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16 Abstract One of the most effective corrective control strategies to prevent voltage collapse and instability is load shedding. 

17 In this paper, a multiple-deme parallel genetic algorithm (MDPGA) is used for a suitable design of load shedding. The load 
18 shedding algorithm is implemented when the voltage stability margin index of the power system is lower than a predefined 
19 value. In order to increase the computational speed, the voltage stability margin index is estimated by a modular neural 
20 network method in a fraction of a second. In addition, in order to use the exact values of the voltage stability margin 
21 index for neural network training, a simultaneous equilibrium tracing technique has been employed considering the detailed 
22 model of the components of the generating units such as the governor and the excitation system. In the proposed algorithm, 
23 the entire population is partitioned into several isolated subpopulations (demes) in which demes distributed in different 
24 processors and individuals may migrate occasionally from one subpopulation to another. The proposed technique has been 
25 tested on New England-39 bus test system and the obtained results indicate the efficiency of the proposed method. 
26 

27 Keywords Load shedding · Multiple-deme parallel genetic algorithm · Neural network · Voltage stability 

28 

29 

30 1 Introduction 
31 

32 Recent blackouts related to voltage collapse around the world have significantly increased the importance of fast and accu- 
33 rate voltage stability assessment and control (Naganathan and Babulal, 2019; Suganyadevi et al., 2016). Generally, there 
34 are two ways to deal with voltage instability in power systems which are classified as preventive and corrective actions. 
35 Preventive actions are taken in a pre-contingency condition in order to increase the voltage stability margin while corrective 
36 actions are usually taken in a given post-contingency condition in order to restore system stability (Ahmadi and Alinejad- 
37 Beromi, 2015). One of the most effective corrective control tools (the latest solution) in facing voltage instability is load 
38 shedding (Mahari and Seyedi, 2016). There are two types of load shedding: under frequency load shedding (UFLS) and 
39 under voltage load shedding (UVLS) (Bakar et al., 2017; Sapari et al., 2018). In the former, the purpose of the UFLS is to 
40 quickly distinguish insufficiency of generation inside any system and automatically shed a lowest amount of the load until 
41 nominal frequency is restored whereas the UVLS refers to eliminating a specific amount of load of the power system in one 
42 or several points which is done following recognition of voltage instability and with a time delay. In fact, the UVLS problem 
43 is designed to determine where, when and how much of load should be eliminated until the power system conditions return 
44 to the previous or new equilibrium state and prevent voltage collapse and system blackout. 
45 The best load shedding scheme should be able to find the feasible and most economical plan for determining optimal load 
46 shedding in the shortest time by considering power system constraints (Hooshmand and Moazzami, 2012). In literature, 
47 many different algorithms regarding load shedding schemes using frequency and voltage as a criterion have been proposed. 
48 In (Aman et al., 2019), a novel load shedding scheme based on voltage and center of inertia frequency (COIF) through 
49 simulation on PSCAD/EMTDC is proposed. In order to operate load shedding, globalized COIF, change in reactive power 
50 and bus voltages as locally are calculated. In (Javadi and Amraee, 2018), mixed integer programming-based under voltage 
51 load shedding (UVLS) model is investigated to find the amount of load shedding according to the value of loading margin. 
52    
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The distributed load shedding technique based on two-level framework is presented in (Tian and Mou, 2019). The local 

1 load shedding controllers in low-level and the upper one is used to reduce the amount of load shedding. In (Nojavan et al., 

2 2017) a new power market approach based on optimal arrangement of curtailable loads (CLs) in order to secure the desired 
3 VSM for the heavily-loaded power grids, is proposed. The minimization of the summation of the power generation and 

4 curtailment costs are considered as objective function. In (Jalali et al., 2019) an optimal transmission line switching as 

5 a new facility for economic improvement of VSM is presented. The other preventive control facilities including demand 

6 response, active/reactive generation rescheduling and load shedding is considered for economic improvement of VSM. In 

7 (Li et al., 2018) a fuzzy load-shedding strategy considering the impact of photovoltaic cell (PV) output fluctuations is 

8 presented. In this paper, the load bus voltage amplitude, load margin index and the load-shedding command are fuzzy 

9 input and output variables, respectively. In (Modarresi et al., 2018), a new adaptive neuro-fuzzy inference system (ANFIS) 

10 and centralized UVLS based on local measurement using phasor measurement units (PMUs) is proposed to estimate the 

11 amount of load shedding. Three case studies are considered by DigSILENT Power Factory. Also, a probabilistic UVLS 

12 scheme using the power flow equations considering heuristic optimization methods is proposed in (Kaffashan and Amraee, 

13 2015). In the paper, short-term voltage instability and the effect of dynamic devices were not be taken into account. To 

14 overcome these problems, the voltage stability index (VSI)-based UVLS methods have been proposed in the literature. The 

15 required data of VSI-based methods can be extracted from different sources such as power flow equations, time-domain 

16 simulation and the wide-area measurement system (WAMS) (Lei et al., 2014). A comprehensive review of these VSIs is 

17 given in (Modarresi et al., 2016). In (Shekari et al., 2016), a new centralized adaptive load shedding scheme based on both 

18 frequency and voltage stability assessments is proposed in three stages: 1) data required for implementation of the proposed 

19 method, 2) post load shedding strategies based on operational limitations and voltage stability criteria, and 3) with respect 

20 to event type in real time, pre-specified optimal load shedding scheme and post load shedding strategies are implemented. 

21 Recently, computational intelligence-based techniques have been proposed in the application of load shedding problem such 

22 as Differential Evolution (DE) (Arya et al., 2012a; Titare et al., 2014; Xu et al., 2013; Arya et al., 2012b), Particle Swarm 

23 Optimization (PSO) (Hosseini-Bioki et al., 2013; Hazra and Sinha, 2007; Amraee et al., 2007), Genetic Algorithm (GA) 

24 (Kanimozhi et al., 2014; Tamilselvan and Jayabarathi, 2016; Khamis et al., 2018), Particle Swarm-Based-Simulated Anneal- 

25 ing Optimization (PSO-B-SA) (Sadati et al., 2009), Hybrid Imperialist Competitive Algorithm-Pattern Search (HICA-PS) 

26 (Moazzami et al., 2016), Discrete Imperialistic Competition Algorithm (DICA) (Mahari and Seyedi, 2016), Grey Wolf Opti- 

27 mizer (GWO) (Mahdad and Srairi, 2015), Glowworm Swarm Optimization (GSO) (Mageshvaran and Jayabarathi, 2015a), 

28 Immune System Reinforcement Learning-Based (ISRL-Based) algorithm (Babalola et al., 2017), alternating optimization 

29 method (Xia et al., 2016), Big Bang-Big Crunch (BB-BC) method (Kucuktezcan and Genc, 2015), Improved Harmony 

30 Search Algorithm (IHSA) (Mageshvaran and Jayabarathi, 2015b), and Teaching Learning Based Optimization (TLBO) 

31 (Arya and Koshti, 2014). 

32 Table 1 shows the comparison of our load shedding strategy with other methods investigated in the published papers. 

33 The technique suits well for online voltage stability assessment and control if it accurately indicates voltage stability margin 

34 of power system and it should be fast enough to accomplish corrective actions. Therefore, the mentioned load shedding 

35 techniques usually have the following drawbacks: 
36 

37 – These techniques use traditional load flow algorithms to calculate various voltage stability indices of the power system. 

38 The descriptions of generators in traditional load flow are very different from their actual dynamic response. The 

39 behavior of generators in a dynamic process depends on the dynamic characteristics of the synchronous machine and its 

40 control systems such as the governor. In traditional load flow, these controls are not defined for power system generators, 

41 so that the bus slack generator is modeled as constant voltage amplitude and angle and other generators by constant 

42 voltage amplitude (Lim and Mustafa, 2016). Therefore, the voltage stability indices obtained to traditional load flow 

43 methods are not calculated precisely. 

44 – Computational intelligence-based techniques mainly use iterative-based optimization algorithms to execute load shed- 

45 ding strategies, and the most significant defect of this method that it is considerably time-consuming. As a result, these 

46 techniques are not suitable for this purpose. 
47 

48 In this paper, a load shedding strategy based on multiple-deme parallel genetic algorithm (MDPGA) has been designed 

49 and developed. Compared to the other evolutionary techniques, the major advantages of MDPGA are: its higher speed 

50 and efficiency, maintaining the diversity of the population, the ability to find global and local minimums, minimal storage 

51 requirement and additional CPU availability. In addition, to increase the calculation speed of the voltage stability index for 

52 each chromosome, a modular neural network which is capable of mapping the power system operating conditions and the 

53 voltage stability margin index, is used. Also, to generate the neural network training database, simultaneous equilibrium 

54 tracing technique has been applied. This method accurately calculates the voltage stability margin by detailed modeling of 

55 the generating units and solving the algebraic-differential equations of the power system in the steady-state. 

56 As a result, the main contributions of the study can be summarized as follows: 
57 

58 – Accurate calculating of voltage stability margin index using simultaneous equilibrium tracing technique: 
59 So far, load shedding studies based on steady state voltage stability assessment have not been addressed, which simul- 

60 taneously considers all AVR voltage limits and calculates both SNB and SLIB points. Therefore, in this paper, a new 

61 robust methodology based on the predictor-corrector method is proposed to accurately calculate the steady state volt- 
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Table 1 Comparison of the proposed load shedding method with other published papers. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 age stability margin index. In this method, the generating units are modeled in detail and the algebraic-differential 

39 equations of the power system are solved in a steady state. 

40 – Fast estimating of voltage stability margin index using modular neural network method: For online voltage 

41 stability studies, a suitable indicator that has two characteristics: 1) accurately shows the voltage stability margin of 

42 the power system; 2) calculated fast enough to implement corrective actions such as load shedding. The simultaneous 

43 equilibrium tracing technique relies on power flow models to calculate the voltage stability margin index. This method 

44 has a long computational time problem due to the use of repetitive power flow algorithms. Therefore, the voltage 

45 stability margin indices of the limited power system obtained by the simultaneous equilibrium tracing technique were 

46 used to train the modular neural network method in order to quickly estimate the voltage stability margin index. 

47 – Using multiple-deme parallel genetic algorithm (MDPGA) with parallel processing capability for faster 

48 and more economical implementation of load shedding strategy: Compared to the other evolutionary tech- 

49 niques, the major advantages of MDPGA are: its higher speed and efficiency, maintaining the diversity of the population, 

50 the ability to find global and local minimums, minimal storage requirement and additional CPU availability. In addi- 

51 tion, to increase the implementation speed of the load shedding strategy, a modular neural network which is capable of 

52 mapping the power system operating conditions and the voltage stability margin index, is used for each chromosome. 

53 

54 

55 

56 

57 The present article includes the following sections: 

58 Section 2 presents the mathematical formulation of load shedding problem as a constrained optimization problem by 
59 considering equality and inequality constraints. Section 3 contains voltage stability margin estimation using modular neural 

60 network method. Section 4 describes the load shedding algorithm with multiple-deme parallel genetic algorithm. The 

61 obtained numerical results from proposed method will be presented in section 5. 

Our method Technique Multiple-deme parallel genetic algorithm based on modular neural network 
 Test system New England-39 bus test system 
 Power system model The generators are modeled in detail and all AVR voltage limits are considered 
 Voltage stability index Voltage stability margin (VSM) obtained by neural network 

 Objective function Minimize the amount of load shed 

(Javadi and Amraee, 2018) Technique Mixed integer programming (MIP) 
 Test system IEEE 14 and 118 bus test systems 
 Power system model Relies on power flow models 
 Voltage stability index Loading margin (LM) 

 Objective function Minimize the total load curtailment with considering load priorities 

(Sadati et al., 2009) Technique Global particle swarm-based-simulated annealing (PSO-SA) optimization 
 Test system IEEE 14 and 118 bus test systems 
 Power system model Relies on power flow models 
 Voltage stability index Voltage stability margin (VSM) obtained by repetitive power flow algorithms 

 Objective function Minimize the interruption cost 

(Hosseini-Bioki et al., 2013) Technique PSO 
 Test system IEEE three-bus and modified 30-bus test system 
 Power system model Relies on power flow models 
 Voltage stability index Loadability limit obtained by repetitive power flow algorithms 

 Objective function Minimize the congestion rent and maximize the system loadability 

(Tamilselvan and Jayabarathi, 2016) Technique Hybrid genetic algorithm and neural network 
 Test system IEEE six and 14 bus test systems 
 Power system model Relies on power flow models 
 Voltage stability index Voltage stability risk index (VSRI) obtained by repetitive power flow algorithms 

 Objective function Minimize the total load shed and maximize the voltage stability 

(Jalali et al., 2019) Technique Modified PSO 
 Test system IEEE 39-bus test system 
 Power system model Relies on power flow models 
 Voltage stability index Voltage stability margin (VSM) obtained by repetitive power flow algorithms 

 Objective function Minimize the power generation and curtailment costs 

(Li et al., 2018) Technique Fuzzy strategy 
 Test system IEEE 14-bus system 
 Power system model Ordinary differential equations (ODEs) 
 Voltage stability index Load margin index obtained by repetitive power flow algorithms 

 Objective function Minimize the load shedding quantity 

(Nojavan et al., 2017) Technique Hybrid non-linear programming and modified binary PSO 
 Test system IEEE 118-bus test system 
 Power system model Relies on power flow models 
 Voltage stability index Voltage stability margin (VSM) obtained by repetitive power flow algorithms 

 Objective function Minimize the cost of preventive control facilities 
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2 Mathematical formulation 

1 

2 Generally, the problem of load shedding can be expressed as constrained nonlinear optimization problem. The main objective 

3 function is to minimize total amount of the load to be shed at the current operating condition. Symbolically, it is represented 

4 as 
5 

l 
6 

minimize    Obj = bi Pshd 
7 

i=1 

(1) 

8 
where, l is the number of power system load buses, bi is the binary decision variable to status of the ith load bus, and Pshd 

10 is the amount of active power shed of the ith load bus (Pshdi    = 0.01 × αi × PLi ). PLi    is the active power of the ith load 

11 bus and αi is the percentage of load can be shed in the ith load bus. The minimization of the above objective function is 

12 subjected to the following equality and inequality constraints. 

13 

14 
2.1 The equality constraints 

15 
16 

Unlike in power flow analysis, a detailed representation of different components of the power system is required to accurately 
17 

analyze  the  system’s  behavior.  When  the  differential  and  algebraic  equations  of  the  power  system  is  expressed  by  ẋ  = 
18 

F (x, y, u, z) and 0 = G (x, y, u, z), respectively; these equations in the steady-state (ẋ  = 0), represent the set of equality 
19 

20 constraints for the optimization problem. 

21 Without the loss of generality, it is assumed that the power system has n buses and m two-axis synchronous generators; 

22 each generator is equipped with the simplified IEEE type DC-1 excitation system (Rahman et al., 2021), a simplified prime 

23 mover and speed governor. If the remaining components of the power system are represented by their power flow models, 

24 then all of the equality constraints can be summarized as follows (Razmi et al., 2012): 
25 

26 
(ωi − ωm)ω0 = 0; i = 1, · · · , m − 1 (2) 

27 M−1
 
Pm − Di(ωi − ωm) − (Eq

- − Xd
- Id )Iq − (Ed

- + Xq
- Iq )Id 

] 
= 0; i = 1, · · · , m (3) 

T−1 
Efd

 — Eq
- — (Xd — Xd

- )Id 
] 

= 0; i = 1, · · · , m (4) 
30 T−1  − Ed

- 
+ (Xq — Xq

- )Iq 
] 

= 0; i = 1, · · · , m (5) 

32 Te
−1 Vr — (Ke 

+ Se )Efd 
] 

= 0; i = 1, · · · , m (6) 
33 Ta

−1  − Vr 
+ Kai (Vrefi   − Vi − Rfi )

] 
= 0; i = 1, · · · , m (7) 

35 T−
1
  
− Rf  − (Ke 

+ Se  )Kf  Efd  Te
−1

 + Kf  Vr  Te
−1

] 
= 0; i = 1, · · · , m (8) 

T−
1
 
µi − Pm  

] 
= 0; i = 1, · · · , m (9) 

38 Tg
−1 PG

 

— (ωi − ωref )R−1
 − µi

] 
= 0; i = 1, · · · , m (10) 

39 

40 where, 

41 

42 I 

 
=

 
R

2
 

i i i i 
 
 
 

+ X-  X-  
]−1  

Rs  E
-   

+ E-  X-
 — Rs  Vi sin(δi − θi) − X - Vi cos(δi − θi)

] 
(11) 

43 I = 
 
R

2
  + X -  X - 

]−1 
Rs  E-  + E-  X -  − Rs  Vi cos(δi − θi) + X -  Vi sin(δi − θi)

] 
(12) 

45 Furthermore, the network power balance equations can be written as follows: 

46 
47 

Id  Vi sin(δi − θi) + Iq  Vi cos(δi − θi) − P new − 
  

ViVkyik cos(θi − θk − γik) = 0; i = 1, · · · , n (13) 

48 i
 

49 

i Li  

k=1 

n 

50 Id  Vi cos(δi − θi) − Iq  Vi sin(δi − θi) − Qnew − 
  

ViVkyik sin(θi − θk − γik) = 0; i = 1, · · · , n (14) 

52 
where, Pnew = PL — PShdi 

 
and Qnew = QL — QShdi .  QLi 

 
is  the  reactive  power  of  the  ith  load  bus  and  QShdi 

 
is the 

54 
amount of reactive power shed of the ith load bus. Other parameters and variables of Eqs. (2)-(14) are defined in (Razmi 

55 
et al., 2012). 

56 Also, it is assumed that during the implementation of load shedding the power factor is constant. Therefore, the following 

57 equality constraint must also be satisfied: 

58 QL  
 

59 
QShdi  = 

60 

i 

PL 
i
 

61 In (2)-(14), the state vector x, algebraic vector y, control vector u and parameter vector z contain the following variables: 

28 
29 i i i 

31 
q0
 

i i 

i 
i 

i 

37 

d
 

k=1 

i 

i 

i 

i i 
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max 

i i 

r
 

r
 

2 

5 

33 

 

1 x  = [δ1, · · · , δm−1, ω1, · · · , ωm, Eq
- , · · · , Eq

-

m
 , Ed

- 
1 
, · · · , Ed

- 
m 

, Pm1 , · · · , Pmm , 

3 µ1, · · · , µm, Efd1 
, · · · , Efdm 

4 y  = [V1, · · · , Vn, θ1, · · · , θn]T 

, Vr1 , · · · , Vrm , Rf1 
, · · · , Rfm ] 

 
T 

 
 

(16) 

6 u = [PG1 
, · · · , PGm , Vref1 

, · · · , Vrefm , ωref1 
, · · · , ωrefm ] 

7 z = [PL , · · · , PL , QL , · · · , QL ]T 

8 

9 It is noted that the mth generator’s rotor angle is selected as the power system angle reference. 

10 

11 

12 2.2 The inequality constraints 

13 

14 The inequality constraints of the optimization problem include the following: 

15 – The steam valve or water gate opening of governors: 
16 

µmin ≤ µi ≤ µmax; i = 1, · · · , m (17) 

19 where, µmin and µmax are the lower and upper limits of µi, respectively. 
i i 

20 – The output of automatic voltage regulators (AVRs): 
21 

22 V min ≤ Vr
 

 
≤ V ; i = 1, · · · , m (18) 

23 where, V min and V max are the minimum and maximum limits of Vr , respectively. 

24 ri ri i 

25 – The voltage of load buses (Lee et al., 2015): 
26 

 

 

 

min 

 
 
 

max 

27 
Vi ≤ Vi ≤ Vi ; i = 1, · · · , l (19) 

28 where, V min and V max are the lower and upper limits of Vi, respectively. 
i i 

29 – The voltage stability margin of the power system: 
30 

31 

 
vsm ≥ vsmmin (20) 

32 
where, vsm is the voltage stability margin index and vsmmin is the lower limit of vsm. 

34 –  The percentage of load can be shed: 

35 min  
max 

36 αi ≤ αi ≤ αi ; i = 1, · · · , l (21) 
37 where, αmin and αmax are the minimum and maximum limits of αi, respectively. 

i i 

38 

39 It should be noted that the state and algebraic variables can be solved simultaneously by directly applying Newton’s 
40 method to the differential and algebraic equations of the power system in steady-state. Moreover, the voltage stability 

41 index is estimated by the neural network method explained in more details in the next section. Also, the above equality 

42 and inequality constraints except (15) and (21) should be maintained under the current operating condition (PShdi    = 0) 

43 as well as next predicted load condition accounting load shed. Constraints (15) and (21) are only related to the current 

44 operating condition. 

45 

46 

47 3 The voltage stability margin estimation 
48 

49 For operational purposes in which the fast responses are of crucial importance, using the neural network method seems 

50 a better approach. Hence, a modular neural network method with the following model and specification is used here to 

51 estimate the voltage stability margin of the power system: 
52 

53 1. Different configurations are considered for the power system. In configuration 1, all transmission lines are energized. 

54 Other configurations are produced by outage of one transmission line. For each configuration, one module is assigned 

55 to learn its training data. 

56 2. Each module is a multi-layer perceptron network with one hidden layer. 

57 3. In each configuration, several loading levels are considered by changing the active power of load buses randomly. The 

58 change in loads is distributed among the participating generators, and their designated real power generation changes 

59 in proportion to their participation factors in the base case. 

60 4. Using the simultaneous equilibrium tracing technique described in details in (Razmi et al., 2012), at each loading level 

61 of a specific power system configuration, a pattern is generated for the corresponding neural network module. 

18 

i 

1 

T 

1 l 1 l 

17 
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20 

21 

22 Fig. 1 Ring topology of multiple-deme parallel genetic algorithm. 

23 

24 

25 5. Modules have n + 3m + 2l neurons in the input layer for active and reactive powers of load buses, designated real power 

26 generation, voltage output of AVRs, transient direct axis and quadrature axis EMF of generators and PQ bus voltages. 

27 6. Modules have one neuron in the output layer for the voltage stability margin index of the power system. This index 

28 is obtained from the difference of the total active load of the power system at the critical point where voltage collapse 

29 associated with the saddle node bifurcation (SNB) or the saddle limit induced bifurcation (SLIB) occurs and the initial 

30 conditions (Razmi et al., 2012). 

31 7. The number of neurons in the hidden layer is selected by trial and error method. 

32 8.  The unipolar sigmoid activation function is used for hidden and output neurons. 

33 9. The mean squared error is considered as the neural network performance function. 

34 10. Both input and output variables of the neural network are normalized between 0 and 1. 

35 11. Levenberg-Marquardt training algorithm is used for weights and biases updating. 

36 12. Each module of the neural network is trained until a determined termination criterion is achieved. 

37 

38 

39 4 The load shedding algorithm 

40 

41 In this paper, a multiple-deme parallel genetic algorithm is used for load shedding. Multiple-deme parallel genetic algorithms 
42 are the extension of traditional single-population genetic algorithms (SPGAs) (dos Santos Coelho and Mariani, 2007; Bora 
43 et al., 2019) that can be considered as a class of parallel processing methods. Higher speed and efficiency, additional CPU 

44 availability, more resistance to premature convergence and maintaining larger diversity are advantages of this algorithm in 

45 comparison to the traditional single-population genetic algorithm (Asrari et al., 2016; Dey et al., 2019). In the multiple- 

46 deme parallelization scheme, the entire population is partitioned into several isolated subpopulations (demes) in which 

47 demes are distributed in different processors and individuals may migrate occasionally from one subpopulation to another. 

48 Despite the advantages mentioned, the way to choose the parameters of the multiple-deme parallel genetic algorithm, 

49 such as migration rate, migration interval, connection topology, migration policy, and population size, greatly affect its 

50 performance. Different migration topologies such as star, ring, torus, hypercube and 2D/3D mesh can be used to move 

51 individuals from one subpopulation to another. In this study, the ring topology with five subpopulations and the best-worst 

52 migration policy is used (Wang and Singh, 2009). The migration between two neighbors in this topology is considered 

53 clockwise (Wang and Singh, 2009). Note that migration rate should be in a way that the number of main individuals in 

54 each subpopulation is more than the number of new individuals migrated to it. In Fig. 1, the proposed topology is shown. 

55 If the voltage stability margin estimated by the neural network module associated with the power system configuration 

56 does not satisfy the constraint (20) at the current operating condition, the load shedding algorithm based on multiple-deme 

57 parallel genetic algorithm is implemented. The proposed algorithm is shown in Fig. 2. 

58 The steps of implementing the load shedding algorithm are as follows: 
59 

60 – Initial population generation: Initial population with npop chromosomes is randomly generated. The chromosomes 

61 are represented in the binary encoding system. Each chromosome has two parts. The first part of each chromosome 

Deme 1 

Deme 5 Deme 2 

Migration 

Deme 4 Deme 3 
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30 Fig. 2 The control block diagram. 

31 

32 k k k 

33 
1 2 l 

34 

35 

36 Fig. 3 Chromosome representation. 

37 

38 

39 has l bits and each bit indicates the participation or non-participation of the corresponding bus in the load shedding 
40 program. The second part comprises strings in number of candidate buses for load shedding and each string equals 
41 percentage of load to be shed in the corresponding bus. Depending on the required calculation accuracy, the number of 
42 bits in each string (nbits) is determined. In this manner, the kth chromosome of the population is represented as shown 
43 in Fig. 3. 
44 –  Genotype to phenotype conversion: Eq. (22) is used for converting genotype to phenotype of the ith string in the 
45 second part of the kth individual. 
46 

47 k min αmax − αmin 
k

 

48 αi = αi +  i × di (22) 
49 2nbits   − 1 

50 where, dk is the decimal value of the ith string in the second part of the kth individual. 

51 – Modified neural network inputs preparation: The values of the following variables are calculated as neural network 

52 inputs according to the equations described in section 4.1 of reference (Razmi et al., 2012). 
53 

54 

55 PLi   − Pshdi ,  QLi   − Qshdi ; i = 1, · · · , l 
56 

PG , Vr , Ed
- , Eq

- ; i = 1, · · · , m 

57 
i i i i 

58 Vi; i = 1, · · · , npq (npq = n − m) 

59 

60 – Voltage stability margin estimation: After preparing the neural network inputs, the voltage stability margin index 

61 of the power system is estimated by the method presented in the previous section. 

Population 
Voltage stability margin index estimation by related neural network module 

No 
Constraint (20) is satisfied? 

. 

Yes 
 

 
End 

Phenotype of shed loads 
Genotype to phenotype conversion 

Voltage stability margin index estimation by related neural network module 

Constraint (20) is satisfied? 
 

Yes 
 

 
Termination criteria is satisfied? 

    Yes  

No 

Multiple-deme parallel genetic algorithm operatation Print results 

Objective function evaluation 

Modified neural network inputs preparation 

i 

   · · ·   

   · · ·   

   · ·
.

·   

   · · ·   

Penalize violated solutions 
No 

  

bk 
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bk 
2 

· · · bk 
l 

 

α1 
1k 

 

α2 
1k · · · 

 
nbits α
1k 

 

α1 
2k 

 

α2 
2k · · · 

 
nbits α
2k · · · 

 

α1 
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α2 
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i,k 
vsmact 

     

vsm − vsm   

56 

× 

 

Table 2  The configurations considered in the power system. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 – Objective function evaluation: Calculate the value of the objective function for the kth chromosome (Objk) using 
13 Eq. (1). If the index estimated in the previous step satisfies the constraint (20), the penalty value is equal to zero 
14 and otherwise a very large positive number will be considered. Finally, the value of the objective function for the kth 
15 chromosome is calculated by the following equation: 
16 

17 Objk = Objk + penalty (23) 
18 

19 – Check termination criterion: If the algorithm termination criterion is satisfied, the amount of load shedding in can- 

20 didate buses are identified; otherwise, by applying migration, selection, crossover and mutation, steps 2-6 are repeated. 
21 

22 

23 5 Simulation results 
24 

25 The proposed method has been tested on the New England 39-bus power system. The data related to this power system 
26 is available in (Razmi et al., 2012). It is assumed that in this article, all load buses are candidates for load shedding. 
27 The different configurations considered in the power system as well as the number of buses, loads, and generators in each 
28 configuration are shown in Table 2. 
29 In each configuration, 1000 different loading levels are produced in the range of 50-150% of the initial load values using the 
30 method described in Section 3. For example, P-V curves of load bus 3 at the base loading level of configurations 1 and 3 
31 are shown in Fig. 4 and the following can be stated: 
32 

33 – When ignoring the AVR voltage limit of the generating units in the power system (unlimited power system), the voltage 

34 stability margin of the power system in configurations 1 and 3 will be 4872 and 3529 MW, respectively. However, 

35 considering the constraint (18) (limited power system) decreases the voltage stability margin of the power system to 

36 2428 and 1245 MW in configurations 1 and 3, respectively. 

37 – In configuration 1, the AVR voltage of buses of 30, 31 and 32 are saturated and the type of voltage collapse point is 

38 SLIB. Whereas, the type of voltage collapse point in configuration 3 is SNB, in which the AVR voltage of buses of 30 

39 and 32 are saturated. 
40 

41 The voltage stability margin indices of the limited power system shown in Fig. 4 are stored as the desired output of a pattern 

42 for the corresponding neural network module. As a result, for each neural network module, 1000 patterns are generated at 

43 different loading levels. Of these, 70% are used for training, 15% for validation, and the remaining 15% for corresponding 

44 neural network module testing. The choice of training, validation and testing patterns is done randomly. The number of 

45 neurons in the hidden layer for all neural network modules is considered to be 12. Training process of neural network 

46 modules is stopped when the termination criterion is satisfied or when a maximum number of 1000 epochs is achieved. The 

47 termination criterion for improving generalization of neural network modules is called early stopping. When the error on 

48 the validation set increases for 10 iterations, the training process is stopped, and weights and biases are returned in the 

49 minimum validation error. The minimum and maximum values of the different input and output variables to normalize the 

50 neural network modules database are listed in Table 3. 

51 Eq. (24) is used to normalize the variable v. 
52 

53 
vn 

54 

v vmin 

= 
vmax − vmin 

(24) 
55 

where, vn, vmin and vmax are the normalized, minimum and maximum values of the variable v. 

57 The percent relative error (PRE) between actual and estimated solutions for the ith loading level in the kth configuration 

58 is calculated as follows: 

59 act est 

60 PRE = i,k i,k 100 (25) 
61 

Configuration Description n l m 

C1 Normal case (all transmission lines are energized) 39 18 10 
C2 Outage of line 16-19, load 20 and generators 33 and 34 35 17 8 
C3 Outage of line 6-31 and generator 31 38 18 9 
C4 Outage of line 10-32 and generator 32 38 18 9 
C5 Outage of line 22-35 and generator 35 38 18 9 
C6 Outage of line 19-33 and generator 33 38 18 9 
C7 Outage of line 19-20, load 20 and generator 34 37 17 9 
C8 Outage of line 23-36 and generator 36 38 18 9 
C9 Outage of line 25-37 and generator 37 38 18 9 

C10 Outage of line 2-30 and generator 30 38 18 9 
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20 Fig. 4 The sample P-V curves of load bus 3 in configurations 1 and 3. 

21 
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22 Table 3 The minimum and maximum values of the different input and output variables. 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 Table 4 The minimum, mean and maximum of PRE for neural network modules. 

43 

44 
Module Training phase Validation phase Testing phase 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 
55 

where, vsmact is the voltage stability margin index obtained by the simultaneous equilibrium tracing technique and vsmest 56 
i,k 

57 
is the voltage stability margin index estimated by the neural network module. 

i,k 

58 
Table 4 summarizes the simulation results in terms of the minimum, mean and maximum of PRE for each module in the 

59 
training, validation and testing phases, respectively. 

60 
The results of implementing neural network method instead of the simultaneous equilibrium tracing technique are summa- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
C1: VSM = 2428 [MW] (Limited power system) 

C3: VSM = 1245 [MW] (Limited power system) 

C1: VSM = 4872 [MW] (Unlimited power system) 

C3: VSM = 3529 [MW] (Unlimited power system) 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

PL min 4.2534 4.2532 4.2526 4.2526 4.2523 4.2601 4.2593 4.2568 4.2526 4.2601 

max 1655.7 1654.3 1653.5 1653.5 1655.9 1652.2 1655.9 1655.0 1653.5 1652.2 

QL min 13.850 13.831 13.807 13.807 13.868 13.849 13.806 13.804 13.807 13.849 

max 374.94 374.61 374.43 374.43 374.99 374.15 374.98 374.77 374.43 374.15 

PG min 174.65 149.58 198.34 193.82 194.17 187.10 72.46 190.24 190.05 371.50 

max 1254.4 1477.9 1377.1 1379.1 1367.4 1375.6 1372.8 1344.1 1362.8 1287.3 

Vr min 1.0274 1.0403 1.0367 1.0349 1.0347 1.0317 1.0313 1.0353 1.0304 1.0341 

max 4.9545 3.3510 5.3875 5.4794 5.4330 5.8779 3.1486 5.2725 5.3442 5.0907 

Ed
t min 0 0 0 0 0 0 0 0 0 0.0809 

max 0.6202 0.6002 0.6233 0.6215 0.6212 0.6129 0.5969 0.6285 0.6232 0.6191 

Eq
t min 0.8457 0.8513 0.8638 0.8616 0.8520 0.8523 0.8471 0.8457 0.8858 0.8844 

max 1.4533 1.3054 1.5288 1.5613 1.5522 1.7148 1.2566 1.5261 1.5299 1.3054 

V min 0.9360 0.9165 0.8850 0.8812 0.9114 0.9256 0.9244 0.9342 0.9296 0.9232 

max 1.0578 1.0551 1.0528 1.0530 1.0553 1.0560 1.0570 1.0567 1.0522 1.0501 

vsm min 720.69 144.82 139.39 156.14 177.92 224.51 359.10 438.10 351.34 468.94 

max 3575.4 2248.1 2612.0 2916.7 2939.5 3092.6 3021.0 3068.7 3039.6 3505.5 

 min mean max min mean max min mean max 

1 1.42e-04 0.0825 2.3430 5.32e-04 0.1395 1.5757 0.0012 0.1433 1.1308 
2 5.52e-07 0.0179 0.9670 1.41e-04 0.0507 1.3623 4.91e-05 0.0915 3.4324 
3 1.42e-04 0.0623 2.4918 1.78e-04 0.1934 2.3153 5.33e-04 0.2525 3.7772 
4 1.46e-04 0.0841 2.1321 8.00e-04 0.1983 2.6859 2.74e-04 0.1862 2.4526 
5 7.41e-06 0.0116 0.2323 8.74e-04 0.0894 4.4944 1.49e-04 0.0500 0.9703 
6 2.41e-05 0.0472 2.1172 6.03e-04 0.1407 3.9442 6.49e-04 0.1376 2.0481 
7 1.47e-04 0.0411 1.0850 8.87e-04 0.1256 3.6228 8.21e-05 0.0954 1.8969 
8 4.00e-05 0.0452 0.6881 4.99e-04 0.1262 2.9495 8.89e-05 0.1460 1.0408 
9 1.10e-05 0.0640 2.3936 7.62e-04 0.1096 0.7934 6.10e-04 0.1077 2.6375 

10 2.12e-05 0.0561 1.7862 3.89e-04 0.1496 2.6823 9.33e-04 0.1721 3.1040 
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Table 5 The results of load shedding implementation at two sample loading levels in configuration 9. 
 

1 
Loading level 1 Loading level 2 

2 

3 
Bus number i PLi 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

[MW] bi αi  [%] PShdi [MW] Pnew [MW] P 
i i 

[MW] bi αi  [%] PShdi [MW] Pnew  [MW] 
i 

18 Table 6 The comparative results of voltage stability margin estimation at two sample loading levels in configuration 9. 

19    

20 

21 

22 l 
i=1 

Before load shedding implementation After load shedding implementation 
 

 

Loading level 1 Loading level 2 Loading level 1 Loading level 2 

Pnew [MW] 7044.0445 7135.2883 6941.9140 6946.8756 
i 

23 l 
i=1 PShdi [MW] − − 102.1306 188.4128 

24 vsmmin [MW] 1056.6067 1070.2932 1041.2871 1042.0313 

25 vsmact [MW] 915.6652 804.5947 1043.8388 1046.2737 

vsmest [MW] 916.4208 808.0709 1043.1121 1049.8118 
PRE [%] 0.0825 0.4320 0.0696 0.3382 

27 

28 

29 – According to the experimental results mentioned in (Amjady, 2003), in the estimation of the power system voltage 
30 stability margin index, maximum 5% error for the corrective actions is acceptable. The numerical results in Table 4 
31 show the maximum error of less than 4.5% for the neural network modules. Therefore, trained neural network modules 
32 are appropriate for implementing the load shedding strategy. 
33 – The voltage stability margin index is produced with the simultaneous equilibrium tracing technique (σ = 0.001) (Razmi 
34 et al., 2012) and trained neural network modules in about 145 and 0.05 seconds, respectively. Therefore, from the point 
35 of view of the response speed in implementing the load shedding strategy, the trained neural network modules perform 
36 much better than the simultaneous equilibrium tracing technique. 
37 

38 According to the power system conditions, one of the trained neural network modules is selected to estimate the voltage 

39 stability margin of the power system. If the index produced by the neural network module is less than a predefined value, 

40 the load shedding algorithm is implemented. In this paper, the minimum voltage stability margin index of the power system 

41 is assumed to be 15% of the total active power system load at the relevant loading level. In each subpopulation, a binary 

42 genetic algorithm (Haupt and Ellen Haupt, 2004) with single point crossover, tournament selection, crossover rate of 0.85, 

43 mutation rate of 0.15, migration rate of 0.2 and deme size of 60 is used. Individuals migrate after every 25 generations and the 

44 algorithm stops in each processor after 200 iterations. A system of 5-processor with distributed-shared-memory implements 

45 the parallel program. All processors can access all of the memory that is physically distributed as a shared address space 

46 (Wang and Singh, 2009). The Message Pass Interface (MPI) (Snir et al., 1998) has been used as a communication protocol 

47 in parallel implementation. Parallel time, serial time, synchronization time, and communication time are four parts of the 

48 parallel program execution time (Gubbala and Singh, 1995). According to the results, proposed multiple-deme parallel 

49 genetic algorithm implements about 4 times faster than traditional single-population genetic algorithm. 

50 For example, in configuration 9 and at two different loading levels, the load shedding algorithm is implemented. The results 

51 of load shedding at different load buses at these two loading levels are presented in Table 5. Also, the total load of the 

52 power system, the total load shed, the actual and estimated values of the voltage stability margin index and the percent 

53 relative error before and after load shedding implementation in these two loading levels are shown in Table 6. Based on 

54 the response obtained at the second loading level, the P-V curve for load bus 3 is shown in Fig. 5 after load shedding 

55 implementation. In addition, the output voltage and reference voltage curves of the AVR of generators in buses 30, 31 and 

56 32 are shown in Figs. 6 and 7, respectively, after load shedding implementation. In Figs. 5-7, less thick curves are obtained 

57 when the AVR output voltage limits are not taken into account and are shown to better describe the problem. 

58 By evaluating the results of the above tables and figures, the following conclusions can be achieved: 
59 

60 – At the first loading level, buses 3, 7, 12, 15, 25 and 27 and at the second loading level, buses 3, 4, 7, 8, 12, 18, 21, 24, 

61 26, 27 and 29 as candidate buses for load shedding have been selected. As a result, in a given configuration, the load 

L 

L 

26 

3 1 480.4568 1 9.9267 47.6934 432.7634 476.0641 1 13.4897 64.2198 411.8443 

4 2 742.9896 0 0 0 742.9896 694.1648 1 6.9795 48.4490 645.7158 
7 3 171.9719 1 2.1261 3.6563 168.3156 193.1590 1 9.2229 17.8148 175.3442 
8 4 510.7803 0 0 0 510.7803 638.4728 1 2.2727 14.5107 623.9621 

12 5 11.5089 1 6.0850 0.7003 10.8086 7.7484 1 14.0176 1.0861 6.6622 
15 6 303.9997 1 9.4575 28.7507 275.2490 325.0166 0 0 0 325.0166 
16 7 271.4204 0 0 0 271.4204 335.1822 0 0 0 335.1822 
18 8 218.5606 0 0 0 218.5606 145.7279 1 8.5337 12.4360 133.2919 
20 9 988.6662 0 0 0 988.6662 830.1976 0 0 0 830.1976 
21 10 221.8655 0 0 0 221.8655 319.491 1 0.9824 3.1387 316.3523 
23 11 163.8197 0 0 0 163.8197 147.5395 0 0 0 147.5395 
24 12 448.3771 0 0 0 448.3771 404.2654 1 3.3284 13.4558 390.8096 
25 13 308.7882 1 4.2522 13.1303 295.6579 200.5778 0 0 0 200.5778 
26 14 139.9967 0 0 0 139.9967 121.2222 1 6.5543 7.9452 113.2770 
27 15 145.6267 1 5.6305 8.1995 137.4272 228.9683 1 0.2933 0.6715 228.2968 
28 16 263.2999 0 0 0 263.2999 187.4401 0 0 0 187.4401 
29 17 243.6561 0 0 0 243.6561 287.8585 1 1.6276 4.6851 283.1734 

38 18 1408.2601 0 0 0 1408.2601 1592.192 0 0 0 1592.1920 



Effective Load Shedding Using Multiple-deme Parallel Genetic Algorithm Based on Modular Neural Network 11 

62 

63 

64 

65 

 

 

Bus 30 

Bus 31 

Bus 32 

T
h

e 
o

u
tp

u
t 

v
o

lt
ag

e 
o

f 
A

V
R

 [
p

.u
.]

 
T

h
e 

v
o

lt
a

g
e 

m
a

g
n

it
u

d
e 

o
f 

lo
a

d
 b

u
s 

3
 [

p
.u

.]
 

 

1 

1 

2 
0.95 

3 

4 

5 
0.9 

6 

7 
0.85 

8 

9 
0.8 

10 

11 0.75 

12 

13 0.7 

14 

15 0.65 

16 

17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 

18 The total active load of the power system [MW] 

19 

·10
4
 

20 Fig. 5 The P-V curve at loading level 2 in configuration 9 after load shedding implementation. 

21 

22 

23 

24 7 
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28 

29 5 
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31 4 

32 

33 
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3
 

35 

36 2 

37 

38 1 
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·10
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42 
Fig. 6 The output voltage of AVRs at loading level 2 in configuration 9 after load shedding implementation. 

43 

44 

45 

46 buses for load shedding will vary with changing the loading level, and cannot be considered specific buses before load 

47 shedding implementation. 

48 – At the second loading level, given that the total load of the power system is 7135.2883 MW, the minimum acceptable 

49 voltage margin index to the power system shall be 2932.1070 MW. Estimation of this index by the corresponding 

50 modular neural network is 7070.808 MW and as a result, it is necessary to implement the load shedding algorithm 

51 under these conditions. After removing 188.4128 MW of the power system load, the total system load will be 6946.8756 

52 MW. After implementing the load shedding algorithm, the result of estimating the voltage stability margin of the power 

53 system by the modular neural network is within the acceptable range. Therefore, by removing 188.4128 MW from the 

54 total load of the power system, 241.6790 MW will be added to the voltage stability margin index of the power system. 

55 – Comparison of the estimated and actual results of the voltage stability margin index before and after the load shedding 

56 implementation in the first and second loading levels shows a relative error of less than 0.5%. As a result, due to the 

57 generalizability of the NN method, high estimation accuracy of this method is evident even after implementing the load 

58 shedding algorithm. 

59 – At the second loading level and after the load shedding algorithm implementation, the output voltage of the AVR is 

60 saturated at the generation buses 30, 32 and 31 at loads of 7710, 7850 and 7993 MW, respectively. In this case, the AVR 

61 output voltage is not saturated in other buses. As can be seen in Fig. 6, the AVR output voltage in buses 30, 32 and 31 
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20 Fig. 7 The reference voltage of AVRs at loading level 2 in configuration 9 after load shedding implementation. 

21 

22 Table 7 The results of load shedding implementation at a sample loading level in configuration 2. 
23 

24 
Bus number i PLi 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

[MW] bi αi  [%] PShdi [MW] Pnew  [MW] 
i 

39 
increased to their maximum values of 1.43, 3.17 and 3.83 p.u., respectively and then remain constant at these numbers. 

40 
From Fig. 7, it is clear that the AVR reference voltage at the generation buses 30, 32 and 31 are constant up to loads 

41 
of 7710, 7850 and 7993 MW, respectively. After these values, the AVR reference voltage is reduced in these buses. The 

42 
reason of this problem is because of the saturation of the AVR output voltage. Therefore, these state variables should 

43 
be removed from the set of power system equations and, as a result of increasing the load and finding a new equilibrium 

45 point, it is necessary to replace the AVR reference voltage in these buses. As can be seen in Fig. 5, although the effect 

46 of AVR output voltage saturation on the generation bus 30 on the amplitude of voltage curve of load bus 3 is negligible, 

47 the AVR output voltage saturation on bus 32 has reduced the amplitude of voltage curve of load bus 3. Therefore, the 

48 AVR output voltage saturation of these two buses does not cause voltage instability when the operating point of the 

49 system still belongs to the upper part of the P-V curves. In other words, in this case only the voltage stability of the 

50 power system is destroyed, but the power system is still stable. By increasing the system load to 7993 MW again, the 

51 AVR output voltage is saturated at the generation bus 31. The saturation of this AVR changes the direction of the P-V 

52 curve and, in fact, the system operating point enters the unstable part of the P-V curves. Therefore, the AVR output 

53 voltage saturation on the generation bus 31 causes the power system to voltage collapse. As a result, the type of voltage 

54 collapse point is SLIB. 
55 

56 In Table 7, the values of active power loads at a sample loading level in configurations 2 are shown before and after the 
57 load shedding implementation by the multiple-deme parallel genetic algorithm method. In addition, the results obtained 
58 by applying the optimization algorithm in terms of sum of shed loads, the actual and estimated voltage stability margin 
59 index and the percent relative error are presented in Table 8. The convergence curve of this algorithm is also shown in 

60 Fig. 8. It should be noted that the results obtained after performing the optimization algorithm on several runs were not 

61 significantly different and an average state is shown in Fig. 8. 

Bus 30 

Bus 31 

Bus 32 

3 1 464.6715 1 3.3431 15.5345 449.1370 

4 2 742.0626 0 0 0 742.0626 
7 3 137.2001 0 0 0 137.2001 
8 4 449.0967 0 13.9296 62.5575 386.5392 

12 5 11.6723 1 14.3109 1.6704 10.0019 
15 6 367.4597 1 0 0 367.4597 
16 7 302.2040 0 0 0 302.2040 
18 8 235.3386 0 0 0 235.3386 
19 9 240.8456 1 14.3548 34.5730 206.2726 
21 10 276.3981 0 0 0 276.3981 
22 11 280.1888 0 0 0 280.1888 
23 12 251.8855 0 0 0 251.8855 
24 13 153.8622 0 0 0 153.8622 
25 14 366.7827 0 0 0 366.7827 
26 15 224.7146 0 0 0 224.7146 
27 16 219.1034 1 13.8123 30.2633 188.8401 

35 17 1101.8286 0 0 0 1101.8286 
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Table 8 The results of voltage stability margin index estimation at a sample loading level in configuration 2. 
 

1 
Before load shedding implementation After load shedding implementation 

2 

3 i=1 
Pnew [MW] 5825.315 5680.716 

i 
l 

4 i=1 PShdi [MW] − 144.5987 
vsmmin [MW] 873.7973 852.1074 

5 vsmact [MW] 691.2608 842.5251 

6 vsmest [MW] 691.2158 852.2706 

7  
PRE [%] 0.0065 1.1567 

 

8 

9 

10 220 

11 

12 210 

13 

14 
200 

15 

16 
190 

17 
180 

18 

19 170 

20 

21 160 

22 

23 150 

24 

25 140 

26 0 20 40 60 80 100 120 140 160 180 200 

27 Iteration number 

28 

29 Fig. 8 Convergence curve. 

30 

31 

32 The results of Tables 7 and 8 and Fig. 8 can be summarized in the following items: 

33 – The amount of load shed using the multiple-deme parallel genetic algorithm is about 2.5 MW and the proposed algorithm 

34 converges to the optimal solution after 124 iterations. 

35 – The exact values of the voltage stability margin index using the solution obtained from the multiple-deme parallel 

36 genetic algorithm before and after the load shedding implementation are 691.2608 and 5251.842 MW, respectively. As 

37 a result, the voltage stability margin estimation by the corresponding neural network module has a relative error of 

38 0.0065 and 1.1567%, respectively. 

39 – In the case of the using the multiple-deme parallel genetic algorithm, with 144.5987 MW load shed in buses 3, 8, 12, 

40 19 and 27, the voltage stability margin increased by 151.2643 MW. 
41 

42 The conclusions obtained from these simulations are: 
43 

44 – Using the multiple population genetic algorithm compared to other single population algorithms results in the global 
45 searching capability improvement and faster convergence. 

46 – By using appropriate operators in different subpopulations, the chance of being stuck at a local optimum is decreased. 

47 Moreover, due to the use of elitism in the migration and exchange of chromosomes, the existence of an inappropriate 

48 operator in a subpopulation has no effect on finding the optimal solution. 

49 – Because of the independence of the subpopulations from each other until the chromosomes are migrated, different 

50 operators can be used in each subpopulation. 

51 – The performance of the proposed algorithm is 4 times faster than the single population type because of the added 

52 parallel processing capability. 

53 

54 

55 6 Conclusion 

56 

57 In this paper, the multiple-deme parallel genetic algorithm was used to implement the load shedding strategy when the 

58 voltage stability margin of the power system is low. A modular neural network was introduced to fast estimate the voltage 

59 stability margin index of the power system. In each power system configuration, a neural network module was trained using 

60 power system operating conditions as input and the voltage stability margin index obtained by the simultaneous equilibrium 

61 tracing technique as the desired output under different loading conditions. The simultaneous equilibrium tracing technique 
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has the ability to accurately calculate the voltage stability margin index by defining complete components of generating 

1 units and taking into account the output voltage limit of AVRs. The proposed method has been tested on the New 

2 England 39-bus power system. The benefits of the proposed algorithm include higher speed and efficiency, additional CPU 

3 availability, more resistance to premature convergence and maintaining larger diversity. 
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