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Abstract—This paper studies the distributed fixed-time forma-
tion tracking problem of multiple nonholonomic wheeled mo-
bile robots system over directed fixed and switching topologies.
Through a classical nonlinear transformation, the formation con-
trol problem is transformed into a consensus problem. New control
protocols based on a distributed observer are proposed. The
communication topology between multiple nonholonomic wheeled
mobile robots is directed, which can reduce the energy loss
of communication. Some sufficient conditions of multiple robots
achieving the expected formation pattern are given. All follower
robots can track the leader’s trajectory, form the desired formation
shape within a fixed settling time, and make the leader in the
geometric center of the formation. By adopting graph theory,
Lyapunov stability method and fixed time theory, one can obtain
an upper bound of the settling time, and the settling time is
independent of the system’s initial states. Finally, two examples
are presented to illustrate the potential correctness of the main
results.

Index Terms—fixed-time formation; multiple nonholonomic
robots; distributed observer; Lyapunov stability method.

I. INTRODUCTION

Cooperative control of multiple robots has been greatly

concerned over the past few years and nonholonomic wheeled

mobile robots were widely used. The formation control of

multi-robot systems can achieve many intricate tasks like target

tracking, security and military operations, which can not be

achieved by only one robot [1]–[4]. There are many ways

to keep the formation shape, such as leader-follower [5]–[7],

behaviour-based [8], [9], and virtual structure [10], [11].

Consensus-based control method has been adopted to achieve

the formation tracking control of multi-robot systems. The

convergence speed is a vital performance index for the formation

tracking control. However, most prior studies did not consider

the convergence speed, which indicated that the formation shape
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is formed when time approaches infinity [12], [13]. A protocol

that the convergence speed depends on the algebraic connectiv-

ity was proposed in [14]. Olfati-Saber presented some methods

to improve the algebraic connectivity, but it was still only

asymptotically convergent [15]. Then, the finite-time control

technology is introduced to make the states converge quickly

[16]–[19], and a distributed finite-time control law was proposed

to solve the consensus tracking problem for nonlinear multi-

agent systems. Zhao et al proposed a saturation protocol, which

makes the consensus achieve for a second-order multi-agent

system within a limited time [20]. In [21], [22], the consensus

problem of the multi-robot system in the form of high-order

chain structure is considered, and a finite-time cooperative

control protocol is designed to ensure that the state consensus

is reached within a limited time.

In most of the existing results, the settling time depends

on the initial state of the system. However, the initial state

usually cannot be accurate obtained. Sometimes, it is even

unable to be obtained under certain circumstances. Therefore,

if the initial state is unavailable, the result doesn’t make

much sense. In this case, the fixed time stability theory is

introduced, which makes the settling time independent of the

initial conditions [23], [24]. A fixed-time consensus control

is designed for multi-agent systems with linear and nonlinear

state measurement [25]. In addition, to resolve the problem

of uncertain disturbances in multi-agent system, Hong et al

proposed two fixed-time consensus controller for two cases:

leaderless and leader-follower [26]. Chu et al studied the robust

fixed-time consensus tracking problem of second-order multi-

agent systems under undirected topology [27]. However, in the

control protocols, they did not consider the angular velocity

of the robot. In contrast to the existing works on fixed-time

cooperative control [25]–[27] for multi-agent systems, in which

the systems were regarded as linear systems, in this paper, each

wheeled mobile robot is considered as a nonholonomic and

nonlinear constrained system. Many previous studies about the

formation tracking problem of multi-robots systems are based on

undirected topologies [13], [19], [28]. However, in fact, two-way



communication between two robots is unnecessary. Distributed

fixed-time formation tracking protocols was studied in [32]. The

mobile robots are nonholonomic, but the information of the

leader is directly available to the followers. If the information

of the leader is not directly available, the observer is very

important.

As far as the author know, there are few results on the fixed-

time control of nonholonomic constrained multi-robot systems

based on an observer. So this paper studies the distributed fixed-

time formation tracking problem for multiple wheeled mobile

robots based on distributed observer. Information transmition

between robots can be reduced, which can reduce the energy

consumption, and improve the fault tolerance of a system.

II. PRELIMINARIES

In this paper, the considered robot system is over the directed

communication topology. A directed graph G is used to describe

the multi-robot system. Here, G is defined as a pair {Y, ξ, A},
where Y = {ν1, ..., νm} represents the set of notes, ξ ⊆ Y ×
Y is the set of edges, A = (aij)m×m represents a weighted

adjacency matrix. The edge (νi, νj) ∈ ξ means that the robot

i is a neighbour of the robot j, and the robot i can send the

state information to the robot j. The weighted adjacency matrix

A = [aij ]m×m, where aij > 0 if the robot j can receive the

information from the robot i directly, otherwise aij = 0, and

ajj = 0. Nj = {νj ∈ Y : aji ̸= 0} denotes the neighbour set of

robot j. D = diag{d1, d2, ..., dm} represents the degree matrix,

and dj =
m
∑

i=1

aji. The Laplacian matrix of the graph G is L =

D−A with appropriate dimension. Let the diagonal matrix B =
diag{b1, b2, ..., bm} be the interconnection relationship between

the leader and followers, where bj > 0 if the information of

the leader is accessible to the jth follower directly, otherwise

bj = 0. 1m, 0m are m-dimensional column vectors, and 1m =
[1, ..., 1]T , 0m = [0, ..., 0]T . Set sig(z)γ = |z|γsign(z), where

sign(z) , z/|z| for z ̸= 0, and sign(0) = 0.

The following lemmas are introduced to develop our main

results.

Lemma 1. [30] Define a matrix H = L + B, then H is a

positive stable matrix. If the graph G has a directed spanning

tree, the eigenvalues of H have positive real parts.

Lemma 2. [24] Consider the following system

ż(t) = g(z, t), (1)

where z ∈ R
N and g(z, t) : RN × R+ → R

N is a nonlinear

function. Assume that the origin is contained in the equilibrium

point of system (1). If there is a continuous radial unbounded

function V (z) : RN → R+ ∪ {0} such that V (z) = 0 if and

only if z = 0 and the inequality D∗V (z(t)) ≤ −c1V
c3(z(t))−

c2V
c4(z(t)) for c1 > 0, c2 > 0, 0 < c3 < 1, c4 > 1 is satisfied.

Then the origin is the global fixed-time stable equilibrium point

of system (1) and the settling time is limited by

T =
1

c1(1− c3)
+

1

c2(c4 − 1)
.

Fig. 1. Model of wheeled mobile robot.

Lemma 3. [31] If p1, p2, ..., pv ≥ 0, then

v
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, 1 < w ≤ ∞.

Consider a system with m robots, which are nonholonmic

wheeled mobile robots and have the same kinematics (see Fig.

1). The kinematics of the wheeled mobile robot j are described

as following

ẋj(t) = vj(t) cos θj(t),

ẏj(t) = vj(t) sin θj(t),

θ̇j(t) = ωj(t).

(2)

where xj , yj , θj denote the state of the horizontal axis, the

state of longitudinal axis and the orientation of the wheeled

mobile robot j, respectively. vj and ωj are two control inputs,

denote the linear velocity and angular velocity of the robot j,
respectively.

The control goal of this paper is to propose suitable velocity

vj(t) and angular velocity ωj(t), j = 1, ...,m, such that the m
followers achieve a desired formation shape F. Meanwhile, all

the followers track the leader in a fixed-time Tmax.

Use orthogonal coordinates (rjx, rjy) to define the required

formation shape F, and (r0x, r0y) the leader’s orthogonal coor-

dinate. For simplicity, let r0x = 0, r0y = 0. The kinematics of

the leader are described as following

ẋ0(t) = v0(t) cos θ0(t),

ẏ0(t) = v0(t) sin θ0(t),

θ̇0(t) = ω0(t).

(3)

Definition 1. For the multi-robot system (2), if for any given

bounded initial states, there exists a constant Tmax > 0, such



that for any j = 1, 2, ...,m, there is

lim
t→Tmax

[

xj(t)− xi(t)
yj(t)− yi(t)

]

=

[

rjx − rix
rjy − riy

]

,

lim
t→Tmax

(θj(t)− θ0(t)) = 0,

lim
t→Tmax

(

m
∑

j=1

xj(t)

m
− x0(t)) = 0,

lim
t→Tmax

(
m
∑

j=1

yj(t)

m
− y0(t)) = 0.

(4)

then system (2) is said to accomplish the fixed-time formation

tracking, and the settling time is Tmax.

The following assumptions are used throughout the paper.

Assumption 1. The orientation θj and the angular velocity ωj

of the robot j are bounded; and there exists a k > 0 such that

|ωj | ≤ k, j = 1, 2, ...,m.

Assumption 2. The state of the leader is only available to some

of the followers.

Assumption 3. There is a directed spanning tree in the com-

munication topology G with the leader as the root node.

The wheeled mobile robot system is more complex than a

linear system due to its nonholonomic characteristic. Therefore,

the robot system needs to be partially linearized. There is a

transformation in [31] as follows

p1j = θj ,

p2j = (xj − rjx) sin θj − (yj − rjy) cos θj ,

p3j = (xj − rjx) cos θj + (yj − rjy) sin θj ,

u1j = ωj , u2j = vj − u1jp2j .

(5)

After conversion, the inputs become u1j and u2j , j =
0, 1, ...,m. The formation tracking control problem of system

(2) becomes a state consensus problem. And system (2) can be

denoted as
ṗ1j = u1j ,

ṗ2j = u1jp3j ,

ṗ3j = u2j .

(6)

According to the transformation (5), the original control objec-

tive (4) can be transformed to the objective of system (6) as

lim
t→Tmax

(p1j − p10) = 0,

lim
t→Tmax

(p2j − p20) = 0,

lim
t→Tmax

(p3j − p30) = 0,

(7)

for j = 0, 1, ...,m.

Lemma 4. [32] If the equations in (7) hold for j = 0, 1, ...,m,
the original control objectives in (4) can be achieved in the

fixed time Tmax. That is the m mobile robots form the desired

formation shape F in the fixed time Tmax.

Assumption 4. Suppose that the leader’s inputs w0, v0 are

unknown to any follower, then u10, u10p30, u20 are also un-

known to the followers and their upper bounds are denoted

as max(u10),max(u10p30), and max(u20).

Remark 1. After the transformation (5), if the new control

objective (7) of system (6) is achieved, then the control objective

(4) of system (2) is achieved. Thus, next, distributed fixed-time

consensus protocols for the system (6) will be designed.

III. MAIN RESULTS

This section gives the main results.

Denote p̂1j , p̂2j , p̂3j the estimate of leader’s state p10, p20, p30
by the jth follower respectively. Adopt the following fixed-time

observer

˙̂p1j =kk3sign(
N
∑

i=1

aji(p̂1i − p̂1j) + bj(p10 − p̂1j))

+ kk1(
N
∑

i=1

aji(p̂1i − p̂1j) + bj(p10 − p̂1j))
2,

(8)

˙̂p2j =kk4sign(

N
∑

i=1

aji(p̂2i − p̂2j) + bj(p20 − p̂2j))

+ kk1(
N
∑

i=1

aji(p̂2i − p̂2j) + bj(p20 − p̂2j))
2,

(9)

˙̂p3j =kk5sign(
N
∑

i=1

aji(p̂3i − p̂3j) + bj(p30 − p̂3j))

+ kk1(

N
∑

i=1

aji(p̂3i − p̂3j) + bj(p30 − p̂3j))
2,

(10)

where kk1 = ε
√
m

(2λmin(H))
3
2

, kk2 = ε
√

λmax(H)
2λmin(H) , kk3 =

kk2 + max(u10), kk4 = kk2 + max(u10p30), kk5 = kk2 +
max(u20), λmin(H), λmax(H) is the second and the largest

eigenvalue of H,max(·) is the upper bound of a function, and

sign(·) is the sign function.

Lemma 5. [33] For any ε > 0, if Assumption 2 and Assump-

tion 4 hold, then based on the distributed observers (8)-(10),

the estimate of the leader’s position state p̂1j , p̂2j , p̂3j by agent

j converges to the leader’s real position state p10, p20, p30, i =
1, 2, ...,m, and the settling time T0 := π

ε
.

For the system (6), define the tracking errors between the

robot j and the leader as

p̃1j = p1j − p̂1j , p̃2j = p2j − p̂2j , p̃3j = p3j − p̂3j . (11)

Then, the local relative tracking errors of the robot j(j =



1, 2, ...,m) are defined as

e1j =
∑

i∈Nj

aji(p̂1j − p̂1i) + bj(p1j − p̂1j),

e2j =
∑

i∈Nj

aji(p̂2j − p̂2i) + bj(p2j − p̂2j),

e3j =
∑

i∈Nj

aji(p̂3j − p̂3i) + bj(p3j − p̂3j).

(12)

Let

p1 = [p11, ..., p1m]T , p2 = [p21, ..., p2m]T ,

p3 = [p31, ..., p3m]T , p̃1 = [p̃11, ..., p̃1m]T ,

p̃2 = [p̃21, ..., p̃2m]T , p̃3 = [p̃31, ..., p̃3m]T ,

p̂1 = [p̂11, ..., p̂1m]T , p̂2 = [p̂21, ..., p̂2m]T ,

p̂3 = [p̂31, ..., p̂3m]T , e1 = [e11, ..., e1m]T ,

e2 = [e21, ..., e2m]T , e3 = [e31, ..., e3m]T .

Then (12) can be written into vector form as

e1 = Hp̃1, e2 = Hp̃2, e3 = Hp̃3. (13)

Define the auxiliary local relative tracking error as

ē2 = e2 −Hdiag(p3)p̃1,

where e2 = [e21, ..., e2m]T and assume that

η = k1ē
T
2 sig(ē2)

l1 + k3ē
T
2 sig(ē2)

l2 .

For any j = 0, 1, ...,m, design the following control inputs

u1j =
1

∑

i∈Nj
aji + bj

(−k1sig(e1j)
l1 − k3sig(e1j)

l2

+ bj ˙̂p1j +
∑

i∈Nj

ajiu1i + u∗
1j),

(14)

u2j =
1

∑

i∈Nj
aji + bj

(−k1sig(e3j)
l1 − k3sig(e3j)

l2

+ bj ˙̂p3j +
∑

i∈Nj

ajiu2i − k2sign(e3j)|ē2j |),
(15)

and

u∗
1j =

1
∑

i∈Nj
aij + bj



u2j





∑

i∈Nj

aij(ē2j − ē2i) + bj ē2j





+
∑

i∈Nj

aiju
∗
1i



 ,

(16)

where k1, k2, k3, l1 and l2 are constant parameters of the con-

trollers, and satisfy k1 > 0, k2 > κ + η
|e3|T |ē2| , k3 > 0,

0 < l1 < 1 and l2 > 1. From (14) one can get




∑

i∈Nj

aji + bj



u1j =− k1sig(e1j)
l1 − k3sig(e1j)

l2

+ bj ˙̂p1j +
∑

i∈Nj

ajiu1i + u∗
1j .

(17)

And (17) can be rewritten as

∑

i∈Nj

aji(u1j − u1i) + bju1j

= −k1sig(e1j)
l1 − k3sig(e1j)

l2 + bj ˙̂p1j + u∗
1j .

(18)

Equation (18) can be written in vector form as

Hu1 = −k1sig(e1)
l1 − k3sig(e1)

l2 +B ˙̂p1 + u∗
1, (19)

where u∗
1 = [u∗

11, u
∗
12, ..., u

∗
1m]T . By multiplying both sides of

(19) left by the matrix H−1, one can obtain

u1 = H−1[−k1sig(e1)
l1 − k3sig(e1)

l2 +B ˙̂p1 + u∗
1].

Similarly, there is

u2 =H−1[−k1sig(e3)
l1 − k3sig(e3)

l2

+B ˙̂p3 − k2diag(sign(e3))|ē2|].

From (16) one can get





∑

i∈Nj

aij + bj



u∗
1j =u2j





∑

i∈Nj

aij(ē2j − ē2i) + bj ē2j





+
∑

i∈Nj

aiju
∗
1i.

(20)

Then (20) can be rewritten as

∑

i∈Nj

aij(u
∗
1j − u∗

1i) + bju
∗
1j

= u2j





∑

i∈Nj

aij(ē2j − ē2i) + bj ē2j



 .

(21)

And the vector form of (21) is

HTu∗
1 = diag(u2)H

T ē2. (22)

Multiplying both sides of (22) left by the matrix
(

HT
)−1

one

can obtain

u∗
1 =

(

HT
)−1

diag(u2)H
T ē2.

Based on the above analysis, control inputs (14) and (15) can

be written in the vector form as

u1 =H−1[−k1sig(e1)
l1 − k3sig(e1)

l2 +B ˙̂p1

+ (HT )−1diag(u2)H
T ē2],

u2 =H−1[−k1sig(e3)
l1 − k3sig(e3)

l2 +B ˙̂p3

− k2diag(sign(e3))|ē2|],

where 0 < l1 < 1, l2 > 1, k1 > 0, k2 > κ + η
|e3|T |ē2| , and

k3 > 0.



A. System over fixed topology

Theorem 1. Suppose that there is a directed spanning tree in

the communication graph G, and Assumptions 2 and 4 hold.

Then under the control inputs (14)-(15) with 0 < l1 < 1, l2 >
1, k1 > 0, k3 > 0, there is systems (2) and (3) achieve the fixed-

time formation tracking control. Particularly, p1j = p10, p2j =
p20, p3j = p30, j = 1, ...,m, for T ≥ Tmax. And the settling

time Tmax satisfies

Tmax = T0 +
2

2
l1+1

2 k1(1− l1)
+

2

2
l2+1

2 k3m
1−l2

2 (l2 − 1)
,

where T0 = π
ε

as that in Lemma 5.

Proof: From Lemma 5, one can get that the estimate of the

leader’s position state p̂1j , p̂2j , p̂3j by agent j converges to the

leader’s real position state p10, p20, p30 when t ≥ π
ε
. That is

p̂1j = p10, p̂2j = p20, p̂3j = p30. Denote p̃01j , p̃02j , p̃
0
3j the

tracking errors between the robot j and the leader for t ≥ T0.
That is

p̃01j = p1j − p10,

p̃02j = p2j − p20,

p̃03j = p3j − p30.

(23)

The tracking errors in (23) can be derived as

˙̃p01j = u1j − u10,

˙̃p02j = u10p̃3j + p3j(u1j − u10),

˙̃p03j = u2j − u20.

(24)

Then (24) can be written into vector form as

˙̃p01 = u1 − 1mu10,

˙̃p02 = u10p̃3 + diag(p3)(u1 − 1mu10),

˙̃p03 = u2 − 1mu20.

(25)

Similarly, the local relative tracking errors of the robot j for

t ≥ T0 can be written as

e01j =
∑

i∈Nj

aji(p1j − p1i) + bj(p1j − p10),

e02j =
∑

i∈Nj

aji(p2j − p2i) + bj(p2j − p20),

e03j =
∑

i∈Nj

aji(p3j − p3i) + bj(p3j − p30).

(26)

Then (26) can be written into vector form as

e01 = Hp̃01, e02 = Hp̃02, e03 = Hp̃03. (27)

The local relative tracking errors (27) can be derived as

ė01 = Hu1 −B1mu10,

ė02 = u10e
0
3 +Hdiag(p3)(u1 − 1mu10),

ė03 = Hu2 −B1mu20.

(28)

The auxiliary local relative tracking error for t ≥ T0 can be

written as

ē02 = e02 −Hdiag(p3)p̃
0
1. (29)

And (29) can be derived as

˙̄e02 = ė02 −Hdiag(p3) ˙̃p
0
1 −Hdiag(ṗ3) ˙̃p

0
1. (30)

Substituting (6), (25) and (28) into (30), one can get

˙̄e02 = u10e
0
3 −Hdiag(u2)p̃

0
1. (31)

Choose the Lyapunov function candidate

V =
1

2
((e01)

T e01 + (ē02)
T ē02 + (e03)

T e03).

The derivative of V along (28) and (31) is

V̇ = (e01)
T [−k1sig(e

0
1)

l1 − k3sig(e
0
1)

l2

+ (HT )−1diag(u2)H
T ē02]

+ (ē02)
T [u10e

0
3 −Hdiag(u2)p̃

0
1]

+ (e03)
T [−k1sig(e

0
3)

l1 − k3sig(e
0
3)

l2

− k2diag(sign(e
0
3))|ē02|]

= −k1(e
0
1)

T sig(e01)
l1 − k3(e

0
1)

T sig(e01)
l2

− k1(e
0
3)

T sig(e03)
l1 − k3(e

0
3)

T sig(e03)
l2

+ u10(ē
0
2)

T e03 − k2|e03|T |ē02| − ē02Hdiag(u2)p̃
0
1

+ (p̃01)
T diag(u2)H

T ē02.

(32)

By Assumption 1, one can get |u10| < κ. Let k2 > κ+ η
|e3|T |ē2| ,

k3 > 0, and (p̃01)
T diag(u2)H

T ē02 = (ē02)
THdiag(u2)p̃

0
1. Then

(32) can be simplified as

V̇ ≤ −k1(e
0
1)

T sig(e01)
l1 − k3(e

0
1)

T sig(e01)
l2

− k1(e
0
3)

T sig(e03)
l1 − k3(e

0
3)

T sig(e03)
l2

− k1(ē
0
2)

T sig(ē02)
l1 − k3(ē

0
2)

T sig(ē02)
l2

= −k1

m
∑

j=1

(|e01j |2)
l1+1

2 − k3

m
∑

j=1

(|e01j |2)
l2+1

2

− k1

m
∑

j=1

(|e03j |2)
l1+1

2 − k3

m
∑

j=1

(|e03j |2)
l2+1

2

− k1

m
∑

j=1

(|ē02j |2)
l1+1

2 − k3

m
∑

j=1

(|ē02j |2)
l2+1

2 .

(33)

Note that 0 < l1+1
2 < 1, l2+1

2 > 1. According to Lemma 3,

(33) gives

V̇ ≤ −k1





m
∑

j=1

|e01j |2 +
m
∑

j=1

|e03j |2 +
m
∑

j=1

|ē02j |2




l1+1

2

− k3m
1−l2

2





m
∑

j=1

|e01j |2 +
m
∑

j=1

|e03j |2 +
m
∑

j=1

|ē02j |2




l2+1

2

≤ −k1(2V )
l1+1

2 − k3m
1−l2

2 (2V )
l2+1

2 ,

which implies

V̇ ≤ −2
l1+1

2 k1V
l1+1

2 − 2
l2+1

2 k3m
1−l2

2 V
l2+1

2 .

By Lemma 2, V will reach zero in a fixed time, and the settling

time is bounded and satisfies

T1 =
2

2
l1+1

2 k1(1− l1)
+

2

2
l2+1

2 k3m
1−l2

2 (l2 − 1)
.



Then Tmax = T0 + T1, which implies that

lim
t→Tmax

e1(t) = 0, lim
t→Tmax

ē2(t) = 0, lim
t→Tmax

e3(t) = 0.

Note that if lim
t→Tmax

ē2(t) = 0, then lim
t→Tmax

e2(t) = 0. If

lim
t→Tmax

e~(t) = 0, then p~j = p~0, ~ = 1, 2, 3. That is

under distributed controllers (14) and (15), systems (2) and (3)

complete the formation tracking with the given formation.

The proof is completed.

B. System over switching topologies

For a network of multiple mobile robots, the original commu-

nication connection may be broken due to obstacles between two

robots. Similarly, since the robots reach an effective detection

range between each other, some new links can be created

between nearby robots. It is significant to study fixed-time

formation tracking for systems over switching topologies. Let

Gc = {Y, ξ, Aδ(t)} be a directed graph set. Define a set

Υ = {0, 1, 2, ..., N} and it represents the index set of the

graph Gc. Let δ(t) : R+ → Υ be a switching signal. Then

let t0 = 0, t1, ..., tr, ..., be a switching time sequence, at which

the interaction topology changes. For any t ∈ [tr, tr+1), the

topology Gδ(t) = Gr ∈ Gc is active. Simultaneously, the

adjacency weight between agent j and i is arji, the Laplacian

matrix is Lr. Then, there is the following result.

Theorem 2. Suppose that there is a directed spanning tree in

any communication graph, and Assumptions 2 and 4 hold. Then

under the control protocols (14) and (15) with 0 < l1 < 1, l2 >
1, k1 > 0, k3 > 0, system (6) over directed switching topologies

form the formation as (7) with the settling time Tmax, and

Tmax = T0 +
2

2
l1+1

2 k1(1− l1)
+

2

2
l2+1

2 k3m
1−l2

2 (l2 − 1)
,

where T0 = π
ε

as that given in Lemma 5.

Proof: The fixed-time observer can be written as

˙̂p1j =kk3sign(
N
∑

i=1

arji(p̂1i − p̂1j) + bj(p10 − p̂1j))

+ kk1(
N
∑

i=1

arji(p̂1i − p̂1j) + bj(p10 − p̂1j))
2,

˙̂p2j =kk4sign(

N
∑

i=1

arji(p̂2i − p̂2j) + bj(p20 − p̂2j))

+ kk1(
N
∑

i=1

arji(p̂2i − p̂2j) + bj(p20 − p̂2j))
2,

˙̂p3j =kk5sign(
N
∑

i=1

arji(p̂3i − p̂3j) + bj(p30 − p̂3j))

+ kk1(

N
∑

i=1

arji(p̂3i − p̂3j) + bj(p30 − p̂3j))
2,

where ∀t ∈ [tr, tr+1), r = 0, 1, ..., i ∈ I, and kk1 =
ε
√
m

(2λmin(Lr+B))
3
2

, kk2 = ε
√

λmax(Lr+B)
2λmin(Lr+B) , kk3 = kk2 +

max(u10), kk4 = kk2+max(u10p30), kk5 = kk2+max(u20).
The local relative tracking errors of the robot j(j =

1, 2, ...,m) are

e1j =
∑

i∈Nj

arji(p̂1j − p̂1i) + bj(p1j − p̂1j),

e2j =
∑

i∈Nj

arji(p̂2j − p̂2i) + bj(p2j − p̂2j),

e3j =
∑

i∈Nj

arji(p̂3j − p̂3i) + bj(p3j − p̂3j).

(34)

Then (34) can be written into vector form as

e1 = (Lr +B)p̃1,

e2 = (Lr +B)p̃2,

e3 = (Lr +B)p̃3.

The auxiliary local relative tracking error can be written as

ē2 = e2 − (Lr +B)diag(p3)p̃1.

Then the distributed controllers are

u1j =
1

∑

i∈Nj
arji + bj

(−k1sig(e1j)
l1 − k3sig(e1j)

l2

+ bj ˙̂p1j +
∑

i∈Nj

arjiu1i + u∗
1j),

u2j =
1

∑

i∈Nj
arji + bj

(−k1sig(e3j)
l1 − k3sig(e3j)

l2

+ bj ˙̂p3j +
∑

i∈Nj

arjiu2i − k2sign(e3j)|ē2j |),

where

u∗
1j =

1
∑

i∈Nj
arij + bj



u2j





∑

i∈Nj

aij(ē2j − ē2i) + bj ē2j





+
∑

i∈Nj

ariju
∗
1i



 .

Similarly, for t ≥ T0, the local relative tracking errors of the

robot j can be written as

e01j =
∑

i∈Nj

arji(p1j − p1i) + bj(p1j − p10),

e02j =
∑

i∈Nj

arji(p2j − p2i) + bj(p2j − p20),

e03j =
∑

i∈Nj

arji(p3j − p3i) + bj(p3j − p30).

(35)

And (35) can be written as

e01 = (Lr +B)p̃01,

e02 = (Lr +B)p̃02,

e03 = (Lr +B)p̃03.



Fig. 2. Communication graph G1.

For t ≥ T0, the auxiliary local relative tracking error is

ē02 = e02 − (Lr +B)diag(p3)p̃
0
1. (36)

Then (36) can be derived as

˙̄e02 = u10e
0
3 − (Lr +B)diag(u2)p̃

0
1.

Choose the Lyapunov function candidate

V =
1

2
((e01)

T e01 + (ē02)
T ē02 + (e03)

T e03).

Next, similar to the proof of Theorem 1, from Lemma 2 one

can get the Tmax. This completes the proof.

IV. SIMULATION RESULT

In this section, two simulation examples are given to demon-

strate the effectiveness of the fixed-time formation tracking

control algorithm.

Consider a multiple mobile robots system contains six fol-

lowers Fi, i = 1, 2, ..., 6, and a leader L. For the system

over the fixed directed topology as in Fig. 2, under the

control inputs (14)-(15) with ε = 1, k1 = 8, k2 = 26,
k3 = 4, l1 = 0.9 and l2 = 1.1, one can calculate

that Tmax = 7.0768s. Choose the initial state θ(0) =
[π/2, π/3, π/4, π/5, π/6, π/7], x(0) = [13, 11, 8, 3, 6, 10], and

y(0) = [−15,−12,−18,−20,−23,−21].
The expected position between the followers and the leader L

is shown in Fig. 3. The orthogonal coordinates of the followers

are (r1x, r1y) = (2, 0), (r2x, r2y) = (1,
√
3), (r3x, r3y) =

(−1,
√
3), (r4x, r4y) = (−2, 0), (r5x, r5y) = (−1,−

√
3),

(r6x, r6y) = (1,−
√
3), and the orthogonal coordinates of the

leader is (r0x, r0y) = (0, 0).
Here, the leader’s trajectory, i.e., the reference trajectory, is

x0 = 10sin(2t+ 1), y0 = −20cos(t+ 1/2).
From Figs. 4-7, six followers constitute the desired formation

shape under the distributed control protocols (14) and (15) over

directed topology, and the trajectory of the leader L is also

successfully tracked by the trajectory at the center of the for-

mation shape of the six followers. E1j , E2j , E3j denote actual

errors between followers and the leader, and E1j = p1j − p10,
E2j = p2j − p10, E3j = p3j − p10. One can find from Figs.

8-10, E1j , E2j , E3j converge to zero. The convergence time is

about 1.3s and it is less than 7.0768s, which illustrate that the

control objects can be achieved in a fixed time.

Next, consider the system over the switching topologies.

The initial topology is given in Fig 2. Then the topology was

changed as shown in Fig. 11 after 0.5 second, and after 1

second the topology was changed again as in Fig. 12. The initial
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Fig. 3. Desired shape of formation 1.
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Fig. 4. Initial shape of formation 1.
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Fig. 5. Shape of formation 1 in 0.88s and the trajectory of leader.
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Fig. 6. Shape of formation 1 in 2s and the trajectory of leader.
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Fig. 7. Shape of formation 1 in 7s and the trajectory of leader.
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Fig. 8. Tracking errors between p1j and p10 in formation 1.
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Fig. 9. Tracking errors between p2j and p20 in formation 1.
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Fig. 10. Tracking errors between p3j and p30 in formation 1.

Fig. 11. Communication graph 2.

Fig. 12. Communication graph 3.

state is θ(0) = [−π/2, π/3,−π/4, π/5,−π/6, π/7], x(0) =
[0, 3, 6, 10, 12, 8], and y(0) = [−12,−20,−22,−10,−23,−15].
And Fig. 13 shows the desired position between the fol-

lowers and the leader. The orthogonal coordinates of the

followers are (r1x, r1y) = (−2, 2), (r2x, r2y) = (−2, 0),
(r3x, r3y) = (−2,−2), (r4x, r4y) = (2, 2), (r5x, r5y) = (2, 0),
(r6x, r6y) = (2,−2), and the orthogonal coordinates of the

leader is (r0x, r0y) = (0, 0). Fig. 13 shows the initial position

of followers. Figs. 14-17 provide the states of the followers and

the trajectory of the leader. Fig. 18 shows the errors between

p1j and p10, Fig. 19 gives the errors between p2j and p20, and

Fig. 20 shows the errors between p3j and p30, j = 1, ..., 6,
respectively. From which one can see that the agents form a

given formation over switching topologies, and the form time

is less than Tmax, which verifies the efficiency of the methods.

V. CONCLUSION

This paper studies the distributed fixed-time formation track-

ing based on distributed observer for multiple nonholonomic

wheeled mobile robots over directed topology. The stability of

the distributed controllers is also proved by graph theory and

Lyapunov theory. Some sufficient conditions of multiple robots
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Fig. 13. Desired shape of formation 2.
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Fig. 14. Initial shape of formation 2.
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Fig. 15. Shape of formation 2 in 0.88s and the trajectory of leader.
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Fig. 16. Shape of formation 2 in 2s and the trajectory of leader.

-25 -20 -15 -10 -5 0 5 10 15 20 25

X(m)

-25

-20

-15

-10

-5

0

5

10

15

20

25

Y
(m

)

follower1
follower2
follower3
follower4
follower5
follower6
leader
trajectory

Fig. 17. Shape of formation 2 in 7s and the trajectory of leader.
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Fig. 18. Tracking errors between p1j and p10 in formation 2.
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Fig. 19. Tracking errors between p2j and p20 in formation 2.

achieving the expected formation pattern are given. Several nu-

merical simulations are presented to verify the efficiency of the

adopting method. However, the communication delay between

robots is ignored. Considering communication delay will be

what we will do in future research. Using the event-triggered

control technique to reduce the communication between robots

also needs to be further studied.
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Figures

Figure 1

Model of wheeled mobile robot.

Figure 2

Communication graph G1:



Figure 3

Desired shape of formation 1.

Figure 4

Initial shape of formation 1.



Figure 5

Shape of formation 1 in 0.88s and the trajectory of leader.

Figure 6

Shape of formation 1 in 2s and the trajectory of leader.



Figure 7

Shape of formation 1 in 7s and the trajectory of leader.

Figure 8

Tracking errors between p1j and p10 in formation 1.



Figure 9

Tracking errors between p2j and p20 in formation 1.

Figure 10

Tracking errors between p3j and p30 in formation 1.



Figure 11

Communication graph 2.

Figure 12

Communication graph 3.



Figure 13

Desired shape of formation 2.

Figure 14

Initial shape of formation 2.



Figure 15

Shape of formation 2 in 0.88s and the trajectory of leader.

Figure 16

Shape of formation 2 in 2s and the trajectory of leader.



Figure 17

Shape of formation 2 in 7s and the trajectory of leader.

Figure 18



Tracking errors between p1j and p10 in formation 2.

Figure 19

Tracking errors between p2j and p20 in formation 2.

Figure 20



Tracking errors between p3j and p30 in formation 2.


