer     
Drug use disorder  0.7   
Alcohol use disorder 0.6    

D
em

og
ra

ph
ic

s 
&

 S
oc

ia
l Female-AA% 33.4 0.1 0.4 22.9 

Female-WA% 0.03 0.02 0.1 0.001 
Male-AA% 0.1 0.1 0.1 1.3 
Smokers% 1.3    
Unemployed%     
Income Rate     
Uninsured%     
Food insecurity 0.8    
Fair/Poor health     

E
nv

iro
n

m
en

ta
l Population density 1.02   1.02 

AQI  0.7  1.4 
Temperature   0.8  

PM   0.6 0.3 
* for instance, OR=1.2 means that 1% increase in diabetes MR is associated with a 20% increase in the relative log odds of being in cluster 1 vs. cluster 0 (MIR=0). 
** Due to the sparsity of hepatitis mortality rate in these particular counties (during the 3rd wave), the odds ratio estimation of hepatitis is not 

reliable. One way around this issue is to categorize the hepatitis MR and use the categorical version of this variable in the multinomial model. 

However, we decided to avoide this approach to stay consistent with the rest of the results. 
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