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Abstract  

Worldwide governments have rapidly deployed non-pharmaceutical interventions 

(NPIs) to mitigate the COVID-19 pandemic, together with the large-scale rollout of 

vaccines since late 2020. However, the effect of these individual NPI and vaccination 

measures across space and time has not been sufficiently explored. By the decay ratio 

in the suppression of COVID-19 infections, we investigated the performance of 

different NPIs across waves in 133 countries, and their integration with vaccine rollouts 

in 63 countries as of 25 March 2021. The most effective NPIs were gathering 

restrictions (contributing 27.83% in the infection rate reductions), facial coverings 

(16.79%) and school closures (10.08%) in the first wave, and changed to facial 

coverings (30.04%), gathering restrictions (17.51%) and international travel restrictions 

(9.22%) in the second wave. The impact of NPIs had obvious spatiotemporal variations 

across countries by waves before vaccine rollouts, with facial coverings being one of 

the most effective measures consistently. Vaccinations had gradually contributed to the 

suppression of COVID-19 transmission, from 0.71% and 0.86% within 15 days and 30 

days since Day 12 after vaccination, to 1.23% as of 25 March 2021, while NPIs still 

dominated the pandemic mitigation. Our findings have important implications for 

continued tailoring of integrated NPI or NPI-vaccination strategies against future 

COVID-19 waves or similar infectious diseases.  
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Main 

As of 30 March 2021, the COVID-19 pandemic has spread worldwide, causing over 

127 million confirmed cases and 2.8 million deaths1. Non-pharmaceutical interventions 

(NPIs) have been deployed across the world to curb the pandemic2. With the rollout of 

COVID-19 vaccine using different dosing and population targeting strategies3, robust 

vaccination programs will enable the relaxation of NPIs4,5. However, given the delays 

in vaccine production and the inequality of vaccine allocations as well as the emergence 

of novel variants6,7, NPIs should be maintained to avoid further resurgences before herd 

immunity can be achieved4. It is critical to understand the role of different NPIs and 

initial vaccination efforts to reduce COVID-19 transmission, before and after vaccine 

rollouts, thereby tailoring effective and integrated NPI-vaccination strategies for future 

COVID-19 waves. 

The effectiveness of NPIs on pandemic mitigation had been shown by previous 

studies that mostly focused on the first wave of the pandemic before July 20205,8-12, 

with limited analysis of subsequent waves, regional diversity and integrated NPI-

vaccination efforts. The implementation of NPIs in the first wave had, to some degree, 

changed human knowledge and perceptions, behaviours and responses to mitigate the 

outbreaks13-17. Whether NPI effectiveness increases with adherence or decreases with 

fatigue in the subsequent waves remains unclear. Additionally, the effects of NPIs may 

vary across countries with different country characteristics, such as health capacity, 

residential population density, aging ratio, humidity and air temperature18,19. The 

potential differences in NPI effectiveness across continents are rarely discussed in 

existing global analyses12. Moreover, vaccination is the most promising approach to 

lead the way out from this pandemic. However, the uneven distribution and allocation 

of vaccine rollout among countries and population groups might hinder the way to herd 



immunity20. Modelling studies have been conducted to simulate the combining effects 

of vaccination and NPIs for COVID-19 under various scenarios5,21,22. However, it is 

critically needed to understand how vaccination integrated with NPIs reduces COVID-

19 transmission in the real world since the rollout of vaccines across multiple nations. 

In this study we estimated the effects of individual NPIs and vaccination by 

identifying their contributions to the decay ratio of COVID-19 infections across waves 

and countries after the implementation of these measures. We used databases of global 

comparable outcomes, covering epidemiological23, intervention policy24, 

environmental and demographic data in 133 countries, territories and areas, from the 

earliest available dates to 25 March 2021. The deployment time and intensity of seven 

NPIs, including school closures, workplace closures, gathering restrictions, movement 

restrictions, public transport closures, international travel restrictions, and facial 

coverings, were considered in the data processing. We defined epidemic waves, mainly 

focusing on the first and second waves, according to the daily number of new confirmed 

cases reported and the changing pandemic situations in corresponding countries (see 

Methods and supplementary information [SI]). We also divided the 133 territories into 

four country groups, according to their geographical proximity, morbidity and mortality, 

implicitly related testing rate, to compare the regional variations in NPI efficacy. Data 

on vaccine rollouts25 in 63 countries from 8 December 2020 to 25 March 2021 were 

also collated to assess the integrated impact of vaccination and non-pharmaceutical 

policy on COVID-19. More details can be found in Methods and SI. 

Spatiotemporal Bayesian inference model to assess effects of NPIs and vaccination 

A Bayesian inference model10,15 was built to disentangle the individual effects of NPIs 

and vaccination by measuring their relative contributions on the decay ratio of COVID-

19 infections (denoted as %Δ𝜔𝜔𝑡𝑡), in the presence, absence and intensity change of these 



interventions. The decay ratio was defined as a percentage of reduction in the baseline 

growth rate by the instantaneous growth rate. In addition to interventions, there were 

many other factors (e.g., the transmissibility of new variants and the variation of case 

diagnosis and reporting) that might affect the transmission of COVID-19 over time. 

Therefore, the baseline growth rates in different waves and countries were assumed as 

the mean of the top three highest instantaneous, weekly growth rates in the 

corresponding wave and country. The instantaneous growth rate of transmission at each 

point of time was calculated as the current weekly number of new infections over the 

infections in the previous week. We used the decay ratio directly derived from the 

reported case data, rather than the reproduction number (Rt)10,12, to avoid introducing 

the uncertainty of estimating Rt over time26. It should be noted that we estimated the 

relative effects of individual measures, while their combined effectiveness should be 

higher than individual effects, but not linearly accumulated (see Method). 

We modelled NPI effects over time without assuming a functional relationship 

between effectiveness over time, which allows for variable community responses to the 

variation of each intervention. The effects of each NPI and vaccination with same 

intensity were assumed to be constant across countries in our model for each single 

estimation, and then decomposed for each country and week according to the 

corresponding decay ratio, intervention timing and intensity. The NPI with different 

intensities was modelled by the same effect parameter. The spatial variations in NPI 

and vaccination effectiveness across countries were controlled by employing the 

country-specific characteristics, including health capacity, residential population 

density, aging ratio, humidity and air temperature. All the estimations were performed 

by Markov chain Monte Carlo (MCMC). The reliability of our model was assessed by 

the cross-validation for overall intervention effects. Sensitivity analyses were also 



performed to assess model robustness in terms of our assumptions. More details on 

models and covariates can be found in Methods and SI. 

Global impact of individual NPIs across waves 

We estimated that three NPIs had substantial effects (>10%) on mitigating COVID-19 

transmission in general (Fig. 1), including facial coverings (median 24.93%, 

interquartile range [IQR] 24.10 - 25.75%), gathering restrictions (24.01%, 22.38 - 

25.65%) and international travel restrictions (11.23%, 9.93 - 12.56%). The effect of 

school closures (5.53%, 3.60 - 7.23%) performed moderately (1 - 10%) among all the 

seven NPIs, whereas workplace closures, public transport closures and movement 

restrictions had limited efficacy (<1%).  

 

 
Fig. 1. Effects of individual NPIs on reducing the transmission of COVID-19 

across waves within our data context. The overall effect represents the average 

performance of NPIs against COVID-19 in 133 countries (Fig. 2) by 25 March 2021 or 

the last dates before vaccination. Wave 1 refers to the average performance of NPIs 

against COVID-19 in the first wave of the 133 countries. The specific period of the first 

wave in each of 133 countries is not the same, indicating Wave 1 does not refer to a 



particular time but the general period of the first outbreak. Wave 2 refers to the effects 

in the second wave. %Δ𝜔𝜔𝑡𝑡 represents the decay ratio in the COVID-19 infection rate 

in 133 studied countries, territories and areas. The 5th, 25th (Q1), 50th (median), 75th 

(Q3), and 95th percentiles of estimates are presented, respectively. The uncertainty 

intervals of NPI effectiveness refer to the variance over the corresponding data context. 

 

The efficacy of NPIs varied across waves. In the first wave, the most effective 

NPIs were gathering restrictions (median 27.83%, IQR 25.60 - 29.97%), facial 

coverings (16.78%, 15.82 - 17.74%), and school closures (10.08%, 6.70 - 12.91%). In 

the second wave, the efficacy of facial coverings surged to be the top-ranked one 

(30.04%, 28.14 - 31.94%). Another significant rise was the effect of international travel 

restrictions, from limited in Wave 1 (0.96%, 0.03 - 3.55%) to moderate in Wave 2 

(9.22%, 7.07 - 11.25%). Meanwhile, the effects of gathering restrictions and school 

closures declined to 17.51% (IQR 15.08 - 19.82%) and 0.06% (0.00 - 0.67%) in the 

second wave, respectively. In both waves, workplace closures, public transport 

restrictions and movement restrictions presented limited effects (< 1%) in reducing the 

transmission. 

Effectiveness of NPIs across countries by wave 

Our analyses also revealed that the impact of individual non-pharmaceutical measures 

had obvious spatiotemporal variations across countries by waves before vaccine 

rollouts (Fig. 2). 

 



 
Fig. 2. The detailed cross-wave and -group effects of individual NPIs. (a) Country 

groupings, as determined by pandemic parameters and geographic proximity (see SI for 

more information). Countries with vaccination data in this study are marked by the 

green stars. (b) Effects of individual NPIs on reducing the transmission of COVID-19 

across waves and groups. %Δ𝜔𝜔𝑡𝑡 represents the decay ratio in COVID-19 infection rate. 

The 5th, 25th (Q1), 50th (median), 75th (Q3), and 95th percentiles of estimates are 

presented, respectively. The uncertainty intervals of NPI effectiveness refer to the 

variance over the corresponding spatiotemporal extent. A full list of countries and the 

corresponding time frames of different waves for each group can be found in SI Table 

C2 – C5. 

 

The countries in Group 1 and Group 2 were predominantly comprised of 

European, American, and Oceanian countries with relatively low and high morbidity 

and mortality, respectively. Facial coverings had an important role in reducing 

transmission in both groups and waves (%Δ𝜔𝜔𝑡𝑡  >10%). Gathering restrictions and 



workplace closures had substantial effects in both waves in Group 2, but only played 

moderate and limited roles, respectively, in Group 1 for both waves. School closures 

were the most effective NPI in the first wave in Group 1 (39.65%, 36.67 - 42.50%) but 

had limited effects in the second wave (0.03%, 0.00 - 0.50%). The opposite happened 

in Group 2, from 0.10% (0.00 - 1.19%) in Wave 1 to 18.36% (15.54 - 21.09%) in Wave 

2. International travel restrictions and movement restrictions solely affected the 

pandemic transmission of Group 1 in the second wave (18.15%, 14.68 - 21.25%) and 

Group 2 in the first wave (2.74%, 0.10 - 7.67%), respectively. In other cases, their 

influences were limited. The effectiveness of public transport closures was below 1% 

in both groups among both waves. 

Asian countries formed Group 3. Facial coverings and school closes had 

substantial impacts in both waves. The former’s effect increased from 20.53% (IQR 

18.58 - 22.40%) to 30.13% (25.94 - 34.13%), while the latter declined from 29.08% 

(23.94 - 33.88%) to 19.06% (14.55 - 22.95%). The other two effective, with declined 

effectiveness, NPIs were gathering restrictions (from 34.80% to 8.78%) and 

international travel controls (from 28.13% to 0.10%). Workplace closures, public 

transport closures and movement restrictions were limited effective in both waves. 

Group 4 countries included mostly African countries, whose effective NPIs 

were similar to Group 1 and Group 3. Facial coverings were the only NPIs that had 

substantial effectiveness among both waves ((26.86%, 24.98 - 31.79) and (22.84%, 

15.51 - 29.06%)). Gathering restrictions (15.58%, 9.91 - 18.35%) and international 

travel restrictions (3.11%, 0.08 - 9.42%) prevented the COVID-19 transmission in the 

first wave, while school closures (8.35%, 3.32 - 12.39%) showed moderate effects in 

Wave 2. The remaining three NPIs, including workplace closures, public transport 

closures, and movement restrictions had limited effects (< 1%) in both waves. 



Effect of integrated COVID-19 vaccination and NPIs 

We compared the effects of NPIs and the first-dose COVID-19 vaccination in 63 

countries (Fig. 2a; listed in SI Table A2), from 8 December 2020 to 25 March 2021. 

Our results showed, the overall short-term effect of vaccination has been cumulatively 

rising with the increasing total vaccinated populations over time (averagely 5.1% 

population vaccinated by 25 March 2021 in the 63 study countries). The early impact 

of vaccination on reducing infections was only 0.71% (IQR 0.02 - 2.84%) within 27 

days after vaccination (i.e. half a month since Day 12 after vaccination), given the 

induced antibody response and immunity might sufficiently prevent COVID-19 

infections since the 12th day after receiving the first-dose vaccine27. However, the 

accumulative effectiveness slightly rose to 0.86% (0.57 - 3.26%) within 42 days after 

vaccination (i.e., a month since Day 12 after vaccination), and 1.23% (0.09 - 2.8%) by 

25 March 2021. In the country - Israel - with the highest vaccinated population ratio 

(53.14%), the short-term effectiveness of vaccination had contributed to 8.62% (7.06 - 

13.8%) in reducing COVID-19 transmission, as of 25 March 2021. 

Nevertheless, at the early stage of the vaccination era, NPIs remained important 

and predominant for mitigating COVID-19 pandemic before most populations were 

infected or effectively vaccinated. In these countries with vaccine rollouts, gathering 

restrictions contributed to 39.62% (IQR 25.73 - 46.70%) of the suppression in 

infections, followed by international travel restrictions 15.38% (0.59 - 26.81%) and 

workplace closure 6.78% (0.58 – 22.79%) by 25 March 2021 (Fig. 3). 

 



Fig. 3. Impact of integrated NPIs and the vaccination on COVID-19 transmission. 

%Δ𝜔𝜔𝑡𝑡 represents the decay ratio in the suppression of COVID-19 infection rate. For 63 

countries with vaccination data, effects of NPIs and the vaccination were evaluated for 

three periods, within 15 days and 30 days since the 12th day after vaccination and by 25 

March 2021, as the induced antibody response and immunity may sufficiently prevent 

COVID-19 infections since Day 12 after receiving the first-dose vaccine27. The 

uncertainty intervals of NPIs and vaccination effectiveness refer to the variance over 

the corresponding period in the 63 countries. 

 

Discussion 

Based on longitudinal public health interventions and socio-demographic datasets 

across COVID-19 waves, our study revealed that NPI measures played important roles 

in mitigating the pandemic, with varied effects across waves and regions. The most 

effective NPIs were gathering restrictions, facial coverings and school closures in the 

first wave, which switched to facial coverings, gathering restrictions and international 

travel restrictions in the second wave. The effectiveness of facial coverings was 

statistically significant in both waves of four groups. Since the vaccine rollout, 

vaccinations have gradually contributed to the suppression of COVID-19 transmission, 



but NPIs still dominated the pandemic mitigation as of 25 March 2021. Our results 

presented NPI effectiveness along both spatial and temporal scales, and this study was 

the first impact assessment of integrating worldwide COVID-19 interventions and the 

vaccination in the real world, to our knowledge. These findings are crucial for continued 

tailoring and implementation of NPI strategies to mitigate COVID-19 transmission 

among future waves (e.g., as a result of new variants) or similar emerging infectious 

diseases, such as pandemic influenza. 

Preliminary data showed vaccines could significantly reduce the severity of 

infections in older people28, and our results also showed that vaccines have an 

increasing effect to reduce SARS-CoV-2 transmission in the whole population, while 

vaccination alone was still insufficient to fully contain the coronavirus spread, for the 

time being, considering the vaccinated population ratio in most countries below 10% 

by 25 March 2021. Mass vaccination is needed to confer broad protection to the 

coronavirus, through reducing the unevenness of vaccine distribution among regions 

and groups20. However, the efficacy of vaccines and herd immunity might be 

undermined due to the emergence of new variants of SARS-CoV-2, the wane of 

infection-associated immunity over time, and the changing attitudes and behaviours on 

vaccination,  even with vaccine roll-out in full force20. Therefore, it is necessary to 

maintain the implementation of target and effective NPIs and closely monitor the 

changing efficacy of NPIs and vaccines across waves and countries for local 

intervention design. 

We found that gathering restrictions and facial coverings significantly changed 

the pandemic trajectory in both waves, and gathering restrictions include both gathering 

cancellation29 and closure of non-essential businesses30-32. The significant effects of 

these measures might be due to the virus most commonly spread through droplets or 



aerosols among people who were in close contact33. In contrast, public transport 

closures, movement restrictions, and workplace closures presented limited or moderate 

effects in both waves. Travel patterns have been significantly affected by the pandemic, 

causing a reduction in public transport usage34. Besides, facial coverings on public 

transport were required by numerous governments, which might reduce the risks of 

infection35. The decreasing usage of public transit and increasing personal protection 

measures might jointly explain the minor impact of public transport closures in both 

waves. The effect of movement restrictions contributed by both stay-at-home orders 

and internal movement restrictions in our study. The impact of movement restrictions, 

especially lockdowns, varied across previous studies, ranging from little effect36 to as 

much as an 80% reduction in Rt10. Because lockdowns inherently encompass all other 

NPIs by definition, this might pose a problem for determining efficacy among NPI 

strategies alone33. Our study might underestimate the impact of movement restrictions 

and workplace closures due to differences in the timing, intensity, and combination of 

interventions (SI Fig. A3). 

The effectiveness of school closures and international travel restrictions 

fluctuated in the two waves. School closures played an important role in the first wave 

epidemic mitigation, but not in the second one. School holidays were identified and 

corresponded to the highest intensity of school closures in both waves. In the second 

wave, education was primarily guaranteed in many countries like the United Kingdom 

and other European countries. Besides, health safety measures, including facial 

coverings and social distancing, were introduced by schools to adhere to. Due to the 

protection of other intervention measures, school closures might be avoided in the 

following waves of the pandemic. Contrary to the school closures, international travel 

restrictions had a relatively minor effect in the first wave but seemed important in the 



second wave (Fig. 1). Countries that quickly placed border controls might have reduced 

the seeding of the coronavirus between countries, but international travel restrictions 

cannot prevent local transmission at the community level in countries where the virus 

had already been introduced37,38. Previous models suggest that unless community-level 

transmission is reduced by no less than 50%, a reduction in 90% of international travel 

to and from epidemic centres might only modestly affect the epidemic trajectory39. The 

small effect of international travel restrictions in the first wave might be explained by 

the late implementation of this measure across countries. The increasing role of 

international travel restrictions observed in this study might be also due to increasing 

control efforts at community level which occurred during the second wave. 

After controlling for local contextual confounders in our models, we observed 

variations in the efficacy of interventions across regions. In this study, we divided 133 

countries into four groups based on mortality and morbidity, which were implicitly 

related to testing rate due to the highly correlation (see SI Table C1). Regardless, socio-

economic, cultural and political characteristics could also affect the implementation and 

effectiveness of NPIs locally33. For example, workplace closures and gathering 

restrictions might have been implemented more thoroughly in countries with high 

morbidity and mortality such as Group 2, thereby increasing their efficacy as compared 

to countries in Group 1. Here we presented the overall trend of the group, not excluding 

individual countries such as the United States that had fragmented approaches and no 

NPIs were implemented very effectively (at least from the policy level). 

We acknowledge that there are limitations in our analysis. First, we mainly 

focused on the comparison of NPIs for the first and second waves, as only a small 

number of countries had experienced the third wave by 25 March 2021 and the most 

recent wave might involve NPIs together with vaccination. To evaluate the pure effects 



of NPIs independent of vaccination, we excluded the dates with vaccination in the first 

and second waves. Meanwhile, the preliminary results of NPI effects in the third wave 

for a small group of countries are also provided in SI. Second, it should be noted that 

our study might have underestimated the effectiveness of the vaccination, as we only 

examined the initial, short-term effect of the first-dose vaccines as of 25 March, but 

vaccine and infection-induced immunity among populations could last longer, with 

accumulated long-term effects for reducing transmission. Additionally, some 

countries/populations have had the second-dose vaccine rollout, which was not 

estimated in our study, though the proportion of people vaccinated with two doses 

might be still low. 

Overall, the disclosure of epidemic, publicized responses and the COVID-19 

vaccination data allows us to estimate and compare the cross-wave effects of public 

health measures at both global and regional scales. Our work provides a quantitative 

basis and approach to explore historic spatial-temporal variation in the effectiveness of 

individual NPIs, integrating vaccinations. The continued pandemic burden across the 

globe and the non-decisive efficacy of the vaccination suggests the NPI implementation 

continues to be a priority for many countries, even with a full force vaccine rollout in 

the early stage of the vaccination era5,20,40. 

  



Methods 

Data sources and processing 

Epidemiological data. The daily number of confirmed cases reported by country were 

obtained from the COVID-19 Data Repository by the Center for Systems Science and 

Engineering (CSSE) at Johns Hopkins University (JHU)23. To remove the influence of 

outliers and the fluctuation caused by the day-of-week effect, we smoothed daily case 

counts with the Gaussian kernel and adjusted them for the infection-to-confirmation 

reporting delay then. First, we set all negative case numbers to zero, as negative values 

in cases could sometimes appear when a country corrected historical data, because it 

had previously overestimated the number of cases41. Second, we smoothed case data by 

calculating the rolling average using a Gaussian window with a standard deviation of 2 

days, truncated at a maximum window of 15 days29. Third, we adjusted the data by 

subtracting 12 days15 from the reporting date in the first wave, accounting for the delay 

from infection to reporting. With respect to the second, even the third, wave, we slightly 

reduced the reporting delay to 10 days because of the potential increasing testing and 

diagnosis capacity. Sensitivity analyses were also conducted to assess the impact of 

different reporting delays on our estimates (see sensitivity analysis section in Methods). 

 

Intervention policy data. We generated seven non-pharmaceutical measures from the 

nine NPIs (i.e. school closures, workplace closures, public events cancellations, 

gathering restrictions, public transport closures, stay-at-home orders, internal 

movement restrictions, international travel restrictions, and facial coverings), collated 

by the Oxford COVID-19 Government Response Tracker (OxCGRT)24. The intensity 

of the nine considered NPIs policies is scaled into discrete values between 0 to 1, where 

0 represents an absence of the NPI and 1 represents the corresponding maximum 



intensity. The intensity of school closures is corrected as 1 during public and school 

holidays42. We processed public events cancellations and gathering restrictions into a 

single NPI (i.e., gathering restrictions) for each country in each day by their mean 

intensity, as the two NPIs documented in OxCGRT were highly collinear in terms of 

their timing and intensity of implementation across the 133 study countries. We also 

integrated stay-at-home orders and internal movement restrictions into movement 

restrictions for the same reason in the same way for each country. 

 

Vaccination data. The COVID-19 vaccination data used in this study was obtained 

from the Our World in Data25. They regularly updated the first and second doses 

administered and daily vaccination rates at national scale from official sources in 93 

countries as of 25 March 2021. We analysed the vaccination effect in 63 countries 

whose highest daily confirmed cases exceeded 100. The induced antibody response and 

immunity might sufficiently prevent SARS-CoV-2 infections since Day 12 after 

receiving the first dose27. Therefore, we adjusted the vaccination rates for the first dose 

administered to be rolled forward for 12 days, to account for the delay from vaccination 

to the generation of sufficient protective immunity. 

 

Environmental and demographic covariates. To control for country-specific 

confounders in the estimates of intervention effectiveness varied across countries, we 

also assembled population density, aging ratio, health capacity index, air temperature, 

and humidity for all these 133 study countries. Within each country, population density 

(per square kilometre) was the ratio of the total population over the corresponding built-

up area in 201443. The total and age-grouping population data in 2019 were obtained 

from the United Nations to calculate the aging ratio (> 65 year old) among populations 



44. Health capacity index was the arithmetic average of the five indices, including i) 

prevent, ii) detect, iii) respond, iv) enabling function, and v) operational readiness, 

developed to characterize the health security capacities in the context of the COVID-

19 outbreak45. Air temperature and humidity were derived from the Global Land Data 

Assimilation System 46. 

 

To further remove the day-of-week effect among case testing, diagnosis, and data 

reporting, all data used in this study were assembled and aggregated into a weekly 

dataset. The correlations between each two covariates were given to show their 

collinearity. The studied countries were selected by being documented in every dataset 

of epidemiological data, intervention policy data and environmental and demographic 

covariates. The details of data collection and processing are further provided in the 

Supplementary Information.  

 

Defining waves and country groups 

Waves. The inequality in pandemic development across worldwide countries has led 

some countries to confront more than one COVID-19 wave47,48. Based on the smoothed 

daily case data, we defined an epidemic wave in each country as below. In a period of 

three or more consecutive weeks for a country, if the daily numbers of cases in this 

period all exceeded 5% of the maximum daily number of cases in 2020 in this country, 

these weeks were considered to constitute an epidemic wave. The first and last days of 

the period were the start and end of the corresponding wave, respectively. However, 

considering that the first wave of this pandemic in most countries started from low-

level community transmission caused by imported cases, we adjusted the start date of 

the first wave to the first date: i) when the number of daily cases exceeded 10 cases, for 



countries where the maximum number of daily new cases in the first wave were less 

than or equal to 300 cases; or ii) when the number of daily cases exceeded 20 cases, for 

other countries where their maximum daily cases in the first wave were greater than 

300 cases. The details and full lists of waves by country can be found in SI. We focused 

on the first and second waves in the main text, and the results of the third waves that 

were only identified in a few countries are provided in SI. 

 

Regional stratification. The reported COVID-19 morbidity and mortality could vary 

substantially in the study countries, based on the released epidemiological data. We 

investigated the spatial variation in NPIs effectiveness by dividing 133 countries into 

four country groups based on their COVID-19 morbidity and mortality together with 

geographical proximity (SI Fig. C2). Among the four groups, the grading thresholds for 

high morbidity and mortality were determined according to the principle of "small 

variance within groups and large variance between groups"49,50. Thresholds of 1800 per 

100,000 persons for morbidity and 40 per 100,000 persons for mortality were chosen 

to select countries with both high morbidity and high mortality. Considering the 

geographical proximity between countries, Asian countries and African countries were 

assigned into two separate groups. A full list of countries in each group and the 

corresponding time frame of different waves of COVID-19 can be found in SI Table 

C2 – C5. 

 

Model description 

Transmission dynamics. The evolution of the COVID-19 in a society can be 

characterized by 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝑡𝑡𝐼𝐼𝑡𝑡 , where 𝐼𝐼  represents the new cases, and 𝜔𝜔𝑡𝑡  is the 

instantaneous growth rate. We adopted a general linear formula9,10,37 linking NPIs to 



the pandemic evolution. That is, 

𝜔𝜔𝑡𝑡 = 𝜔𝜔0exp(−𝜏𝜏𝑡𝑡𝑣𝑣𝑡𝑡)�exp�−𝛼𝛼𝑖𝑖,𝑡𝑡𝑥𝑥𝑖𝑖,𝑡𝑡�
𝑛𝑛

𝑖𝑖=1

�exp�−𝛽𝛽𝑗𝑗,𝑡𝑡𝑦𝑦𝑗𝑗,𝑡𝑡�
𝑚𝑚

𝑗𝑗=1

+ 𝜀𝜀𝑡𝑡, (1) 

where 𝜔𝜔0  represents the baseline growth rate without interventions. 𝛼𝛼𝑖𝑖,𝑡𝑡  is the 

correlation between 𝜔𝜔0 and 𝜔𝜔𝑡𝑡 in terms of NPIs policy 𝑥𝑥𝑖𝑖,𝑡𝑡 (visualized in SI Fig A3) on 

day 𝑡𝑡, and 𝑛𝑛 is the number of NPIs. 𝛽𝛽𝑗𝑗,𝑡𝑡 is the correlation between 𝜔𝜔0 and 𝜔𝜔𝑡𝑡 in terms 

of sociodemographic factors 𝑦𝑦𝑗𝑗,𝑡𝑡, and 𝑚𝑚 is the number of control variables. 𝜏𝜏𝑡𝑡 is the 

correlation between 𝜔𝜔0  and 𝜔𝜔𝑡𝑡  in terms of vaccination 𝑣𝑣𝑡𝑡 , and 𝜀𝜀𝑡𝑡  is the error term 

representing the uncertainty of decay ratio at day 𝑡𝑡. The effect of NPI 𝑥𝑥𝑖𝑖 in a period, 

such as the first wave of the pandemic, can be interpreted as a decay ratio in 𝜔𝜔0 by 

computing 𝑒𝑒𝑖𝑖 = 1 − exp (−𝛼𝛼𝑖𝑖𝑥𝑥𝚤𝚤�) , where 𝛼𝛼𝑖𝑖  is the effect parameter and 𝑥𝑥𝚤𝚤�  is the 

average intensity of the NPI during that period. The highest effect of NPIs is 1, 

representing that the transmission is fully contained or interrupted. In contrast, the 

effect of vaccination is calculated by 1 − exp (−𝜏𝜏max(𝑣𝑣𝑡𝑡)), ranged from 0 to 1 also 

with 1 representing that the transmission is fully contained or interrupted by 

vaccination. It should be noted that the combined NPIs effectiveness on day 𝑡𝑡 should 

be calculated as 1 − exp (−∑ 𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡𝑖𝑖 ) = 1 − ∏ (1 − 𝑒𝑒𝑖𝑖)𝑖𝑖 , instead of the sum of 

individual NPI effects. 

 

Assessing the effects of interventions. We used the spatiotemporal Bayesian inference 

model to evaluate the effect parameters in Eq. (1) based on the observed real-time 

COVID-19 growth, identifying the relative NPIs and vaccination effectiveness. We 

assumed that the effects of NPIs on 𝜔𝜔𝑡𝑡 change across waves and country groups, but 

relatively stable for countries within the same group. The differences in NPIs 

effectiveness across country groups were assumed to be too large to be controlled by 



sociodemographic factors. We first evaluated the overall effectiveness of NPIs before 

the vaccination era. In addition to the overall NPIs effectiveness, we also evaluated 

respective NPIs effects in the first and second waves for each country group separately 

to show the potential large spatiotemporal diversity. For vaccination, we evaluated 

NPIs and vaccination effects for 63 countries regardless of their country groups. We 

also evaluated vaccination effects within different time periods after vaccinations as of 

25 March 2021 to show cumulative effects of vaccine rollouts over time. 

 

We aimed to compare relative effectiveness of COVID-19 interventions across 

countries and across waves. Specifically, the effect parameters were all pre-defined to 

have a gamma distribution9 in spite of NPIs, sociodemographic factors and vaccination. 

Then, we placed 80% of their probability mass on positive effects for both NPIs and 

vaccination by left shifting their probability distributions with certain values10. While 

we put no information on effectiveness of sociodemographic factors, i.e., placing 50% 

of their probability mass on positive effects. Under the circumstance, NPIs and 

vaccination were more likely to contain the pandemic, while the state-variable effects 

were unknown. The baseline growth rate (𝜔𝜔0) was defined as the mean of the top three 

highest growth rates of the confirmed COVID-19 new cases in the corresponding wave. 

The instantaneous transmission interval (1/𝜔𝜔𝑡𝑡) in the following weeks was assumed to 

have a gamma distribution also. 

 

Model validation. The reliability of our models and corresponding results were 

evaluated by the leave-forty-countries-out cross validation. We first calibrated our 

model using 70% countries (93), randomly selected from 133 countries, to estimate the 

overall NPIs effects in both the first and second waves. Then, we derived the 



instantaneous growth rates through the estimated NPIs overall effects for the remaining 

30% countries (40) in terms of their implemented NPIs. We used mean square error, 

ranging from 0 to infinite with 0 represents the perfect prediction ability, to assess the 

difference between the predicted instantaneous growth rates and the corresponding 

empirical instantaneous growth rates. We repeated this procedure 50 times, where the 

average mean square error was (median 1.002, interquartile range [IQR] 0.519 – 1.209). 

Further, we standardised the predicted and empirical instantaneous growth rates, 

respectively, within each country and then analysed all the data with one-way ANOVA. 

 

Sensitivity analysis. The robustness of models and parameters used in the study was 

also assessed by a series of sensitivity analyses. The parameters to be assessed included: 

i) the probability mass of NPIs and vaccination on negative effectiveness; ii) the 

probability mass of sociodemographic factors on negative effectiveness; and iii) the 

infection-to-report delay in the first wave (𝑡𝑡1) and the second wave (𝑡𝑡2). In this study, 

the default values for these parameters were 20%, 50% and 𝑡𝑡1 =12 and 𝑡𝑡2 =10, 

respectively. The comparison of parameter impacts on estimates were listed in SI Table 

B1, representing three scenarios with smaller and larger default parameter settings. The 

differences of NPI effects among three waves were tested using a Wilcoxon signed-

rank test, a non-parametric statistical hypothesis test for comparing NPIs effects 

between pairs of the three waves. Moreover, we repeated the estimations twice for NPIs 

effectiveness with default setting, except for the initial full infection rate, as the highest 

growth rate and the mean of the top five highest growth rates, respectively, of the 

confirmed COVID-19 new cases in the corresponding wave. 

 



Using an R package, rstan51, this model infers posterior distributions of each NPI 

effectiveness with the Markov chain Monte Carlo (MCMC) sampling algorithm. To 

analyse the extent to which modelling assumptions affect the results, our sensitivity 

analyses included epidemiological parameters, prior distributions, and the structural 

assumptions introduced above. MCMC convergence statistics are shown in SI Fig. B6 

- B7. 

 

Data and code availability 

All source code and data necessary for the replication of our results and figures are 

available at: https://github.com/wxl1379457192/NPIs_code  
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A Supplementary method 

A.1 Detailed model description 

In the pre-vaccination era 

We employed a Susceptible-Infected-Removed (SIR) model1 to describe the evolution 

of COVID-19 for each country. The infected populations at country 𝑐𝑐 on time 𝑡𝑡 were 

attributed to the number of COVID-19 cases on time 𝑡𝑡 − 1 by the following equation  

𝐼𝐼𝑐𝑐,𝑡𝑡 = 𝐼𝐼𝑐𝑐,𝑡𝑡−1, 

where 𝜔𝜔𝑐𝑐,𝑡𝑡−1 was the instantaneous growth rate2 of COVID-19, affected by the basic 

transmission rate (i.e. basic reproduction number), interventions, and the susceptible 

population ratio, while 𝐼𝐼 was the number of infections. The instantaneous growth rate 

was the inverse of the serial interval (the time between successive cases in a chain of 

transmission), which was commonly characterized by a gamma distribution3. 

Considering the huge susceptible populations at the early stage of the pandemic and 

vaccine rollouts, and no country has reached herd immunity4, for the time being, we 

assumed that the basic growth rate in the pre-vaccination era with no interventions was 

approximately constant. However, the observed instantaneous growth rate (𝐼𝐼𝑐𝑐,𝑡𝑡/𝐼𝐼𝑐𝑐,𝑡𝑡−1), 

derived from the empirical daily confirmed cases, usually possessed a decreasing trend 

within each wave. For example, the first COVID-19 outbreak in China had a basic 

reproduction number of 3.545, but following the multipronged interventions, the 

reproduction number were reduced to 0.28 as of 8 March 2020. Nevertheless, most of 

the population in China are still susceptible to coronavirus by 31 March 2021, due to 

the sustained containment of the disease and the small proportion of Chinese vaccinated. 

As previous works2,6,7, we assumed that the decreasing transmission rate in each 

wave was contributed by interventions, especially NPIs in the pre-vaccination era. Then, 

we decomposed the variation in the empirical instantaneous growth rate in country 𝑐𝑐 
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into the variation in the timing and intensity of NPIs implemented during the 

corresponding period in country 𝑐𝑐. To this end, we modelled the efficacy of seven NPIs 

in country 𝑐𝑐 using the following formula, 

𝜔𝜔𝑐𝑐,𝑡𝑡−1 =
𝐼𝐼𝑐𝑐,𝑡𝑡

𝐼𝐼𝑐𝑐,𝑡𝑡−1
= � exp�−𝛼𝛼𝑐𝑐,𝑖𝑖,𝑡𝑡−1𝑥𝑥𝑐𝑐,𝑖𝑖,𝑡𝑡−1�

7

𝑖𝑖=1

, (1)  

where 𝑥𝑥𝑐𝑐,𝑖𝑖,𝑡𝑡−1 is the state of NPI 𝑖𝑖 in country 𝑐𝑐 on time 𝑡𝑡 − 1 (see Fig. A3), and 𝛼𝛼𝑐𝑐,𝑖𝑖,𝑡𝑡−1,  

the corresponding coefficient of NPI 𝑖𝑖 , was used to measure the effect of each 

intervention. We assumed that 𝛼𝛼𝑐𝑐,𝑖𝑖,𝑡𝑡−1 has a gamma distribution over time, 

𝛼𝛼𝑐𝑐,𝑖𝑖,𝑡𝑡−1~Gamma(1/7, 1) − log(1.000382)/7. 

We put this prior on 𝛼𝛼𝑐𝑐,𝑖𝑖,𝑡𝑡−1 such that about 80% probability mass of NPI effectiveness 

on positive effect (see Fig. A2). 

However, if there was rare variation in the timing and intensity of each NPI 

implementation, we cannot derive a reliable result from Eq. (1). We, thus, jointly 

estimated NPI effects through numerous countries by assuming 𝛼𝛼𝑐𝑐,𝑖𝑖,𝑡𝑡−1 being constant 

across countries. The variation of NPI effects across countries was controlled by socio-

demographic factors with the following equation, 

𝜔𝜔𝑐𝑐,𝑡𝑡 = 𝜔𝜔𝑐𝑐,0 ∏ exp�−𝛼𝛼𝑖𝑖,𝑡𝑡𝑥𝑥𝑐𝑐,𝑖𝑖,𝑡𝑡�7
𝑖𝑖=1 ∏ exp�−𝛽𝛽𝑗𝑗,𝑡𝑡𝑦𝑦𝑐𝑐,𝑗𝑗,𝑡𝑡�5

𝑗𝑗=1 , 𝑐𝑐 ∈ {1, … ,𝐶𝐶} (2) 

where 𝜔𝜔𝑐𝑐,0 was the baseline growth rate in country 𝑐𝑐, and 𝛽𝛽𝑗𝑗,𝑡𝑡, the coefficient of the 

socio-demographic factor 𝑦𝑦𝑐𝑐,𝑗𝑗,𝑡𝑡, was used as a proxy of the impact of this factor on the 

decay of the baseline growth rate. The correlation coefficients for the socio-

demographic factors were also assumed to have a gamma distribution, but with 50% 

probability mass on their positive effects (see Fig. A2), 

𝛽𝛽𝑐𝑐,𝑗𝑗,𝑡𝑡~Gamma(1/5, 1) − log(1.09)/5. 

However, the absolute values of instantaneous growth rate might vary heterogeneously 

across countries8. We added the baseline growth rate in Eq. (2) for country 𝑐𝑐 to make 
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the NPI effects being comparable across countries, by defining the NPI efficacy as a 

proportion of reduction from the baseline growth rate. 

In the pre-vaccination era, to differentiate the performance of NPIs across waves 

and country groups, we first estimated the overall effect of NPIs covering the whole 

133 countries as of 25 March 2021. Then, the relative NPI effects were evaluated in 

each country group and wave, respectively. To make Eq. (2) solvable, 𝛼𝛼𝑖𝑖,𝑡𝑡 were set to 

be constant for the practical estimation, where the variation in the NPI efficacy was 

captured by setting different data contexts in terms of space and time. The effect of 

NPIs on 𝜔𝜔𝑡𝑡 might change across waves and country groups, but somewhat being stable 

for countries within the same country group and wave. 

We estimated coefficients in Eq. (2) jointly for all countries within any 

particular above data context by an individual hierarchical model, 

1
𝜔𝜔𝑐𝑐,𝑡𝑡−1

~Gamma(𝜇𝜇, 𝜎𝜎), 

𝜇𝜇 =
1

𝜔𝜔𝑐𝑐,0 ∏ exp �−𝛼𝛼𝑖𝑖𝑥𝑥𝑐𝑐,𝑖𝑖,𝑡𝑡−1�7
𝑖𝑖=1 ∏ exp �−𝛽𝛽𝑗𝑗𝑦𝑦𝑐𝑐,𝑗𝑗,𝑡𝑡−1�

5
𝑗𝑗=1

. 

The above model was fitted using an adaptive Hamiltonian Monte Carlo (HMC) 

sampler in Stan, a probabilistic programming language. We ran 5 chains for 2000 

iterations with 200 iterations of warmup and a thinning factor 1 to obtain 9000 posterior 

samples. Posterior convergence was assessed using the Rhat statistic and by diagnosing 

divergent transitions of the HMC sampler. 

 

In the vaccination era 

A safe and effective vaccine could help to protect the susceptible in two distinct ways9: 

direct protection, where high-risk populations are vaccinated to prevent infections or 
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severe diseases, and indirect protection, where those in contact with high-risk 

individuals are vaccinated to reduce transmission. Vaccination curbs the pandemic by 

reducing the susceptible ratio among the whole population. In contrast, NPIs are 

designed and implemented to reduce contacts between susceptible and infectious 

populations, and interrupt the virus spread, thereby reducing transmission rate 

consequently. To understand the short-term effect of vaccination on containing 

COVID-19 transmission in the whole population in each country, as of 25 March 2021, 

we linked vaccination to the instantaneous transmission rate with a similar form to that 

for NPIs, so that the impact of vaccination was comparable to NPIs. Finally, our 

spatiotemporal Bayesian inference model for differentiating the performance of NPIs 

and vaccination was, 

𝜔𝜔𝑡𝑡 = 𝜔𝜔0 exp(−𝜏𝜏𝑡𝑡𝑣𝑣𝑡𝑡)� exp�−𝛼𝛼𝑖𝑖,𝑡𝑡𝑥𝑥𝑖𝑖,𝑡𝑡�
7

𝑖𝑖=1

� exp�−𝛽𝛽𝑗𝑗,𝑡𝑡𝑦𝑦𝑗𝑗,𝑡𝑡�
5

𝑗𝑗=1

+ 𝜀𝜀𝑡𝑡 (3) 

where 𝑣𝑣𝑡𝑡 was the vaccination parameter (i.e., the accumulated proportion of population 

vaccinated) on time 𝑡𝑡 and 𝜏𝜏𝑡𝑡 was the corresponding coefficient to measure the effect of 

vaccination. We assumed that 𝜏𝜏𝑡𝑡 had a same gamma distribution as the coefficients of 

NPIs, 

𝜏𝜏𝑡𝑡~Gamma(1/7, 1) − log(1.000382)/7. 

We also put this prior on 𝜏𝜏𝑡𝑡  such that about 80% probability mass of vaccination 

effectiveness on positive effect (see Fig. A2). 
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Fig. A1. The prior distribution of effect parameters of NPIs and vaccination (left) and 
the correlation parameter of the socio-demographic factors (right). 
 

A.2 Details in data processing 

The datasets used in this study were all publicly available and detailed below. Countries 

documented in all these datasets were studied, including a total of 133 countries, 

territories and areas. Here, we detail how we assembled and processed each dataset into 

final integrated, experimental datasets for this study. 

Epidemiological data 

We collected daily confirmed COVID-19 case data for countries 𝑐𝑐 ∈ {1, … ,133} from 

the earliest available dates to 25 March 2021. The daily confirmed cases used in our 

study were originally collected by the COVID-19 Data Repository by the Center for 

Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)10, which 

can be obtained from the GitHub (https://raw.githubusercontent.com/owid/covid-19-

data/master/public/data/owid-covid-data.csv). We processed epidemiological data 

country by country with the following steps: i) All negative numbers of reported cases 

were set to zero; ii) The daily numbers of cases were smoothed by calculating the rolling 

https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv
https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv
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average using a Gaussian window with a standard deviation of 2 days, truncated at a 

maximum window size of 15 days11; iii) We defined periods of the first wave and the 

second wave (see Methods in main text); iv) To account for the delay from infection to 

reporting, we replaced the reporting dates of daily cases by subtracting 12 days in the 

first wave7. With respect to the second, even the third, wave, we subtracted the reporting 

dates by 10 days. A few country samples are illustrated in Fig. A2 to show the smooth 

procedure and waves. 

 

 

Fig. A2. Illustrations of raw data (in blue) and corresponding smoothed data (in orange) 
of daily confirmed active cases. Here we only show the top two countries and the last 
two countries in each country group vis-a-vis cumulative cases. The waves are depicted 
by the shadows with different colours. 
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The dataset used in the estimation of the overall efficacy of NPIs was generated 

by pooling up the start date of the first wave, instead of aggregating all the countries in 

terms of dates. Similarly, the dataset used for the second wave was generated by pooling 

up the start date of the second wave for all countries. Then, we aggregated the daily 

time series of confirmed cases into weekly dataset by summing all new cases in the 

corresponding week. To define the effect of NPIs before vaccine rollouts in our NPI 

effectiveness estimation, we only used case data before the date when country c started 

COVID-19 vaccination programme among populations. Sensitivity analyses were also 

conducted to evaluate the impact of different infection-to-report delays in our estimates. 

Policy data 

We employed nine NPIs (the definitions were given in Table A1) collated by the Oxford 

COVID-19 Government Response Tracker (OxCGRT)12. For each record of policy data, 

intensity of the nine considered NPI policies was scaled into discrete values between 0 

to 1 by dividing the corresponding highest intensity value listed in Table A1, where 0 

represented an absence of the NPI and 1 represented the corresponding maximum 

intensity. We used the timing of public and school holidays13 to adjust the intensity of 

school closures to 1 at that days. Then, we integrated the NPIs policy data into the 

prepared datasets of weekly confirmed cases, and the weekly intensity of each NPI was 

the mean of corresponding daily intensity values in each week. Finally, public events 

cancellations and gathering restrictions were further aggregated into a single parameter 

(gathering restrictions) with their average intensity for each record, and stay-at-home 

orders and internal movement restrictions were also aggregated into movement 

restrictions in the same way (for example see Fig. A3).  
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Fig. A3. Illustrations of timing and intensity of NPIs implementation for Russia, United 
States, Japan and South Africa. 

 
Table A1. Definition of the employed nine NPIs from the Oxford COVID-19 
Government Response Tracker (OXCGRT) in terms of their intensity. 

NPIs Intensity Description 

School closures 
1 Closing or all schools open with alterations is 

recommended 
2 Closing some levels or categories is required 
3 Closing all levels is required 

Workplace 
closures 

1 Closing workplace is required 
2 Closing some sectors or categories of workers is required 
3 Closing non-essential workplaces is required 

Public events 
cancellations 

1 Cancelling public events is recommended 
2 Cancelling public events is required 

Gathering 
restrictions 

1 Above 1000 people 
2 Between 101-1000 people 
3 Between 11-100 people 
4 10 people or less 

Public transport 
closures 

1 Closing is recommended 
2 Closing is required 

Stay-at-home 
orders 

1 Stay at home is recommended 

2 Stay at home with exceptions for daily exercise, grocery 
shopping, and 'essential' trips is required 

3 
Stay at home with minimal exceptions (e.g., allowed to 
leave once a week, or only one person can leave at a time, 
etc) is required 
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NPIs Intensity Description 
Internal 
movement 
restrictions 

1 Travel between regions/cities is not recommended 

2 Internal movement is restricted in place 

International 
travel restrictions 

1 Screening arrivals 

2 Quarantine arrivals from some or all regions 

3 Ban arrivals from some regions 

4 Ban on all regions or total border closure 

Facial coverings 

1 Recommended 

2 
Required in some specified shared/public spaces outside 
the home with other people present, or some situations 
when social distancing not possible 

3 
Required in all shared/public spaces outside the home with 
other people present or all situations when social distancing 
not possible 

4 Required outside the home at all times regardless of 
location or presence of other people 

Note: International travel controls were deployed for foreign travellers only, not citizens. 

 

Vaccination data 

We obtained the data of COVID-19 vaccination from Our World in Data14. The total 

number of people who received at least one vaccine dose was considered as the 

vaccination proxy. Since the vaccinated population might have the sufficient vaccine-

induced antibody response and immunity to prevent SARS-CoV-2 infections at Day 12 

after receiving the first dose15, we adjusted the dates of vaccination data by adding 12 

days for further integrating with case data and being comparable with the effect of NPIs. 

The vaccination intensity by day was the cumulative injection rate among the total 

population of each country. A full list of countries and their cumulative injection rates 

until 25 March 2021 is shown in Table A2. As we explored the short-term effects of 

vaccinations and NPIs in the early stage of vaccine rollouts, we assembled and analysed 

daily datasets. For each date in the vaccination, we used the smoothed data of daily 

confirmed cases adjusted for the infection-to-report delay by 12 (or 10) days, 
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corresponding to the date in the first (second or third) wave. We analysed the 

vaccination effect in 63 countries whose highest daily confirmed cases exceeded 100.  

Environmental and demographic covariates 

Population density is intrinsically a very factor influencing infection rate, especially for 

megacities16,17, and the elderly are more vulnerable to the pandemic due to the severe 

infections18. Different aging ratios across countries might also affect the mobility and 

mortality19. The different growth rates of COVID-19 infections would also fluctuate 

due to disparate testing and case detection capacities20. The per capita health capacity 

may help us control this kind of variation. In addition, COVID-19 seems to possess 

higher transmission rates in wintertime21.  

To control for country-specific confounders in the estimates of intervention 

effectiveness across countries, we assembled population density, aging ratio, health 

capacity index, air temperature, and humidity for all these 133 study countries. We 

integrated these data into the datasets of confirmed cases and vaccination, respectively, 

in terms of corresponding documented dates. With respect to the weekly datasets, 

environmental conditions were aggregated into weekly with the mean value. Moreover, 

each environmental and demographic covariate was normalized in each dataset by 

dividing the corresponding maximum value independently to eliminate dimensional 

effects.   
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Table A2. The list of studied 63 countries in the analysis of vaccination effects. 

Group Country Vaccination (%) Country Vaccination (%) 

Group 1 

Denmark 6.2386 Mexico 1.0648 

Norway 5.7779 Dominican Republic 0.2359 

Finland 5.4182 Belarus 0.2224 

Estonia 5.2514 Albania 0.2064 

Greece 4.7062 El Salvador 0.0926 

Cyprus 3.6641 Ecuador 0.0359 

Canada 3.1128 Paraguay 0.0142 

Russia 1.6338 Venezuela 0.0005 

Costa Rica 1.1332   

Group 2 

United Kingdom 27.7743 Sweden 4.4561 

Chile 15.6673 Germany 4.4527 

United States 13.6490 Austria 4.2055 

Switzerland 6.0876 Luxembourg 4.1866 

Hungary 5.2804 France 4.1277 

Ireland 5.2158 Belgium 4.0455 

Poland 5.1635 Czech Republic 3.5826 

Italy 5.1058 Croatia 3.0557 

Lithuania 5.0742 Brazil 2.8598 

Slovenia 5.0449 Latvia 1.9936 

Spain 4.7448 Bulgaria 1.9660 

Portugal 4.7021 Argentina 1.0082 

Netherlands 4.6290 Peru 0.8217 

Group 3 

Israel 53.1398 Myanmar 0.6933 

United Arab Emirates 35.4668 Azerbaijan 0.6436 

Bahrain 16.7837 Jordan 0.4898 

Turkey 7.5772 Indonesia 0.4497 

Qatar 3.5819 Kazakhstan 0.0746 

Kuwait 3.1839 Pakistan 0.0350 

Bangladesh 1.5745 Japan 0.0141 

India 1.5739 Iran 0.0120 

Oman 0.9445   

Group 4 
Morocco 6.8842 Senegal 0.0238 

South Africa 0.2136   
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B Validation and sensitivity analysis  

B.1 Cross validation 

We used Cross-Validation (CV) to validate our model. We used the data of 70% 

countries (93), randomly sampled from 133 study countries, to build the model and 

estimate the overall NPI effects. To examine the performance of models, the 

instantaneous growth rates derived from the data of remaining 30% countries (40) were 

compared with the growth rates predicted by models using the corresponding 

implemented NPIs and country-specific characteristics in these countries. The 

difference between the predicted and empirically calculated instantaneous growth rates 

was evaluated by the mean square error (MSE). In general, MSE ranged from 0 to 

infinite with 0 representing the perfect prediction ability. For each of 40 countries in 

the validation dataset, MSE was the mean of the squared error of the instantaneous 

growth rates at each point of time. We used the average MSE of these 40 countries to 

represent the reliability of our model. This process has been repeated 50 times 

independently, generating 76,862 pairs of predicted and empirical instantaneous growth 

rates, and the average MSE was (median 1.002, interquartile range [IQR] 0.519 – 

1.209). Moreover, the predicted and empirical instantaneous growth rates were 

standardised within each country independently and respectively, by subtracting the 

mean and then dividing the standard error, for comparing instantaneous growth rates 

across countries. All the independently standardised values were shown in Fig. B1 and 

analysed by one-way ANOVA. The results showed that our model explained 43% 

variance ( 𝑣𝑣𝑣𝑣𝑣𝑣(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)/(𝑣𝑣𝑣𝑣𝑣𝑣(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)) ) in the 

empirical instantaneous growth rates, with P value < 0.001. Fig. B2 illustrated four 

countries that were confronting different numbers of waves.  
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Fig. B1. The results of 50 times cross-validation. (a) The scatter plot of the 
standardised 76862 pairs instantaneous growth rates. (b) The box plots of the predicted 
(𝜔𝜔�𝑡𝑡) and empirical (𝜔𝜔𝑡𝑡) instantaneous growth rates, respectively. (***: p < 0.001) 
 

 

Fig. B2. Comparison between the predicted instantaneous growth rates on each 
point of time and the empirical instantaneous growth rate. The predicted 
instantaneous growth rates (𝜔𝜔�𝑡𝑡) were represented by blue dots, where the empirical 
instantaneous growth rates (𝜔𝜔𝑡𝑡) were represented by red dots. The corresponding lines 
were fitted by locally weighted scatterplot smoothing, where the shadowed area 
representing 95% confidence interval. 
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B.2 Sensitivity analysis 

We designed three scenarios (Table B1) to perform sensitivity analyses based on our 

model assumptions, including 1) the probability that NPIs or vaccination performed 

negatively in reducing COVID-19 transmission; 2) the probability that country-specific 

characteristics had negative impacts on reducing COVID-19 transmission; 3) the 

infection-to-confirmation delay in the first wave and 4) the infection-to-confirmation 

delay in the second wave. Then, we calibrated our model with different scenarios. 

Results showed that the relative importance and ranks of NPIs for the reduction in 𝜔𝜔0 

were not significantly changed under the three scenarios (Fig. B3). For a specific policy, 

the decay ratio in the COVID-19 infection rate was slightly varied among three 

scenarios.  

 

Table B1. Three scenarios in the sensitivity analysis of the model 

 

Probability in NPI or 

vaccination negative 

effect 

Probability in country-

specific characteristics 

negative effect 

Infection to 

confirmation delay 

(days) 

 𝛼𝛼 𝛽𝛽 𝑡𝑡1 𝑡𝑡2 

Scenario 1 
(Lower bound) 10% 40% 10 8 

Scenario 2 
(Default setting) 

20% 50% 12 10 

Scenario 2 
(Upper bound) 

30% 60% 14 12 

 

Moreover, we repeated the estimation twice for NPI effectiveness under the 

default setting (scenario 2), to test the impact of the baseline growth rate derived by 

other approaches: 1) the highest weekly growth rate of the confirmed COVID-19 new 

cases in the corresponding wave; or 2) the mean of the top five weekly highest growth 

rates in the corresponding wave. The results showed that the relative effects of NPIs 



16 
 

varied slightly between different baseline growth rates, whereas the ranks of NPIs in 

terms of their efficacy were stable between them (Figs. B4 and B5). 

 

 

Fig. B3. Sensitivity analysis of the model assumption. (a) Comparison of the decay 
ratio in the COVID-19 infection rate for seven NPIs under three scenarios listed in 
Table B1. NPIs are ranked by the decay ratio (%Δ𝜔𝜔𝑡𝑡). (b) Comparison of the three 
scenarios for the efficacy of individual NPIs. 
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Fig. B4. The spatiotemporal effects of NPIs between country groups and waves, using 
the highest weekly growth rate as the baseline growth rate in the corresponding wave.  
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Fig. B5. The spatiotemporal effects of NPIs between country groups and waves, using 
the mean of the top five highest weekly growth rate as the baseline growth rate in the 
corresponding wave. 

 

B.3 MCMC convergence 

We calibrated our model with Markov chain Monte Carlo (MCMC) sampling 

algorithm. We used R-hat statistic and relative effective sample size to present MCMC 

performance during our model calibration. The results showed that our model 

calibrations with MCMC had a good convergence (see Fig. B6) and the sample size 
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was effective in decomposing the variation in decay ratios into NPI effectiveness (see 

Fig. B7). 

 

 

Fig. B6. R-hat statistic taken from a run using the default model with default settings 
and values for all parameters. Values are close to 1, indicating convergence. 
 
 
 

 

Fig. B7. Relative effective sample size taken from a run using the default model with 
default settings and values for all parameters. Value 1 indicates perfect decorrelation 
between samples. Values above (below) 1 indicate that the effective number of samples 
is higher (lower) than the actual number of samples due to negative (positive) 
correlation, respectively. 
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C Additional results 

C.1 Collinearity 

Nine common NPIs were analysed in this study, including school closures, workplace 

closures, public events cancellations, gathering restrictions, public transport closures, 

stay-at-home orders, internal movement restrictions, international travel restrictions, 

and facial coverings. To avoid the multicollinearity caused by high correlations and 

constraints in models to separately identify the NPI effect, we conducted a correlation 

analysis of NPI variables above. As shown in Fig. C1, NPIs having some causal 

meanings did have higher correlation coefficients (about 0.5). For this reason, we 

defined a “movement restrictions” variable using the average of intensities of stay-at-

home orders and internal movement restrictions, and generated a new “gathering 

restrictions” variable from the average of intensities of public events cancellations and 

gathering restrictions. 

 
Fig. C1. Correlations between all collected explanatory variables in initial. (*: p < 0.05; 
**: p < 0.01; ***: p < 0.001). 
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C.2 Country groups and waves 

To differentiate the performance of NPIs against COVID-19 across countries and 

waves, we divided the 133 study countries into four country groups based on their 

morbidity and mortality of COVID-19 together with geographical proximity (see Fig. 

C2) and then defined waves for each country (Table C1 – C4). In fact, the capacity of 

testing and diagnosis was a major confounder in different NPI effects across countries. 

However, the testing rate was not generally available for all the 133 countries. We used 

the number of testing per thousand people on 25 March 2021 to represent the testing 

rate in each country having testing data, where the morbidity and mortality of this 

country were represented by the total cases/deaths per million people at that day, 

respectively. Then, we tested the Pearson's product-moment correlation between the 

total tests per thousand people and the total cases/deaths per million people, 

respectively (see Table C1). The results showed that the testing rate was correlated to 

the morbidity and mortality indicating we divided 133 countries into four country 

groups implicitly by the testing rate. 

 

Table C1. Pearson's product-moment correlation between the total tests per thousand 
people and the total cases/deaths per million people, respectively. 

 Correlation P value 

The total cases per million 
people 

0.5307 
(95% CI, 0.3821, 0.6525) 

2.089e-09 

The total deaths per million 
people 

0.2527 
(95%CI, 0.0696,0.4193) 

0.007457 
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Fig. C2. Distribution of the 133 study countries in terms of morbidity and mortality. 
The red lines represent the grading thresholds for high morbidity and mortality.  
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Table C2. The start date and end date of each wave in each country of Group 1. 

Country 
Start Date (dd/mm/yy) End Date (dd/mm/yy) 
Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3 

Albania 04/24/20 01/09/21  01/04/21 03/25/21  
Australia 03/14/20 06/20/20  04/19/20 09/18/20  
Austria 03/10/20 09/01/20  05/01/20 03/25/21  
Bahamas 07/22/20   02/01/21   
Belarus 04/02/20 08/16/20  08/11/20 03/25/21  
Belize 08/08/20   03/25/21   
Bolivia 04/13/20 11/30/20  11/01/20 03/25/21  
Canada 03/14/20 09/20/20  06/20/20 03/25/21  
Costa Rica 03/26/20   03/25/21   
Croatia 03/19/20 10/10/20  04/24/20 03/25/21  
Cuba 03/28/20 07/31/20  05/20/20 03/25/21  
Cyprus 03/24/20 10/13/20 02/13/21 04/25/20 02/04/21 03/25/21 
Denmark 03/10/20 07/27/20  05/10/20 03/25/21  
Dominican Republic 03/23/20 11/01/20  09/05/20 03/25/21  
Ecuador 03/19/20   03/25/21   
El Salvador 05/01/20 09/20/20  09/15/20 03/25/21  
Estonia 03/14/20 10/13/20  04/30/20 03/25/21  
Finland 03/13/20 08/05/20  06/07/20 03/25/21  
Germany 03/03/20 10/01/20  04/20/20 03/25/21  
Greece 03/11/20 08/10/20 01/22/21 04/10/20 01/11/21 03/25/21 
Guatemala 04/22/20   03/25/21   
Guyana 08/02/20   03/25/21   
Haiti 05/12/20 12/03/20  10/05/20 03/25/21  
Honduras 04/03/20 02/04/21  01/12/21 03/25/21  
Iceland 03/13/20 09/16/20  04/22/20 12/23/20  
Ireland 03/17/20 09/01/20 12/10/20 05/23/20 11/10/20 03/25/21 
Jamaica 04/18/20 08/15/20 12/28/20 05/10/20 10/30/20 03/25/21 
Latvia 03/20/20 09/25/20  04/15/20 03/25/21  
Lithuania 03/22/20 10/01/20  05/01/20 03/25/21  
Mexico 03/20/20 11/15/20  11/01/20 03/25/21  
Norway 03/06/20 09/01/20 02/15/21 05/10/20 01/18/21 03/25/21 
Paraguay 05/04/20 11/07/20  10/20/20 03/25/21  
Poland 03/17/20 02/03/21  01/12/21 03/25/21  
Portugal 03/15/20 09/20/20 12/23/20 05/10/20 12/13/21 03/25/21 
Russia 03/20/20 09/25/20  08/10/20 03/25/21  
Suriname 06/06/20 12/10/20  11/09/20 03/25/21  
Trinidad and Tobago 08/09/20   03/25/21   
Ukraine 03/26/20 02/13/21  02/05/21 03/25/21  
Uruguay 03/23/20   03/25/21   
Venezuela 05/18/20 01/02/21  12/20/20 03/25/21  
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Table C3. The start date and end date of each wave in each country of Group 2. 

Country 
Start Date (dd/mm/yy) End Date (dd/mm/yy) 
Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3 

Andorra 03/21/20 08/19/20  04/27/20 03/25/21  
Argentina 03/22/20   03/25/21   
Belgium 03/08/20 08/10/20  05/10/20 01/03/21  
Bosnia and 
Herzegovina 03/27/20 10/10/20  10/01/20 03/25/21  

Brazil 03/15/20 11/15/20  11/05/20 03/25/21  
Bulgaria 03/18/20 10/10/20 02/01/21 08/25/20 01/15/21 03/25/21 
Chile 03/17/20   03/25/21   
Colombia 03/21/20 10/01/20  10/01/20 03/25/21  
Czechia 03/12/20 09/20/20 12/04/20 04/20/20 11/23/20 03/25/21 
France 03/03/20 08/10/20  04/25/20 03/25/21  
Hungary 03/21/20 09/06/20  05/15/20 03/25/21  
Italy 02/24/20 10/01/20 02/10/21 06/10/20 01/25/21 03/25/21 
Luxembourg 03/16/20 10/05/20  04/21/20 03/25/21  

Moldova 03/28/20 01/17/21  12/28/20 03/25/21  

Netherlands 03/07/20 07/30/20 11/29/20 05/20/20 11/03/20 03/25/21 
Panama 03/21/20 11/15/20  11/01/20 03/25/21  
Peru 03/19/20 07/15/20 01/02/21 07/01/20 12/04/20 03/25/21 
Slovenia 03/12/20 09/25/20  04/15/20 03/25/21  
Spain 03/04/20 07/13/20  04/30/20 03/25/21  
Sweden 03/07/20 09/25/20  07/05/20 03/25/21  
Switzerland 03/06/20 10/05/20  04/23/20 03/25/21  
United 
Kingdom 03/04/20 09/10/20 12/01/20 06/10/20 11/22/20 03/25/21 

United States 03/06/20 06/20/20 10/01/20 06/01/20 09/10/20 03/25/21 
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Table C4. The start date and end date of each wave in each country of Group 3. 

Country Start Date (dd/mm/yy) End Date (dd/mm/yy) 
Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3 

Afghanistan 04/03/20 11/20/20  08/15/20 03/25/21  

Azerbaijan 03/30/20 10/10/20  08/05/20 03/25/21  
Bahrain 03/24/20 08/31/20 11/27/20 08/10/20 11/10/20 03/25/21 
Bangladesh 04/08/20 11/15/20  10/01/20 03/25/21  
China 01/29/20 11/13/20  03/10/20 02/01/21  
Georgia 09/05/20   03/25/21   
India 03/20/20 02/08/21  01/25/21 03/25/21  
Indonesia 03/18/20   03/25/21   
Iran 02/27/20 05/05/20 01/19/21 04/30/20 12/17/20 03/25/21 
Iraq 03/24/20 01/15/21  12/26/20 03/25/21  
Israel 03/16/20 06/01/20 11/27/20 05/08/20 11/01/20 03/25/21 
Japan 03/05/20 06/25/20 10/15/20 05/17/20 09/25/20 03/25/21 
Jordan 03/28/20 01/22/21  01/09/21 03/25/21  
Kazakhstan 03/29/20   09/10/20   
Kuwait 04/03/20 12/26/20  11/22/20 03/25/21  
Kyrgyzstan 04/09/20 10/01/20  08/26/20 03/25/21  
Lebanon 03/24/20   03/25/21   
Malaysia 03/09/20 10/01/20  06/13/20 03/25/21  
Myanmar 08/26/20   01/29/21   
Nepal 05/15/20 07/30/20  07/10/20 03/25/21  
Oman 04/06/20 08/27/20  08/09/20 03/25/21  
Pakistan 03/16/20 10/26/20  09/01/20 03/25/21  
Philippines 03/18/20 01/01/21  11/14/20 03/25/21  
Qatar 03/12/20 01/10/21  08/10/20 03/25/21  
Saudi 
Arabia 03/18/20   03/25/21   

Singapore 03/20/20 07/13/20  06/28/20 09/15/20  
South 
Korea 02/21/20 08/10/20 11/10/20 04/20/20 09/30/20 03/25/21 

Sri Lanka 04/21/20 10/03/20  07/21/20 03/25/21  
Syria 07/04/20 10/01/20  09/20/20 03/25/21  
Tajikistan 05/07/20   08/15/20   
Thailand 03/16/20 12/18/20  04/30/20 03/25/21  
Turkey 03/20/20 11/21/20 01/23/21 05/25/20 01/12/21 03/25/21 
United 
Arab 
Emirates 

03/25/20 08/15/20  08/08/20 03/25/21  

Uzbekistan 04/03/20   12/01/20   
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Table C5. The start date and end date of each wave in each country of Group 4. 

Country 
Start Date (dd/mm/yy) End Date (dd/mm/yy) 
Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3 

Algeria 03/23/20 10/14/20  10/13/20 03/25/21  
Angola 06/29/20   03/25/21   
Benin 05/07/20 06/08/20  05/21/20 03/25/21  
Botswana 06/30/20 10/20/20  10/05/20 03/25/21  
Burkina Faso 03/23/20 12/01/20  05/10/20 03/25/21  
Cameroon 04/01/20   03/05/21   
Cape Verde 05/06/20 12/28/20  12/01/20 03/25/21  
Central African 
Republic 05/14/20   08/05/20   

Chad 05/04/20 08/15/20  06/15/20 03/25/21  
Congo 04/18/20 12/01/20  09/20/20 03/25/21  
Cote d'Ivoire 04/07/20 12/19/20  09/05/20 03/25/21  
Djibouti 04/08/20 05/09/20  05/06/20 07/01/20  
Egypt 03/19/20 10/20/20  08/20/20 03/25/21  
Eswatini 06/10/20 12/01/20  10/30/20 03/25/21  
Ethiopia 05/22/20 01/15/21  12/29/20 03/25/21  
Gabon 04/21/20 01/01/21  08/15/20 03/25/21  
Gambia 07/23/20 01/23/21  09/30/20 03/25/21  
Ghana 04/10/20 10/17/20  09/20/20 03/25/21  
Guinea 04/05/20   03/25/21   
Kenya 05/06/20 10/07/20 02/15/21 09/01/20 01/06/21 03/25/21 
Libya 06/09/20   03/25/21   
Madagascar 05/20/20   10/18/20   
Malawi 05/28/20 12/15/20  09/05/20 03/25/21  
Mauritania 05/19/20 11/01/20  10/10/20 03/25/21  
Morocco 03/25/20   03/25/21   
Mozambique 06/01/20 12/20/20  11/04/20 03/25/21  
Namibia 06/27/20 11/13/20  10/20/20 03/25/21  
Nigeria 04/16/20 11/30/20  09/20/20 03/25/21  
Senegal 03/27/20 11/25/20  11/01/20 03/25/21  
Somalia 04/17/20 08/20/20 02/01/21 08/05/20 12/25/20 03/25/21 
South Africa 03/20/20 11/10/20  09/20/20 03/25/21  
Sudan 04/21/20 11/05/20  09/15/20 03/25/21  
Tunisia 03/27/20   03/25/21   
Uganda 05/30/20   03/25/21   
Zambia 05/08/20 12/01/20  11/02/20 03/25/21  
Zimbabwe 05/29/20 11/10/20  09/20/20 03/25/21  
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C.3 The highest efficacy in theory 

To understand the uncertainty of estimates of NPI effectiveness, here, we also 

demonstrate the potential impact of NPIs on reducing COVID-19 transmission with 

their highest intensity, where the results in the main text were associated with the 

empirical average intensity in the real world. NPIs effects with the empirical average 

intensity demonstrated that gathering restrictions (contributing 27.83% in the infection 

rate reductions), facial coverings (16.79%) and school closures (10.08%) were the most 

effective NPIs in the first wave, and changed to facial coverings (30.04%), gathering 

restrictions (17.51%) and international travel restrictions (9.22%) in the second wave. 

Fig. C3 – C4 showed that NPIs effects with the highest intensity only increased the 

decay ratio contributed by each NPIs without changing their relative efficacy ranks.  

 

 

Fig. C3. The theoretically highest efficacy of NPIs in contrast to Fig. 1. The 
coefficients (𝛼𝛼𝑖𝑖) of NPIs parameters in different time were calibrated by the default 
model setting with corresponding data contexts. The effectiveness of NPI 𝑖𝑖  was 
calculated by 1 − exp (−𝛼𝛼𝑖𝑖). 
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Fig. C4. The theoretically highest efficacy of NPIs in contrast to Fig. 2. The 
coefficients (𝛼𝛼𝑖𝑖) of NPIs parameters in different space and time were calibrated by the 
default model setting with corresponding data contexts. The effectiveness of NPI 𝑖𝑖 was 
calculated by 1 − exp (−𝛼𝛼𝑖𝑖). 
 

C.4 Efficacy of COVID-19 interventions in the third wave 

Only 22 countries, including Cyprus, Greece, Ireland, Jamaica, Norway, Portugal, 

Bulgaria, Czechia, Italy, Netherlands, Peru, United Kingdom, United States, Bahrain, 

Iran, Israel, Japan, South Korea, Turkey, Kenya, Somalia, presented a third wave. 

Therefore, we estimated the effects of COVID-19 interventions for the 22 countries 

jointly regardless of their country groups. However, the results were less robust than 

those in the first and second waves because of the limited data. The most effective NPI 

in the third wave of COVID-19 worldwide was school closures (median 36.46%, 

interquartile range [IQR] 29.93 - 41.78%), followed by international travel control 

(6.72%, 0.15 - 26.84%) played a moderate role in reducing, whereas other NPIs had 

limited efficacy (< 1%) (see Fig. C5). The differences of NPI effects among three waves 

were tested using a Wilcoxon signed-rank test, a non-parametric statistical hypothesis 

test for comparing NPIs effects between pairs of the three waves (see Fig. C6). The 

results showed that the relative effects of NPIs were significantly changed between 

waves. 
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Fig. C5. Effectiveness of COVID-19 interventions in the third wave.  
 

 
Fig. C6. Difference of NPI effects among the three COVID-19 waves. The 
comparison indicates that effects of policies were significantly changed between waves. 
In general, effects of policies in the second wave were higher than those in the first 
wave, and effects in the third wave were higher than those in the second wave. In the 
first wave, COVID-19 interventions with relatively high effects included gathering 
restrictions, facial coverings, and school closures. In the second wave, the primary 
effective interventions were workplace closures, facial coverings, and international 
travel restrictions. In the third wave, the major NPIs with effectiveness were gathering 
restrictions, international travel restrictions, and school closures. NPIs were ranked by 
the decay ratio in the COVID-19 infection rate estimated in the first wave. (*: p < 0.05; 
**: p < 0.01; ***: p < 0.001).  
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