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ABSTRACT10

To accelerate the clinical adoption of quantitative magnetic resonance imaging (qMRI), frameworks are needed that not only

allow for rapid acquisition, but also flexibility, cost-efficiency, and high accuracy in parameter mapping. In this study, feed-forward

deep neural network (DNN)- and iterative fitting-based frameworks are compared for multi-parametric (MP) relaxometry based

on phase-cycled balanced steady-state free precession (pc-bSSFP) imaging. The performance of supervised DNNs (SVNN),

self-supervised physics-informed DNNs (PINN), and an iterative fitting framework termed motion-insensitive rapid configuration

relaxometry (MIRACLE) was evaluated in silico and in vivo in brain tissue of healthy subjects, including Monte Carlo sampling

to simulate noise. DNNs were trained on three distinct in silico parameter distributions and at different signal-to-noise-ratios.

The PINN framework, which incorporates physical knowledge into the training process, ensured more consistent inference

and increased robustness to training data distribution compared to the SVNN. Whole-brain relaxometry using DNNs proved

to be effective and adaptive, suggesting the potential for low-cost DNN retraining. This work emphasizes the advantages of

in silico DNN MP-qMRI pipelines for rapid data generation and DNN training without extensive dictionary generation, long

parameter inference times, or prolonged data acquisition, highlighting the flexible and rapid nature of lightweight machine

learning applications for MP-qMRI.

11

Introduction12

Improving the efficiency and stability of quantitative magnetic resonance imaging (qMRI) methods is a crucial research task to13

enable clinical applicability, necessitating sophisticated acquisition, reconstruction, and postprocessing strategies. In addition to14

accurate morphological information, which MRI as a non-invasive imaging tool can provide to guide treatment1, qMRI has15

the potential to reduce subjectivity, resolve hardware or protocol dependencies inherent to conventional qualitative imaging,16

and increase intra- or interscanner reproducibility2, facilitating the decision-making process in the diagnosis and prognosis17

of diseases. Generally, qMRI aims at fitting multiple qualitative (weighted) images to quantitative parameter maps with a18

voxel-wise representation of biophysical and microstructural processes. The derived quantitative MR biomarkers, such as19

relaxometry metrics, offer great potential for early detection of pathological tissue changes or longitudinal monitoring of20

disease. Recent studies have shown that quantitative T2 is an important marker of cortical pathology in multiple sclerosis21

patients3, 4, early detection of hippocampal sclerosis in mesial temporal lobe epilepsy5, cerebrovascular disease6, or early22

Alzheimer’s disease7, 8. Quantitative T1 has proven beneficial for longitudinal studies to access microstructural changes related23

to brain aging9 or Parkinson’s disease10. To reduce acquisition time, multi-parametric qMRI (MP-qMRI) has been of particular24

interest, aiming at the simultaneous estimation of multiple intrinsically co-registered parameter maps and a more complete25

neuroimaging protocol within feasible scan times11, 12.26

Steady-state free precession (SSFP) sequences are a popular choice for MP-qMRI due to their sensitivity to various27

biochemical and microstructural tissue properties, mixed T1 and T2 signal sensitivity, and efficiency13. Jara et al. reported28

that MP-qMRI frameworks can be divided into direct and indirect frameworks. The latter rely on clinically interpretable29

fully reconstructed weighted images for post hoc mapping of parameters of interest14–18. On the other hand, direct MP-30

qMRI frameworks, such as magnetic resonance fingerprinting (MRF)19, employ the acquisition of hundreds to thousands31

of data points using high undersampling factors to then quantify parameters of interest from the acquired tissue-specific32

signal evolutions. Thereby, MRF uses a pseudo-randomized pattern of continuously varying flip angles and repetition times,33

which is not necessarily efficient due to required relaxation delays to recover longitudinal magnetization. Recent studies34



demonstrate whole-brain coverage using MRF, but at the cost of either prohibitively long combined image reconstruction35

and dictionary generation times in the order of a few hours20 or rather low resolution with thick slices to ensure sufficiently36

high signal-to-noise-ratios (SNRs)21, 22. Indirect approaches, including phase-cycled balanced SSFP (pc-bSSFP)15, 16 and37

multi-pathway non-balanced SSFP14 imaging, allow fast and efficient acquisition of multiple contrasts without the need for38

extensive undersampling, waiting times, or long reconstruction times, while providing isotropic whole-brain coverage.39

Machine learning (ML) techniques, in particular deep neural networks (DNNs), have shown great success for both direct40

and indirect MP-qMRI frameworks. DNNs are utilized for dictionary generation and matching in the case of MRF22–24 or41

for multi-parametric inference from multi-contrast SSFP data18, 25. Data-driven model-free methods that leverage measured42

input and ground truth data for supervised learning are capable of eliminating the estimation bias due to oversimplified existing43

signal models, for example as a result of unaccounted microstructural features as in the case of single-component simultaneous44

T1 and T2 quantification based on pc-bSSFP18. The primary constraints of in vivo supervised learning are the dependence of the45

trained DNN on specific measurement protocols, time-consuming acquisition of ground truth data, limited hardware and data46

accessibility, and unknown model assumptions as part of black-box modeling. In silico data generation, on the other hand,47

allows maximum control over the training data used and is becoming increasingly important in the (pre)training of ML models.48

Nevertheless, DNNs trained on in silico data for MP-qMRI are strongly influenced by the chosen training data distribution26.49

Gyori et al. showed that selecting a uniform or an in vivo data distribution for the target parameters of interest differently50

affects the precision and accuracy of supervised DNN predictions. Recent research has compared supervised deep neural51

networks with physics-informed self-supervised decoding-encoding deep neural networks in the context of joint diffusion and52

T1 quantification27.53

This study proposes the use of in silico pc-bSSFP data to train DNN models as flexible and cost-effective frameworks for54

multi-parameter estimation. To this end, we compare three methods for in vivo whole-brain MP-qMRI relaxometry targeted on55

the simultaneous estimation of T1 and T2 in tissue, including a supervised DNN (SVNN), a physics-informed self-supervised56

DNN (PINN), and a conventional relaxometry method called motion-insensitive rapid configuration relaxometry (MIRACLE)15
57

as reference. We investigate the impact of training data distribution on the reliability of the parameter estimation for both58

DNN methods. The robustness of the trained SVNNs and PINNs as well as conventional MIRACLE in the presence of59

noise-corrupted data is analyzed based on a Monte Carlo (MC) estimation of accuracy and precision metrics. Ultimately, we60

evaluate the flexibility of DNNs in learning the inverse signal model for parameter estimation in terms of convergence speed61

during training and estimation speed of the final DNN models.62

Methods63

The following subsections describe the in vivo data acquisition and processing, the in silico signal generation, the DNN and64

MIRACLE frameworks for relaxometry fitting, and the experiments to validate the in silico and in vivo performance. All in65

vivo experiments were conducted at a field strength of 3 T (Magnetom Prisma, Siemens Healthineers, Erlangen, Germany)66

and in accordance with the guidelines of the ethics committee of the Faculty of Medicine at the Eberhard Karls University of67

Tübingen. Python and PyTorch were used for data simulation, data processing, as well as DNN training and fitting.68

Data Acquisition In Vivo69

For in vivo validation, sagittal 3D pc-bSSFP data were used, acquired in healthy subjects with a Npc = 12 phase-cycling70

scheme using radiofrequency phase increments φ evenly distributed in the range 0 to 2π rad: φ( j) = π/Npc · (2 j−1), where71

j = 1, 2, . . . Npc. The bSSFP imaging protocol employed an isotropic resolution of 1.3×1.3×1.3 mm3 with an image encoding72

matrix of 176 × 176 × 128, ensuring coverage of the entire brain. The repetition time TR and echo time TE were set to 4.8 ms73

and 2.4 ms, respectively, and the nominal flip angle αnom was fixed at 15◦. Prior to the acquisition of each phase-cycle φ ,74

256 dummy pulses were played out to establish steady-state conditions. Incorporating a 2-fold in-plane parallel imaging75

(Generalized Autocalibrating Partial Parallel Acquisition (GRAPPA)) acceleration factor, the acquisition of whole-brain76

12-point pc-bSSFP data was completed within 10 min and 12 s. The B+
1 scaling factor (αact/αnom = actual/nominal flip angle)77

was calculated employing the vendor’s standard B+
1 mapping sequence28, 29, including a TR/TE/αnom of 14.2 s/2.4 ms/8◦, 3078

sagittal slices with a 100% slice gap, an in-plane resolution of 2.4×2.4 mm2, a slice thickness of 3 mm, and a total scan time79

of 29 s.80

Data Processing In Vivo81

Registration and segmentation tasks were performed using the FSL30 and SPM31 software packages. To correct for motion over82

the course of the 10 min scan, intra-registration along the phase-cycle dimension was achieved by registering the magnitude of83

each phase-cycle to the magnitude of the sixth phase-cycle and applying each transformation to the corresponding phase data.84

In addition, rigid body registration was used to align the B+
1 baseline anatomical image to the mean magnitude image from85

the motion-corrected pc-bSSFP data. The obtained transformation was applied to the B+
1 map, which was then 3D median86
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Figure 1. The workflow proposed in this work. (a) Data Simulation: The input parameters p =
{

T1,T2,B
+
1

}

entering the

analytical bSSFP signal model (see Equation 1) were sampled from three different distributions (in vivo, uniform, and uniform

extended) for T1 and T2, and from a single uniform distribution for B+
1 . The sequence parameters from the in vivo acquisition

protocol (TR, TE, αnom, Npc) were used to draw 400,000 signal samples SbSSFP from each T1 and T2 distribution. (b)

Multi-Parametric-Fitting Frameworks: The input to each of the three frameworks, which means the physics-informed neural

network (PINN, 1), the supervised neural network (SVNN, 2), and the iterative golden section search (GSS) fitting (MIRACLE,

3), consisted of the amplitudes of the three lowest order SSFP configuration modes computed from a Fourier transform (FT) of

the phase-cycled bSSFP signal with the option to add noise and in addition of B+
1 . 1) and 2) use the same multilayer perceptron

architecture to estimate the inverse signal model and predict the parameters T̂1 and T̂2. 1) uses the predicted T̂1 and T̂2 to

generate an estimated signal Ŝ and compare it to the input signal Sinp in the LPINN loss, while 2) compares the predicted T̂1 and

T̂2 directly to the respective ground truth (GT) T1 and T2 in the LSVNN loss.
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filtered (kernel size = [10,10,10]). The three lowest order SSFP configuration modes F−1, F0, and F1 were computed based87

on a 12-point discrete Fourier transform of the complex pc-bSSFP data and the magnitudes of the configuration modes were88

further subjected to Gibbs ringing removal32. Voxel-wise normalization using Euclidean distance was performed to match the89

in silico data. For in vivo SNR determination, the average signal level was obtained as the mean signal in a whole-brain tissue90

mask applied to the magnitude of the F0 configuration, pooled across three representative subjects. The average noise level was91

determined as the mean standard deviation in a background mask applied to the same data. The average SNR level pooled92

across all three subjects was 25. The definition of the masks for the in vivo SNR determination is illustrated in Supplementary93

Fig. S1.94

Data Generation In Silico95

Synthetic single isochromat pc-bSSFP signals SbSSFP were generated using the forward on-resonant bSSFP signal model96

SbSSFP(p,u) with parameters p ∈
{

T1,T2,B
+
1

}

(longitudinal relaxation time T1; transverse relaxation time T2; transmit field97

scaling factor B+
1 = αact/αnom), sequence parameters u ∈

{

TR,TE,αnom,Npc

}

(repetition time TR, echo time TE, nominal98

flip angle αnom, number of phase cycles Npc), and initial magnetization M0 = 133:99

SbSSFP = M0
(1−E1)(1−E2e−iφ )sinαact

C cosφ +D
e−TE/T2 (1)

with

E1,2 = e−TR/T1,2 (2)

C = E2(E1 −1)(1+ cosαact) (3)

D = (1−E1 cosαact)− (E1 − cosαact)E
2
2 (4)

and

φ [0,2π] = π/Npc · (2 j−1), j = 1,2, ...,Npc (5)

The target parameters T1 and T2 were sampled from three different distributions (see Figure 1): a uniform distribution100

with T1 ranging from 360 to 2080 ms and T2 ranging from 20 to 120 ms, a uniform distribution with an extended T1 range101

from 360 to 5000 ms and an extended T2 range from 20 to 2500 ms, and an in vivo distribution with the same range as the102

uniform distribution, but by sampling from a 2D density map generated based on the T1 and T2 brain voxel distributions of103

three healthy subjects obtained from existing gold standard 2D multi-slice inversion-recovery turbo-spin-echo (T1) and 2D104

multi-slice single-echo spin-echo (T2) scans with variable inversion and echo times, respectively. Corresponding anatomical105

magnetization-prepared rapid gradient-echo (MPRAGE) data34 were skull-stripped and used for white matter (WM), gray106

matter (GM), and cerebrospinal fluid (CSF) segmentation. Voxels containing pure CSF according to the performed segmentation107

were excluded from the density estimation. The T1 and T2 parameter boundaries of the in vivo and uniform distribution were108

approximated as the mean ± 2 standard deviations of the values in the defined brain masks of three subjects. Additionally,109

T1 < T2 parameter combinations were excluded for all distributions. For each distribution, 400,000 samples were generated,110

resulting in a total training data size of 38.4 MB and 6.4 MB for the input and target data, respectively. B+
1 was uniformly111

sampled in the range 0.7 to 1.3 and an on-resonant condition with an off-resonance ∆B0 = 0 Hz was assumed. Sequence112

parameters were set according to the in vivo pc-bSSFP protocol. For in silico performance validation, an additional 2D grid113

(200 x 200 steps) of linearly sampled T1 and T2 values in the uniform distribution range as well as 40,000 in vivo test data114

points sampled from the 2D in vivo density map were generated for pc-bSSFP signal simulation (B+
1 = 1).115

Relaxometry116

For direct comparison, the DNNs were designed to take the same input data as MIRACLE, i.e. the magnitude of the three117

lowest order SSFP configuration modes (F−1, F0, F1) and B+
1 , as shown in Figure 1. MIRACLE fitting was performed using118

an iterative golden section search minimization algorithm with an initial T1 estimate of 1000 ms14, 15. SVNNs and PINNs119

were based on a fully connected feed-forward multilayer perceptron with four inputs, two hidden layers of 64 neurons each,120

followed by a ReLU activation function, and an output sigmoid layer of two neurons for T1 and T2 estimation. The resulting121
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model contained 4610 trainable parameters, leading to a total size of 21 kB. The trainable parameters were initialized using122

PyTorch’s default layer initialization35 and the Adam optimizer36. A fixed learning rate of 2 ·10−4, a batch size of 128, an early123

stopping with a patience of 25 epochs, and a maximum of 300 epochs were used for DNN training. Within each training batch,124

the real and imaginary parts of the pc-bSSFP data were corrupted by additive Gaussian noise samples with a noise level of125

η = 0.074/(
√

2 ·SNR) and SNR ∈ {inf,50,25,10}, where η is zero if SNR = inf. The three lowest order SSFP configuration126

modes were computed as described above in the subsection Data Processing In Vivo. While both DNN frameworks were127

designed to decode the inverse signal model from the pc-bSSFP signals to target relaxometry parameters, two different loss128

strategies were used as proposed by Grussu et al.27: a signal loss LPINN = MSE(Ŝ,Sinp) involving the analytical pc-bSSFP129

signal model and subsequent Fourier transform of the complex signal in the encoding step to compute the mean squared error130

(MSE) between the signal from the predicted target parameters Ŝ and the input signal Sinp (see Figure 1b, part 1), and a target131

parameter loss LSVNN = MSE(Ti, T̂i) with i = 1,2, which computes the MSE between the model parameter predictions T̂1 and132

T̂2 and the ground truth target parameters T1 and T2 (see Figure 1b, part 2).133

Validation In Silico134

Each DNN framework, trained with different distributions and SNR levels, as well as the MIRACLE framework were validated135

on 5000 MC samples by augmenting the complex pc-bSSFP signals from the 2D linear grid and in vivo distribution test data136

of T1 and T2 values with additive noise from a Gaussian distribution and SNR ∈ {inf,50,45,40,35,30,25,20,15,10}. To test137

the accuracy and precision of each framework on in silico data, the mean µMC, standard deviation σMC, and relative standard138

deviation σrel = σMC/µMC of the parameter predictions across all MC samples were calculated. The relative error between the139

MC mean of the parameter predictions ŷµMC
and the respective ground truth value y was calculated for both DNN frameworks140

on the 2D linear T1 and T2 sampling grid as εrel = (ŷµMC
− y)/y ·100. In addition, the coefficient of determination (CoD) was141

calculated for all frameworks, distributions, and SNR levels for the entire 2D grid and the in vivo test data. The CoD was142

computed as a global metric as follows:143

CoD = 1−
∑

n
i=1(yi − ŷiµMC

)2

∑
n
i=1(yi − ȳ)2

(6)

where:

n is the number of observations,

yi is the observed value for the ith observation,

ŷiµMC
is the MC mean of the predicted values for the ith observation,

ȳ is the mean of the observed values.

Validation In Vivo144

For each relaxometry framework, simultaneous whole-brain T1 and T2 estimation was performed in healthy subjects. SVNN145

and PINN frameworks trained without the addition of noise during training (SNR = inf) were used for in vivo inference. To146

compare the effect of different training data distributions on prediction accuracy, the absolute difference between the DNN147

predictions from the trainings with three distributions and the MIRACLE prediction was calculated. In addition, MC sampling148

was performed on an exemplary axial slice of the in vivo data with 5000 samples and six augmented ROIs with additional149

Gaussian noise added to the real and imaginary parts of the acquired pc-bSSFP data before calculating the SSFP configuration150

modes.151

The effectiveness of the DNN frameworks to learn the inverse signal model for MP-qMRI was investigated by calculating152

the CoD between whole-brain relaxometry predictions of each epoch and the final epoch of a training process for whole-brain153

WM, GM, and WM+GM tissue masks. Furthermore, a single-epoch PINN training was performed and applied to the in vivo test154

subject. The entire process of in silico data generation, single-epoch learning, and in vivo inference was timed and compared to155

the MIRACLE algorithm on whole brain pc-bSSFP data (single CPU thread on Intel(R) Xeon(R) W-2255 CPU @ 3.70GHz,156

62.5 GB RAM). To assess the benefit of the trained DNN frameworks, the inference time for simultaneous in vivo whole-brain157

relaxometry was additionally measured for all three frameworks on input data interpolated to different isotropic resolutions of158

1.3 mm, 1.0 mm, 0.8 mm, 0.6 mm, and 0.4 mm.159

Results160

In Silico161

The impact of including image noise explicitly into the DNN training process by adding noise of a predefined level to the in162

silico training data is analyzed by an MC sampling of the in silico test data for DNNs trained on three different training data163
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distributions (cf. Figure 2). To ensure comparability with the acquired in vivo data, the noise added during training was matched164

to the SNR of 25 present in the masked brain tissue of the in vivo pc-bSSFP data and applied to the test data. As evident from165

Figure 2, training DNN frameworks under non-ideal conditions with noise-corrupted training samples does not imply better166

accuracy on test data with equal SNR level. While the accuracy of PINNs trained on noise-corrupted data (Figure 2b, right)167

appears similar to that of PINNs trained on noise-free data (Figure 2a, right), SVNNs perform worse when training includes168

noise (Figure 2, left). Furthermore, it can be observed that the performance of the trained PINN models is largely independent169

of the training data distribution, in contrast to the SVNN frameworks. In the case of the uniform distribution with extended170

parameter range, the SVNN shows reduced accuracy compared to the other two distributions. Since training with additional171

noise evidently does not improve prediction performance, the following analysis focuses on the application of DNNs trained on172

noise-free in silico data. Therefore, the indication of SNR or noise levels refers in the following exclusively to the test data173

rather than the training data.174

The prediction performance dependence of the DNNs trained with noise-free data and MIRACLE on the SNR of the in175

silico test data is evaluated in Figure 3 by the calculation of the CoD, reflecting the agreement between the mean MC predictions176

and the ground truth for test data from a linear sampling grid (cf. Figure 3, left column) and from the in vivo distribution177

(cf. Figure 3, right column). High CoD values can be observed for MIRACLE at SNR levels down to ≈ 15− 20 until the178

accuracy starts to break down (cf. Figure 3a). While the difference between the CoD of the DNNs and MIRACLE (∆CoD) is179

neglectable for high test SNR levels, the performance of the DNNs trained with the uniform and in vivo distributions is superior180

to MIRACLE at low SNR levels (≤ 15) (cf. Figure 3b and c). The DNNs trained with the uniform extended distribution show181

reduced CoD values on noisy test data comparable to MIRACLE. Only exception is the SVNN-based T2 estimation, which182

shows a clearly lower accuracy than MIRACLE for the in vivo distribution test data in case of the uniform extended training183

data distribution (cf. Figure 3c, right).184

The robustness of the DNNs trained with data distributions matched to the in vivo tissue T1 and T2 range, i.e. uniform and185

in vivo distributions, is further corroborated by the precision analysis in Figure 4. The relative standard deviation σrel(Ti) of the186

MC simulation for in silico test data from a linear grid with an SNR = 25 reflecting in vivo conditions is lower than MIRACLE187

for both SVNNs and PINNs trained with the uniform or in vivo distribution while the DNNs trained with the uniform extended188

distribution demonstrate similar precision as MIRACLE. The performance advantage of the DNNs trained with the uniform189

and in vivo distribution is enhanced in low SNR scenarios (see Supplementary Fig. S2, SNR = 10).190

In Vivo191

In line with the in silico results in Figure 2 and Figure 3, the trained DNNs show high agreement with MIRACLE relaxometry192

in brain tissues when tested on unseen in vivo data, especially for the parameter distributions, which are optimized for brain193

tissue at the employed field strength (cf. Figure 5). The relaxation parameter values predicted by the SVNN framework, which194

was trained with the uniform extended distribution and thus for a parameter range covering not only relaxation times in tissues195

but also in fluids, deviate from T1 and T2 provided by MIRACLE. On the other hand, the PINN framework shows greater196

robustness to the underlying training data distribution with lower differences to the MIRACLE predictions, especially for T2,197

but also T1. Furthermore, the in vivo MC sampling demonstrates an increased precision (lower σMC) for DNNs trained with the198

uniform (cf. Figure 6) and in vivo (not shown) distributions as compared to MIRACLE, thus confirming the in silico findings199

illustrated in Figure 4. In accordance with the in silico results, mean and standard deviation of in vivo MC samples match the200

MIRACLE performance for DNNs trained with the uniform extended distribution (see Supplementary Fig. S3).201

Flexible and Cost-Effective Relaxometry202

The adaptability and flexibility of in silico DNN training is evaluated in Figure 7a (SVNN) and Figure 7b (PINN) by the203

CoD between the in vivo predictions of each epoch and the final epoch in different whole-brain tissue masks as well as the204

overall validation loss across epochs, representatively for a DNN training using the uniform data distribution. Final training205

convergence with a CoD > 0.99 was reached after about 200 epochs. However, already within the first epochs, T1 and T2206

relaxation times of brain tissues are learned effectively. This is corroborated by CoD values higher than 0.93 and 0.88 after207

the very first, and higher than 0.99 and 0.97 after the first ten epochs for the SVNN (cf. Figure 7a) and PINN (cf. Figure 7b),208

respectively, across all investigated tissue masks. Training of a single epoch was completed after only about 9 s for the SVNN209

and 14 s for the PINN frameworks using a single CPU thread. The effectiveness of single-epoch versus final-epoch training is210

demonstrated for in vivo whole-brain relaxometry in Figure 7c and d for the SVNN and PINN frameworks, respectively. The211

entire process of training data simulation, single-epoch model training, and whole-brain in vivo inference at 1.3 mm isotropic212

resolution took only about 12 s and 17 s for the SVNN and PINN frameworks, respectively, thus only about 45 % and 64 %213

compared to the inference time of the MIRACLE algorithm applied to the same data by using the same computing power.214

A clear advantage of using DNNs over the MIRACLE framework for simultaneous whole-brain relaxometry is the inference215

time, as demonstrated in Figure 8. When the resolution of the in vivo input data is increased from 1.3 mm to 0.8 mm or even216

to 0.4 mm isotropic voxel sizes, the inference time increases exponentially from 26.7 s to 96.9 s to 769.8 s for MIRACLE,217
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Figure 2. Influence of training data SNR and training data distribution on accuracy of investigated DNNs in silico. The

relative error in percent εrel(Ti) = (T̂iµMC
−Ti)/Ti ·100 with i = 1,2, between the mean of the MC simulation T̂iµMC

and the

ground truth Ti, is quantified for T1 and T2 parameter estimates of the SVNNs (left) and PINNs (right) trained on noise-free (a,

SNR = inf) and noise-corrupted (b, SNR = 25) data with different training data distributions. The MC estimation is performed

on a noise-corrupted in silico linear test grid with SNR = 25 matched to in vivo conditions as well as a T1 and T2 range

corresponding to brain tissues (consistent with the parameter range of the in vivo and uniform distribution employed for DNN

training). Parameter over- and underestimation with respect to the ground truth are shown in red and blue, respectively.

7/16



Figure 3. Coefficient of determination versus test data SNR of investigated DNNs relative to MIRACLE in silico. The CoD

between the mean MC relaxation parameter predictions T̂iµMC
and the ground truth Ti with i = 1,2 (T1 in red and T2 in blue) is

shown for the linear test grid (left column) and the in vivo distribution test data (right column). (a) CoD versus test data SNR

for MIRACLE (□). (b) and (c) The absolute CoD difference between the DNNs and MIRACLE

(∆CoD = CoDDNN −CoDMIRACLE) versus test data SNR for the PINN (b) and the SVNN (c). For both SVNN and PINN, three

models trained on noise-free data (SNR = inf) with different data distributions are evaluated: in vivo (△), uniform (◦), and

uniform extended distribution (+). Note that positive/negative values in (b) and (c) are referring to higher/lower CoD values of

the DNNs relative to MIRACLE.
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Figure 4. Influence of training data distribution on precision of investigated DNNs versus MIRACLE in silico. The precision

of T1 and T2 quantification is evaluated by MC sampling with an SNR level of 25, matched to the in vivo data, applied to an in

silico linear test grid with T1 in the range 360 to 2080 ms and T2 in the range 20 to 120 ms. The relative standard deviation

σrel = σMC/µMC, with µMC and σMC corresponding to the mean and standard deviation of the MC simulation is plotted for all

three frameworks (SVNN, PINN, MIRACLE) and in case of the DNNs for all three trained data distributions. All DNNs were

trained without additional noise applied to the training data (SNR = inf).

compared to 2.3 s to 9.9 s to 78.0 s for the PINN (and similarly for the SVNN). The inference time using DNNs is thus always218

in the order of one magnitude lower, allowing fast parameter estimation for very high-resolution whole-brain data in only about219

10 % of the inference time compared to MIRACLE.220

Discussion221

Since the optimization of DNN model architectures may require new measurements, re-running of DNN training, or adaptation222

to changing tissue parameter characteristics at different field strengths as in case of relaxation times, flexible and effective DNN223

frameworks are desired. The results presented in this work suggest the combination of in silico trained DNNs with pc-bSSFP224

imaging as a fast and adaptable framework for MP-qMRI relaxometry. In silico DNN training allows full control over sequence225

parameters and tissue parameter distributions, does not require any extra measurements of ground truth data, and is able to226

efficiently learn the inverse signal model. Both supervised and self-supervised physics-informed DNNs have been successfully227

implemented and trained on different in silico data distributions, achieving a performance matching or exceeding the one of228

reference iterative multi-parametric fitting approaches such as MIRACLE with whole-brain in vivo inference times on unseen229

test data, which are an order of magnitude shorter in comparison to MIRACLE.230

MC simulations based on in silico data (cf. Figure 2) revealed a strong sensitivity of SVNN estimation accuracy to the231

training data distribution, but also to the SNR level of the training data while the PINN models remained highly unaffected by232

the distribution and noise characteristics of the training samples. Generally, the DNNs trained on noise-corrupted training data233

and tested on data at the same SNR level did not reveal any ability to improve T1 and T2 prediction performance as compared to234

DNNs trained without any additional noise. Increasing the complexity of DNNs may allow to capture the noise present in the235

training data. However, sample-wise noise addition may be unrealistic for the spatially varying noise characteristics encountered236

in reconstructed MR images and hinder efficient learning of the signal model, especially for smaller DNN architectures with237

fewer trainable parameters. Provided the accessibility of larger cohort data sets, image-based DNNs could be investigated in238

future for denoising tasks.239

The DNNs trained on noise-free in silico data with a uniform parameter distribution matched to the relaxation time range240

of tissues or an in vivo parameter distribution performed reliably in the presence of noise on the test data, with an advantage241

over MIRACLE for low SNR scenarios (cf. Figure 3), which may be particularly beneficial for potential future applications at242

low-fields (B0 ≤ 1.5T). As evident from the results presented in Figure 4 for a realistic pc-bSSFP SNR level applied to the test243

data (determined for 3T and 1.3 mm isotropic resolution), the precision of the trained DNNs is affected by the training data244

distribution. For distributions tailored to the relaxation time range of interest, DNNs show ability to reach higher precision than245

MIRACLE, motivating the optimization of DNN frameworks for targeted tissue parameter ranges. The lower the SNR of the246

input data, the more pronounced becomes the precision advantage of the DNNs over MIRACLE (cf. Supplementary Fig. S2).247

The in silico results were successfully reproduced on in vivo test data, revealing a stronger dependence on the training data248

distribution of the SVNN framework compared to the PINN framework (cf. Figure 5). The observed influence of training data249
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Figure 5. In vivo analysis of the effect of the DNN training data distribution relative to MIRACLE. A representative axial

slice of the in vivo whole-brain T1 (first row) and T2 (third row) predictions of an unseen test subject is shown for the

MIRACLE framework (first column), and both DNNs, each trained on in silico data without additional noise (SNR = inf) and

three different distributions (in vivo, uniform, and uniform extended). The absolute differences between the DNN predictions

and the MIRACLE prediction are shown in the second and fourth row for T1 and T2, respectively. Red and blue refer to an over-

and underestimation of the DNN framework predictions relative to the MIRACLE framework predictions, respectively.
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Figure 6. Robustness in the presence of noise-corrupted in vivo test data of SVNN and PINN versus MIRACLE, illustrated

for a representative axial slice of an unseen test subject. (a) The multi-contrast input for quantification of the relaxation

parameters, i.e. the magnitude of F−1, F0, and F1, for an individual MC noise sample. (b) The mean (µMC, rows 1+2) and

standard deviation (σMC, rows 3+4) of the in vivo MC parameter predictions. The displayed results refer to DNNs trained on in

silico data with the uniform distribution and no additional noise (SNR = inf). In addition to the existing noise of the in vivo

test data, noise sampled from a Gaussian distribution with six different standard deviations (η ∈ {1,2,4,8,12,16} and

respective in vivo SNRs ∈ {18,14,11,7,5,4}) was added to the real and imaginary parts of the pc-bSSFP data in six different

rectangular ROIs, labeled 1-6 in the order of increasing noise levels.
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Figure 7. Efficiency of DNN inverse signal model learning versus epochs, corroborated by representative relaxation time

maps of single-epoch in vivo whole-brain inference. The CoD during SVNN (a) and PINN (b) training is calculated for each

epoch with respect to the final-epoch model and plotted versus epochs for in vivo T1 (red) and T2 (blue) predictions in

whole-brain WM, GM, and WM+GM tissue masks of an unseen test subject. Additionally, the validation loss for both DNN

frameworks is shown in black on a logarithmic scale. The employed DNNs were trained on the in silico uniform noise-free data

distribution. Note that the final validation loss of the SVNN framework is on the order of one magnitude lower than the one of

the PINN framework due to the different definitions of the loss functions and embedding of physical constraints for the PINN.

Corresponding representative axial, coronal, and sagittal slices of in vivo whole-brain T1 and T2 single-echo versus final-epoch

predictions of an unseen test subject are shown for SVNN (c) and PINN (d).

12/16



Figure 8. Whole-brain relaxometry inference times for different isotropic resolutions of the input data. The inference times in

seconds of each multi-parametric relaxometry framework (SVNN: blue, PINN: green, MIRACLE: orange) are calculated for

the whole-brain input data of a test subject interpolated to different isotropic resolutions of 1.3, 1.0, 0.8, 0.6 and 0.4 mm.

Inference is performed using a single CPU thread (Intel(R) Xeon(R) W-2255 CPU @ 3.70GHz, 62.5 GB RAM).

distribution on the accuracy of SVNNs is consistent with existing research26, 37. Epstein et al. proposed to adjust the in silico250

ground truth labels by precomputed labels from maximum likelihood estimation and to extend the supervised loss to improve251

the accuracy of SVNNs37. On the other hand, the observed robustness of physics-informed DNNs to the underlying training252

data distributions can be explained by a successful utilization of the analytical pc-bSSFP signal model, which encodes the253

estimated parameters into the pc-bSSFP signal during the learning process. Additionally, we observed that the DNNs, which254

were trained on data distributions optimized for the brain tissue parameter range, achieved lower standard deviations in the in255

vivo MC simulations for added noise levels and thus increased precision compared to MIRACLE (cf. Figure 6), in line with the256

in silico findings.257

Inherent to the architecture of PINNs are the boundaries of the achievable parameter values, which are predefined by the258

developer, prohibiting extrapolation. Thus, a limitation of PINNs is the need for retraining if the parameter range of interest259

falls outside the simulated range. Similarly, the performance of SVNNs is expected to be impaired for parameter combinations260

not contained in the training set. Furthermore, this work is restricted to a single-component signal model by assuming that261

only a single T1 and T2 component at a single resonance frequency contributes to the acquired pc-bSSFP signal evolutions in262

tissues, thus not accounting for characteristic asymmetries in the frequency response of bSSFP. Those reflect anisotropies in263

tissue microstructure with a correlation to diffusion metrics, e.g. in WM38–41, or the sensitivity to chemical shift, which can be264

exploited for fat fraction mapping42. Comparable to MIRACLE, this results in an underestimation of T1 and T2 in brain tissues265

with respect to gold standard spin-echo-based reference methods15, 16.266

In contrast to PINN, SVNN architectures are capable to identify nonlinear feature decodings, which cannot be modeled267

analytically. This can be exploited for the training of model-free SVNNs on in vivo data with independent ground truth MR268

measurements for each target parameter. However, supervised learning on in vivo data may be prone to input and target269

misalignment and necessitate prohibitively long scan times due to the need for ground truth data acquisition. Furthermore, the270

common ground in qMRI is dynamic and even current gold standard methods can be subject to various adverse instrumental271

factors related to the underlying sequence, hardware, or fitting routine, potentially leading to a quantification bias43.272

Due to the ability to simulate, train, and infer tissue parameters in only a few seconds as demonstrated here (cf. Figure 7), in273

silico DNN training provides a cost-effective option and can easily be adapted to altered sequence parameters, new anatomical274

targets, or different field strengths, without requiring extensive MR data collection. While this work focuses on a direct275

comparison with MIRACLE, the input of the implemented DNNs can conveniently be extended to include phase information276

and thus to extract additional parameters, e.g. ∆B0. Once trained, the investigated DNNs are able to infer multi-parametric277
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relaxation characteristics an order of magnitude faster than traditional iterative fitting as only a few matrix multiplications need278

to be performed (cf. Figure 8). This has high value in terms of clinical applicability or for studies necessitating the processing279

of large data cohorts. Future work may include the extension of the signal model employed for in silico DNN training to280

multi-compartment scenarios, the implementation of image-based architectures to benefit from anatomical information, and the281

application to pathological test data to validate the generalization performance in a clinical context.282

In conclusion, we have derived adaptable cost-effective deep learning frameworks for multi-parametric relaxometry based283

on pc-bSSFP data, which are characterized by rapid convergence during training, parameter inference times of only a few284

seconds once training is concluded, and the ability to embed physical knowledge into the training process. By tailoring the285

underlying training data distribution to the target parameters of interest, superior performance to conventional fitting approaches286

could be achieved, especially in low-SNR scenarios, motivating further investigations at low field strengths.287

Data availability288

The data sets analysed during the current study are available via the data sharing platform KEEPER. Upon request, a password-289

protected fully anonymized data set of a test subject can be downloaded.290

Code availability291

The source code and trained models for this study will be publicly available upon acceptance on Github.292
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