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Abstract The fusion estimation issue of sensor networks is

investigated for nonlinear time-varying systems with energy

constraints, time-delays as well as packet loss. For the ad-

dressed problem, some local estimations are first obtained

by using the designed Luenberger-type local estimator and

then transmitted to a fusion center (FC) to generate a de-

sired fusion value, where two classes of channels, whose

schedules are governed by a diagonal matrix, are utilized

to perform the information transmission. With the help of

the Lyapunov stability theory, sufficient conditions are es-

tablished to ensure the predetermined local and fused H∞

performances over a finite horizon. Furthermore, by virtue

of the well-known Schur complement lemma, the desired

gains of local estimators and the suboptimal fusion weight

matrices are obtained in light of the solution of linear ma-

trix inequalities. It should be pointed out that the develope-

d scheme is a two-step process under which the design of

fusion weight matrices is based on the obtained estimator

gains. Finally, a simulation example for sensor networks is

performed to check the effectiveness of the proposed fusion

scheme.
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1 Introduction

With the rapid development and increasing maturity of com-

munication technologies, sensor networks composed of many

micro-sensors with limited computing power and communi-

cation capacity have been widely used in various engineer-

ing fields such as target tracking, traffic control, environ-

mental monitoring, industrial automation, counter-terrorism

and disaster prevention [1–6]. In contrast to a single sensor,

sensor networks, whose main function is to perform infor-

mation collection, have more advantages, such as informa-

tion redundancy, complementarity and so on. Furthermore,

the collected information is usually fused on a fusion center

(FC) in a centralized way or a distributed one. It should be

pointed out that the basic goal of information fusion is to

derive more effective information by optimizing and com-

bining the obtained data. In other words, the effectiveness

of multiple sensor systems can be dramatically improved by

taking advantage of the common or joint operation of multi-

ple sensors. In practical engineering, a considerable chal-

lenge is how to design a feasible algorithm to obtain the

optimal or sub-optimal fusion weights. To this end, many

interesting results on information fusion under networked s-

cenarios have been reported in the literature, see [1, 7–11]

and the references therein. It should be pointed out that typi-

cal algorithms based on minimum variance technique or lin-

ear matrix inequality techniques can be roughly divided in-

to centralized fusion algorithms, decentralized fusion algo-

rithm [12] as well as distributed ones [11, 13]. Furthermore,

the communication burden of distributed fusion estimation

is great reduced although the accuracy is lower than that of

the centralized one.

Although bringing a series of advantages, the resultant

exploited communication network inevitably leads to vari-

ous network-induced phenomena and plenty of energy con-

sumption, especially for wireless sensor nodes, which re-
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duces the service time of multiple sensor systems. On one

hand, network congestion and packet loss will inevitably

occur due to the limitation of communication resources or

transmission power. Such phenomena could degrade the fu-

sion performance if they are not handled rightly [11, 14–17,

38]. On the other hand, sensor nodes, usually powered by

small batteries, are endowed with the low power constrain-

t and limited communication and computation capabilities.

Because of the difficulty of obtaining energy from the out-

side in a relatively harsh environment, reducing data trans-

mission is undoubtedly an effective approach to achieve the

energy constraint requirement. There is no doubt that the

power constraint and the fusion performance usually need

to achieve a balance. Up to date, some theory research on

energy-constrained communication networks has focused on

the design and optimization of transmission schemes [18–

24]. For instance, optimal strategies of tradeoffs between

bandwidth and power have been discussed in [20] to min-

imize the bit energy required for reliable transmission in

broadband transmission methods. The best modulation s-

trategy has been established in [18] to minimize the total

energy consumption required to send a given number of bit-

s. Furthermore, in [25], the total sensor transmission ener-

gy has been minimized by determining the optimal trans-

mit power levels while ensuring the target mean squared

error requirements. However, the precondition of develop-

ing these results is that the considered system must be a

simple linear one. That is to say, the adopted methods in

the above literature are unapplicable for complex dynami-

cal systems including nonlinear terms, time-delays, or time-

varying parameters. It is worth noting that, besides commu-

nication scheduling [9, 26], another typical strategy of ener-

gy management is the utilization of low-energy channels for

information transmission while adopting suitable informa-

tion compensation techniques to alleviate the negative effect

from missing data [27], which constitutes one of the moti-

vations for this investigation.

Time-delayed phenomena are ubiquitous in various ac-

tual engineering systems and usually aroused by material

transmission and signal transmission. For example, commu-

nication delays may occur during data transmission over com-

munication channels due to the limitation of communication

bandwidth of sensor networks. There is no doubt that the

existence of time delays usually degrades the fusion perfor-

mance of multi-sensor systems if they cannot be adequately

taken into consideration in the design process of the fusion

algorithm. For the fusion based on Kalman filtering, time-

delays can be effectively handled by the reorganized innova-

tion [13,28–30], which, unfortunately, results in the increase

of variable dimensions. Furthermore, the induced challenge

for performance analysis and parameter design can also be

handled by the analytical convenience of Lyapunov stabili-

ty theory combined with linear matrix inequalities, see [31]

for examples. Specially, the delay-dependent result can be

established to reduce the conservatism of performance anal-

ysis and gain design for time-varying systems. On the other

hand, the nonlinear characteristic of engineering systems is

always regarded as an important source of complex dynam-

ical behavior. As such, the fusion estimation with nonlinear

or time-delayed influences has received ever-increasing re-

search attention, see [26, 31–37] and the references therein.

For instance, general nonlinear systems are first linearized

as time-varying systems, and then an ingenious approach

has been provided to find an upper bound of fusion esti-

mation error while achieving the proposed weighting fusion

criterion in [32]. A novel fusion framework has been de-

veloped in [31] to deal with the state estimation issue sub-

ject to partial-nodes-based measurements with the help of

constructed Lyapunov-Krasovskii functionals. Note that the

fusion estimation of nonlinear time-delayed systems with

time-varying parameters still lies in an infant stage, not to

mention the case that information transmission is enslaved

to the limitation of energy. As such, the purpose of this paper

is to attempt to fill in such a gap.

Inspired by the previous discussion, we begin to cope

with the fusion estimation issue of the nonlinear time-delayed

systems with energy constraints. Such an issue is nontrivial

and appears some unavoidable challenges identified as fol-

lows: 1) how to evaluate the local estimation performance

and the fusion estimation performance for time-varying sys-

tems with time delays in a finite horizon? and 2) how to ob-

tain the desired fusion weights for complex dynamical sys-

tems where two kinds of channels named as reliable chan-

nels and general channels are employed to transmit infor-

mation. As such, we devote to handle these two challenges

and the main contributions of this paper are highlighted as

follows: 1) a synthesis contributing to the complexity of net-

worked systems is investigated within a unified framework

that evaluates the influence from energy constraints based

on channel scheduling, nonlinear terms, time-delays as well

as time-varying parameters; 2) by means of Lyapunov sta-

bility analysis, sufficient conditions are derived to guaran-

tee the predetermined fusion performance with a form of H∞

index in a finite horizon; and 3) in light of established suf-

ficient conditions, the desired local estimator gains and the

suboptimal fusion weight matrices are obtained by using the

solution of linear matrix inequalities.

Notation The notations used here are fairly standard ex-

cept where otherwise stated. Rn denote the n dimensional

Euclidean space. The superscripts “T ” and “−1” denote, re-

spectively, the transpose operation of matrices and the in-

verse of matrices. The symbols I and 0 denote an identity

matrix and a zero matrix with appropriate dimensions, re-

spectively. The notations diagL{·} and colL{·} represent a

diagonal matrix and a column vector formed by L same el-

ements. In symmetric block matrices, an asterisk (i.e. ∗) s-
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tands for a term induced by symmetry. The probability of

the event A is represented by P{A}.

2 Problem Formulation and Preliminaries

In this paper, the considered sensor network, consisting of

L nodes, monitors a class of discrete time-varying nonlinear

targets over a finite time-horizon [0, N]





x(t +1) = A(t)x(t)+F(t)x(t − τ)

+B(t)g(x(t))+Γ (t)w(t),

yi(t) = Ci(t)x(t)+Di(t)vi(t), i = 1,2, · · · ,L

(1)

where x(t) ∈ R
n is the state of interesting targets that can-

not be observed directly, yi(t) ∈ R
ny is the measured out-

put from the sink node i, and w(t) and vi(t) are, respective-

ly, the process noise and the measurement noise satisfying

w(t)∈ ([0,N];Rq) and vi(t)∈ ([0,N];Rp). The positive inte-

ger τ describes the known time delay. A(t), B(t), G(t), F(t),
Γ (t), Ci(t) and Di(t) are time-varying matrices with com-

patible dimensions.

In the above system, the nonlinear function g(x(t)) is

supposed to be continuous and satisfies both g(0) = 0 and

the bounded condition

(g(x)−g(y)−φ g
1 (x− y))T

× (g(x)−g(y)−φ g
2 (x− y))≤ 0,∀x,y ∈ R

ny
(2)

where φ g
1 and φ g

2 are two known matrices.

By resorting to the measurement yi(t), the local state es-

timation (LSE) x̂i(t) is obtained via the following estimator

on the ith node

x̂i(t +1) = A(t)x̂i(t)+F(t)x̂i(t − τ)+B(t)g(x̂i(t))

+Ki(t)
(
yi(t)−Ci(t)x̂i(t)

)
, (3)

where Ki(t) is the ith estimator gain to be designed.

As we all know, the information fusion has the capabili-

ty of compensating the shortage of the local estimation per-

formance. In order to execute the information fusion, LSE

needs to be transmitted to FC, which leads to high data rates

in communication. Furthermore, the lifetime of sensor nodes

powered by an embedded battery with limited energy is also

a considerable concern from the viewpoint of practical ap-

plications. As such, to reduce the energy consumption and

improve the communication burden, two kinds of channels

are exploited to properly facilitate data transmission. These

two kinds of channels are, respectively, named as reliable

channels owning the merit of high reliability and general

channels subject to packet loss, see [27] for more details. For

the convenience of mathematical analysis, a set of Bernoulli-

distributed white sequences βi(t) are employed to describe

the phenomenon of packet loss and their statistical charac-

teristics are assumed to be satisfied as follows

P(βi(t) = 1) = β , P(βi(t) = 0) = 1−β ,

where β is a known positive scalar. Furthermore, let us in-

troduce a binary variable χi j(t) ∈ {0,1} ( j = 1,2, · · · ,n) to

describe whether or not the j-th component of LSE x̂i(t) is

scheduled to access the reliable channel and thereby the cor-

responding scheduling matrix, essentially a diagonal matrix,

can be defined as

Hi(t) = diag{χi1(t),χi2(t), · · · ,χin(t)}, (4)

where variables χi j(t) ( j = 1,2, · · · ,n) satisfy ∑n
j=1 χi j(t) =

ri (i ∈ {1,2, · · · ,L}).

According to the above engineering scenario of sensor

networks, the received LSE x̂ri
(t) is denoted by

x̂ri
(t) = Hi(t)x̂i(t)+βi(t)(I −Hi(t))x̂i(t). (5)

In light of the received LSE, we construct the following typ-

ical fusion estimator

x̂(t) =
L

∑
i=1

Ωi(t)x̂ri
(t), (6)

where Ωi(t) satisfying the constraint ∑L
i=1 Ωi(t) = In is the

weighting matrix to be designed.

In what follows, for the sake of performance analysis

and parameter design, let us introduce the local estimation

error (LEE) and the fusion error (FE):

ei(t), x(t)− x̂i(t), eF(t), x(t)− x̂(t).

Then, denoting gt(ei(t)) = g(x(t))−g(x̂i(t)), one has the i-

th estimation error dynamics

ei(t +1) = (A(t)−Ki(t)Ci(t))ei(t)+F(t)ei(t − τ)

+B(t)gt(ei(t))+Γ (t)w(t)−Ki(t)Di(t)vi(t).
(7)

Furthermore, denoting

ξ (t) = col{x(t),e1(t), · · · ,eL(t)},

v̄(t) = col{0,v1(t),v2(t), · · · ,vL(t)}, w̄(t) = colL+1{w(t)}

g̃t(ξ (t)) = col{g(x(t)),gt(e1(t)), · · · ,gt(eL(t))}

from (1), (5), (6) and (7), one has the following fusion error

dynamics





ξ (t +1) = Ātξ (t)+ F̄tξ (t − τ)+ B̄t g̃t(ξ (t))

+ Γ̄t w̄(t)+ D̄t v̄(t),

eF(t) =Ψ0tξ (t),

(8)
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where

Āt = diag{A(t),A(t)−K1(t)C1(t), · · · ,A(t)−KL(t)CL(t)},

F̄t = diagL+1{F(t)}, B̄t = diagL+1{B(t)},

Γ̄t = diagL+1{Γ (t)}, D̄t = diag{0,ℵt},

ℵt = diag{−K1(t)D1(t), · · · ,−KL(t)DL(t)},

Ψ0t =
[
Ψ0xt , Ψ01t , Ψ02t , · · · , Ψ0Lt

]

with

Ψ0xt =
L

∑
i=1

(1−βi(t))Ωi(t)(I −Hi(t)),

Ψ0it = Ωi(t)Hi(t)+βi(t)Ωi(t)(I −Hi(t)), 1 ≤ i ≤ L.

Taking the constraint on Ωi(t) into account, one further has

Ψ0L =
(

I−
L−1

∑
i=1

Ωi(t)
)

HL(t)+βL(t)
(

I−
L−1

∑
i=1

Ωi(t)
)
(I−HL(t)).

Based on a set of predetermined scheduling matrices

Hi(t), the goals of this paper are to design Ki(t) in (3) and the

weighting matrices Ωi(t) (i = 1, · · · ,L) in (6) under energy

constraints to satisfy the following requirements:

R1) The local error dynamics (7) satisfies the following finite-

horizon H∞ index on [0, N]

E

{ N

∑
t=0

∥ei(t)∥
2
}
< γ2

i

N

∑
t=0

(
∥w(t)∥2 +∥vi(t)∥

2
)

+ γ2
i E

{
eT

i (0)Q̄1ei(0)

+ τ max
−τ≤s<0

eT
i (s)Q̄2ei(s)

}
(9)

for the given disturbance attenuation level γi and the weight-

ed matrices Q̄1 and Q̄2, which are symmetrically posi-

tive definite;

R2) The fusion error dynamics (8) satisfies the following

finite-horizon H∞ index on [0, N]

E

{ N

∑
t=0

∥eF(t)∥
2
}
< γ2

F

N

∑
t=0

(
∥w(t)∥2 +∥v̄(t)∥2

)

+ γ2
FE

{
eT

F(0)Q̄3eF(0)

+ τ max
−τ≤s<0

eT
F(s)Q̄4eF(s)

}
(10)

for the given disturbance attenuation level γF and the

weighted matrices Q̄3 and Q̄4, which are symmetrically

positive definite.

Remark 1 In this paper, general channels subject to pack-

et loss are employed to carry out the information transmis-

sion with the purpose of increasing the service life of the

battery. Furthermore, the fusion estimation issue facing the

complexity of networked systems is investigated within a

unified framework that evaluates the influence from ener-

gy constraint based on channel scheduling, nonlinear terms,

time-delays as well as time-varying parameters. In compari-

son with existing results focusing on the optimization of en-

ergy cost, the main idea used in this paper is that, according

to predetermined energy utilization schemes, a set of fusion

weights for sensor networks are designed to achieve the de-

sired local and fused H∞ performance in a finite horizon.

3 Main Results

In this section, the H∞ performance is analyzed to the dy-

namics of LEE (7) and the dynamics of FE (8) with the de-

signed estimator. Then, the desired estimator gains are pro-

posed in terms of the solution to certain matrix inequalities

derived according to the obtained condition. First, let us give

the following lemma that will be used in the proof of our

main results in this paper.

Lemma 1 [39] Let Ω1, Ω2 and Ω3 be constant matrices

where Ω1 = Ω T
1 and 0 < Ω2 = Ω T

2 , then Ω1+Ω T
3 Ω−1

2 Ω3 <
0 if and only if
[

Ω1 Ω T
3

Ω3 −Ω2

]
< 0,

[
−Ω2 Ω3

Ω T
3 Ω1

]
< 0.

For the simplify of the presentation, denote Ait = A(t)−
Ki(t)Ci(t), Ft =F(t), Bt =B(t), Γt =Γ (t), and Dit =−Ki(t)Di(t).

Theorem 1 Let the gains matrices Ki(t) , the fusion weight-

ed matrices Ωi(t), and weighted matrices Q̄i (i = 1,2,3,4),

and disturbance attenuation levels γF and γi (i = 1,2, · · · ,L)

be given. The dynamics of LEE (7) and the dynamics of FE

(8) satisfy, respectively, the desired H∞ performance con-

straints (9) and (10), if there exist positive scalars λi(i =
0,1, · · · ,L) and positive definite matrices (Pt , Qt , Rt , Tt)
(t ∈ [0, N]) with the initial conditions

P0 ≤ γ2
i Q̄1, Qs ≤ τγ2

i Q̄2, (11)

R0 ≤ γ2
FQ̄3, Ts ≤ τγ2

FQ̄4 (12)

for s =−τ ,−τ +1, · · · ,−1 such that the following inequal-

ities

Π1t =




ϒ11t AT
it Pt+1Ft ϒ13t AT

it Pt+1Γt AT
it Pt+1Dit

∗ ϒ22t FT
t Pt+1Bt FT

t Pt+1Γt FT
t Pt+1Dit

∗ ∗ ϒ33t BT
t Pt+1Γt BT

t Pt+1Dit

∗ ∗ ∗ ϒ44t Γ T
t Pt+1Dit

∗ ∗ ∗ ∗ ϒ55t



< 0,

(13)

and

Π2t =




Θ11t ĀT
t Rt+1F̄t Θ13t ĀT

t Rt+1Γ̄t ĀT
t Rt+1D̄t

∗ Θ22t F̄T
t Rt+1B̄t F̄T

t Rt+1Γ̄t F̄T
t Rt+1D̄t

∗ ∗ Θ33t B̄T
t Rt+1Γ̄t B̄T

t Rt+1D̄t

∗ ∗ ∗ Θ44t Γ̄ T
t Rt+1D̄t

∗ ∗ ∗ ∗ Θ55t



< 0
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(14)

hold, where

ϒ11t = AT
it Pt+1Ait −Pt +Qt −λitΦ

g
1 + I,

ϒ13t = AT
it Pt+1Bt +λitΦ

gT
2 , ϒ22t = FT

t Pt+1Ft −Qt−τ ,

ϒ33t = BT
t Pt+1Bt −λitI, ϒ44t = Γ T

t Pt+1Γt − γ2
i I,

ϒ55t = DT
it Pt+1Dit − γ2

i I, Θ13t = ĀT
t Rt+1B̄t +λ0tΦ

gT
20 ,

Θ11t = ĀT
t Rt+1Āt −Rt +Tt −λ0tΦ

g
10 +χ0t ,

Θ22t = F̄T
t Rt+1F̄t −Tt−τ , Θ33t = B̄T

t Rt+1B̄t −λ0t I,

Θ44t = Γ̄ T
t Rt+1Γ̄t − γ2

0 I, Θ55t = D̄T
t Rt+1D̄t − γ2

0 I

Φg
1 = I ⊗Sym{

1

2
φ gT

1 φ g
2 }, Φg

2 = I ⊗ (φ g
1 +φ g

2 })/2

χ0t = Ψ̄ T
0t Ψ̄0t +β (1−β )

L

∑
i=1

Ψ̃ iT
0it Ψ̃

i
0it ,

Ψ̄0t =
[
Ψ̄0xt Ψ̄01t Ψ̄02t · · · Ψ̄0Lt

]
,

Ψ̄0xt =
L−1

∑
j=1

(1−β )Ω j(t)(I −H j(t))

+(1−β )(I −
L−1

∑
j=1

Ω j(t))(I −HL(t)),

Ψ̄0it = Ωi(t)Hi(t)+βΩi(t)(I −Hi(t)), 1 ≤ i < L,

Ψ̄0Lt = (I −
L−1

∑
j=1

Ω j(t))HL(t)+β (I −
L−1

∑
j=1

Ω j(t))(I −HL(t)),

Ψ̃ i
0it =

[
Ψ̃ i

0xt 0 · · · 0︸ ︷︷ ︸
i−1

Ψ̃0it 0 · · · 0︸ ︷︷ ︸
L−i

]
,

Ψ̃ i
0xt = Ωi(t)(I −Hi(t)), 1 ≤ i < L,

Ψ̃0it = −Ωi(t)(I −Hi(t)), 1 ≤ i < L,

Ψ̃ L
0xt = (I −

L−1

∑
j=1

Ω j(t))(I −HL(t)),

Ψ̃0Lt = − (I −
L−1

∑
j=1

Ω j(t))(I −HL(t)).

Proof The proof will be divided into two parts: the first one

is the analysis of finite-horizon H∞ performance of LEEs

and the other is the H∞ performance analysis of FE. Now, let

us deal with the first part. To this end, we first construct the

following Lyapunov function for the ith dynamics of LEE

(7):

V i
e(t) =V i

e1(t)+V i
e2(t), (15)

where

V i
e1(t) = eT

i (t)Ptei(t), V i
e2(t) = ∑

t−1

s=t−τ
eT

i (s)Qsei(s).

Calculating the differences of V i
e1(t) and V i

e2(t) along

with the evolution of LEE (7), and then taking their mathe-

matical expectation, one has

E{∆V i
e1(t)}

= E{V i
e1(t +1)−V i

e1(t)}

= E{eT
i (t +1)Pt+1ei(t +1)− eT

i (t)Ptei(t)}

= E

{(
Aitei(t)+Ftei(t − τ)+Btgt(ei(t))+Γtw(t)

+Ditvi(t)
)T

Pt+1

(
Aitei(t)+Ftei(t − τ)+Btgt(ei(t))

+Γtw(t)+Ditvi(t)
)
− eT

i (t)Ptei(t)
}

= E

{
eT

i (t)A
T
it Pt+1Aitei(t)+ eT

i (t)A
T
it Pt+1Ftei(t − τ)

+ eT
i (t)A

T
it Pt+1Btgt(ei(t))+ eT

i (t)A
T
it Pt+1Γtw(t)

+ eT
i (t)A

T
it Pt+1Ditvi(t)+ eT

i (t − τ)FT
t Pt+1Aitei(t)

+ eT
i (t − τ)FT

t Pt+1Ftei(t − τ)+ eT
i (t − τ)FT

t Pt+1Btgt(ei(t))

+ eT
i (t − τ)FT

t Pt+1Γtw(t)+ eT
i (t − τ)FT

t Pt+1Ditvi(t)

+gT
t (ei(t))B

T
t Pt+1Aitei(t)+gT

t (ei(t))B
T
t Pt+1Ftei(t − τ)

+gT
t (ei(t))B

T
t Pt+1Btgt(ei(t))+gT

t (ei(t))B
T
t Pt+1Γtw(t)

+gT
t (ei(t))B

T
t Pt+1Ditvi(t)+wT (t)Γ T

t Pt+1Aitei(t)

+wT (t)Γ T
t Pt+1Ftei(t − τ)+wT (t)Γ T

t Pt+1Btgt(ei(t))

+wT (t)Γ T
t Pt+1Γtw(t)+wT (t)Γ T

t Pt+1Ditvi(t)

+ vT
i (t)D

T
it Pt+1Aitei(t)+ vT

i (t)D
T
it Pt+1Ftei(t − τ)

+ vT
i (t)D

T
it Pt+1Btgt(ei(t))+ vT

i (t)D
T
it Pt+1Γtw(t)

+ vT
i (t)D

T
it Pt+1Ditvi(t)}− eT

i (t)Ptei(t)
}
, (16)

and

E{∆V i
e2(t)}

= E{V i
e2(t +1)−V i

e2(t)}

= E

{
∑

t

s=t+1−τ
eT

i (s)Qsei(s)−∑
t−1

s=t−τ
eT

i (s)Qsei(s)
}

= E

{
eT

i (t)Qtei(t)+∑
t−1

s=t+1−τ
eT

i (s)Qsei(s)

−∑
t−1

s=t+1−τ
eT

i (s)Qsei(s)− eT
i (t − τ)Qt−τ ei(t − τ)

}

= E{eT
i (t)Qtei(t)− eT

i (t − τ)Qt−τ ei(t − τ)}. (17)

Denoting ηi(t)= [ eT
i (t) eT

i (t − τ) gT
t (ei(t)) wT (t) vT

i (t) ]
T

and then combining with (16) and (17) result in

E{∆V i
e(t)}= E{V i

e(t +1)−V i
e(t)}

= E{∆V i
e1(t)+∆V i

e2(t)}

= E{ηT
i (t)Π̃1tηi(t)},

(18)

where

Ξ̃11t = AT
it Pt+1Ait −Pt +Qt , Ξ̃22t = FT

t Pt+1Ft −Qt−τ ,

Π̃1t =




Ξ̃11t AT
it Pt+1Ft AT

it Pt+1Bt AT
it Pt+1Γt AT

it Pt+1Dit

∗ Ξ̃22t FT
t Pt+1Bt FT

t Pt+1Γt FT
t Pt+1Dit

∗ ∗ BT
t Pt+1Bt BT

t Pt+1Γt BT
t Pt+1Dit

∗ ∗ ∗ Γ T
t Pt+1Γt Γ T

t Pt+1Dit

∗ ∗ ∗ ∗ DT
it Pt+1Dit



.
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In what follows, to disclose the finite-horizon H∞ perfor-

mance of (9), let us introduce the cost function

J1(t) = eT
i (t +1)Pt+1ei(t +1)− eT

i (t)Ptei(t)

+∑
t

s=t+1−τ
eT

i (s)Qsei(s)−∑
t−1

s=t−τ
eT

i (s)Qsei(s).

On the other hand, it follows from (2) that

[gt(ei(t))− (I ⊗φ g
1 )ei(t)]

T [gt(ei(t))− (I ⊗φ g
2 )ei(t)]≤ 0.

Taking such a constraint into account, one has

E{J1(t)} ≤ E
{

ηT
i (t)Π̃1tηi(t)−λit [gt(ei(t))

− (I ⊗φ g
1 )ei(t)]

T [gt(ei(t))− (I ⊗φ g
2 )ei(t)]

}
.

Then, adding the zero term

E
{
∥ei(t)∥

2 − γ2
i

(
∥w(t)∥2 +∥vi(t)∥

2
)
−
(
∥ei(t)∥

2

−γ2
i

(
∥w(t)∥2 +∥vi(t)∥

2
))}

into the right side of the above inequality leads to

E{J1(t)} ≤ E

{
ηT

i (t)Π̃1tηi(t)−λit [gt(ei(t))

− (I ⊗φ g
1 )ei(t)]

T [gt(ei(t))− (I ⊗φ g
2 )ei(t)]

+∥ei(t)∥
2 − γ2

i (∥w(t)∥2 +∥vi(t)∥
2)
}

−E

{
∥ei(t)∥

2 − γ2
i

(
∥w(t)∥2 +∥vi(t)∥

2
)}

= E

{
ηT

i (t)Π1tηi(t)
}
−E

{
∥ei(t)∥

2

− γ2
i

(
∥w(t)∥2 +∥vi(t)∥

2
)}

, (19)

which means

N

∑
t=0

E{J1(t)}=
N

∑
t=0

E{∆V i
e(t)}= E{V i

e(N +1)}−E{V i
e(0)}

≤
N

∑
t=0

E

{
ηT

i (t)Π1tηi(t)
}
−

N

∑
t=0

E

{
∥ei(t)∥

2

− γ2
i

(
∥w(t)∥2 +∥vi(t)∥

2
)}

. (20)

Noting the conditions (11) and (13), one cannot difficult-

ly obtain from the above inequality that

E

{ N

∑
t=0

(
∥ei(t)∥

2 − γ2
i

(
∥w(t)∥2 +∥vi(t)∥

2
))

− γ2
i

(
eT

i (0)Q̄1ei(0)+ τ max
−τ≤s<0

eT
i (s)Q̄2ei(s)

)}

≤ E
{

V i
e(0)

}
−E

{
V i

e(N +1)
}
− γ2

i E
{

eT
i (0)Q̄1ei(0)

+ τ max
−τ≤s<0

eT
i (s)Q̄2ei(s)

}

≤ E

{
eT

i (0)P0ei(0)+
−1

∑
s=−τ

eT
i (s)Qsei(s)

}

− γ2
i E

{
eT

i (0)Q̄1ei(0)+ τ max
−τ≤s<0

eT
i (s)Q̄2ei(s)

}

< 0, (21)

which implies the considered performance (9) is satisfied.

Up to now, we have analyzed the dynamical performance

of LEEs, thereby lying in the position to deal with fusion

performance. Similarly, let us employ the following Lya-

punov function:

Vf (t) =Vf 1(t)+Vf 2(t), (22)

where

Vf 1(t) = ξ T (t)Rtξ (t), Vf 2(t) = ∑
t−1

s=t−τ
ξ T (s)Tsξ (s).

Calculating the differences of V i
f 1(t) and V i

f 2(t) along

with the evolution of FE (8), and then taking their mathe-

matical expectation, one has

E{∆Vf 1(t)}

= E{Vf 1(t +1)−Vf 1(t)}

= E{ξ T (t +1)Rt+1ξ (t +1)−ξ T (t)Rtξ (t)}

= E

{(
Ātξ (t)+ F̄tξ (t − τ)+ B̄t g̃t(ξ (t))+ Γ̄t w̄(t)

+ D̄t v̄(t)
)T

Rt+1

(
Ātξ (t)+ F̄tξ (t − τ)+ B̄t g̃t(ξ (t))

+ Γ̄t w̄(t)+ D̄t v̄(t)
)
−ξ T (t)Rtξ (t)

}

= E

{
ξ T (t)ĀT

t Rt+1Ātξ (t)+ξ T (t)ĀT
t Rt+1F̄tξ (t − τ)

+ξ T (t)ĀT
t Rt+1B̄t g̃t(ξ (t))+ξ T (t)ĀT

t Rt+1Γ̄t w̄(t)

+ξ T (t)ĀT
t Rt+1D̄t v̄(t)+ξ T (t − τ)F̄T

t Rt+1Ātξ (t)

+ξ T (t − τ)F̄T
t Rt+1F̄tξ (t − τ)+ξ T (t − τ)F̄T

t Rt+1B̄t g̃t(ξ (t))

+ξ T (t − τ)F̄T
t Rt+1Γ̄t w̄(t)+ξ T (t − τ)F̄T

t Rt+1D̄t v̄(t)

+ g̃T
t (ξ (t))B̄

T
t Rt+1Ātξ (t)+ g̃T

t (ξ (t))B̄
T
t Rt+1F̄tξ (t − τ)

+ g̃T
t (ξ (t))B̄

T
t Rt+1B̄t g̃t(ξ (t))+ g̃T

t (ξ (t))B̄
T
t Rt+1Γ̄t w̄(t)

+ g̃T
t (ξ (t))B̄

T
t Rt+1D̄t v̄(t)+wT (t)Γ̄ T

t Rt+1Ātξ (t)

+ w̄T (t)Γ̄ T
t Rt+1F̄tξ (t − τ)+ w̄T (t)Γ̄ T

t Rt+1B̄t g̃t(ξ (t))

+ w̄T (t)Γ̄ T
t Rt+1Γ̄t w̄(t)+ w̄T (t)Γ̄ T

t Rt+1D̄t v̄(t)

+ v̄T (t)D̄T
t Rt+1Ātξ (t)+ v̄T (t)D̄T

t Rt+1F̄tξ (t − τ)

+ v̄T (t)D̄T
t Rt+1B̄t g̃t(ξ (t))+ v̄T (t)D̄T

t Rt+1Γ̄t w̄(t)

+ v̄T (t)D̄T
t Rt+1D̄t v̄(t)}−ξ T (t)Rtξ (t)

}
, (23)

and

E{∆Vf 2(t)}

= E{Vf 2(t +1)−Vf 2(t)}

= E

{
∑

t

s=t+1−τ
ξ T (s)Tsξ (s)−∑

t−1

s=t−τ
ξ T (s)Tsξ (s)

}

= E

{
ξ T (t)Ttξ (t)+∑

t−1

s=t+1−τ
ξ T (s)Tsξ (s)

−∑
t−1

s=t+1−τ
ξ T (s)Tsξ (s)−ξ T (t − τ)Tt−τ ξ (t − τ)

}
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= E{ξ T (t)Ttξ (t)−ξ T (t − τ)Tt−τ ξ (t − τ)}. (24)

Denoting

η0(t) = [ ξ T (t) ξ T (t − τ) g̃T
t (ξ (t)) w̄T (t) v̄T (t) ]T

and then synthesizing (23) and (24) lead to

E{∆Vf (t)}= E{Vf (t +1)−Vf (t)}

= E{∆Vf 1(t)+∆Vf 2(t)}

= E{ηT
0 (t)Π̃2tη0(t)},

(25)

where

Θ̃11t = ĀT
t Rt+1Āt −Rt +Tt , Θ̃22t = F̄T

t Rt+1F̄t −Tt−τ ,

Π̃2t =




Θ̃11t ĀT
t Rt+1F̄t ĀT

t Rt+1B̄t ĀT
t Rt+1Γ̄t ĀT

t Rt+1D̄t

∗ Θ̃22t F̄T
t Rt+1B̄t F̄T

t Rt+1Γ̄t F̄T
t Rt+1D̄t

∗ ∗ B̄T
t Rt+1B̄t B̄T

t Rt+1Γ̄t B̄T
t Rt+1D̄t

∗ ∗ ∗ Γ̄ T
t Rt+1Γ̄t Γ̄ T

t Rt+1D̄t

∗ ∗ ∗ ∗ D̄T
t Rt+1D̄t



.

Similarly, one has the nonliner constraint

λ0t [g̃t(ξ (t))− (I⊗φ g
10)ξ (t)]

T [g̃t(ξ (t))− (I⊗φ g
20)ξ (t)]≤ 0,

and therefore further has the following condition

E
{

∆Vf (t)
}
≤ E

{
ηT

0 (t)Π̃2tη0(t)−λ0t [g̃t(ξ (t))

− (I ⊗φ g
10)ξ (t)]

T [g̃t(ξ (t))− (I ⊗φ g
20)ξ (t)]

}

≤ E
{

ηT
0 (t)Π2tη0(t)

}
. (26)

In what follows, the cost function of H∞ index can be rewrit-

ten by

J2(t) = eT
F(t +1)Rt+1eF(t +1)− eT

F(t)RteF(t)

+∑
t

s=t+1−τ
eT

F(s)TseF(s)−∑
t−1

s=t−τ
eT

F(s)TseF(s).

It is not difficult to derive that

N

∑
t=0

E
{

J2(t)
}
=

N

∑
t=0

E
{

∆Vf (t)
}

= E
{

Vf (N +1)
}
−E

{
Vf (0)

}

≤ E

{ N

∑
t=0

ηT
0 (t)Π2tη0(t)

}
−E

{ N

∑
t=0

(
∥eF(t)∥

2

− γ2
F

(
∥w̄(t)∥2 +∥v̄(t)∥2

))}
,

and

E

{
∥eF(t)∥

2
}
= E

{
(Ψ0ξ (t))TΨ0ξ (t)

}

= E

{
ξ T (t)Ψ T

0 Ψ0ξ (t)
}

= E

{
ξ T (t)

(
Ψ̄ T

0 Ψ̄0

+β (1−β )
L

∑
i=1

Ψ̃ iT
0i Ψ̃ i

0i

)
ξ (t)

}
.

Noting the conditions (12) and (14), one cannot difficult-

ly obtain that

E

{ N

∑
t=0

(
∥eF(t)∥

2 − γ2
F

(
∥w̄(t)∥2 +∥v̄(t)∥2

))

− γ2
F

(
eT

F(0)Q̄3eF(0)+ τ max
−τ≤s<0

eT
F(s)Q̄4eF(s)

)}

≤ E

{ N

∑
t=0

ηT
0 (t)Π2tη0(t)

}
+E

{
eT

F(0)R0eF(0)

+
−1

∑
s=−τ

eT
F(s)TseF(s)

}
− γ2

F

(
eT

F(0)Q̄3eF(0)

+ τ max
−τ≤s<0

eT
F(s)Q̄4eF(s)

)}

< 0, (27)

which means that the finite-horizon H∞ performance of fu-

sion error is satisfied. The proof is complete.

In the above theorem, the finite-horizon H∞ performance

of both LEEs (7) and FE (8) has been handled with the help

of the Lyapunov stability theorem. It should be pointed out

that the developed conditions can only be utilized to perfor-

m the performance analysis and cannot be adopted to obtain

the desired estimator gains and the fusion weights of sensor

networks. Therefore, the subsequent issue core is to devel-

op a suitable approach to obtain desired matrix parameter-

s from the viewpoint of engineering applications of sensor

networks.

Lemma 2 Let parameters γi > 0 (i = 1, · · · ,L) and weight-

ed matrices Q̄1 and Q̄2 be given. The local dynamics of

LEE (7) satisfies the H∞ performance constraint (9) for all

nonzero w(t) and vi(t), if there exist positive definite matri-

ces Pt > 0, Qt > 0, matrices K̂it and positive scalars λit(i ∈
{1,2, · · · ,L}) satisfying (11) and




−Pt+1 M12t M13t M14t M15t M16t

∗ M22t 0 λitΦ
gT
2 0 0

∗ ∗ −Qt−τ 0 0 0

∗ ∗ ∗ −λitI 0 0

∗ ∗ ∗ ∗ −γ2
i I 0

∗ ∗ ∗ ∗ ∗ −γ2
i I



< 0 (28)

where





M22t = Qt −Pt −λitΦ
g
1 + I,

M12t = Pt+1A(t)− K̂itCi(t), M13t = Pt+1Ft ,

M14t = Pt+1Bt , M15t = Pt+1Γt , M16t =−K̂itDi(t).

When the above inequality holds, the estimator gain Ki(t) is

can be determined by

Ki(t) = P−1
t+1K̂it . (29)
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Proof According to the primary matrix operation, the in-

equality (13) is equivalent to



M22t 0 λitΦ
gT
2 0 0

∗ −Qt−τ 0 0 0

∗ ∗ −λitI 0 0

∗ ∗ ∗ −γ2
i I 0

∗ ∗ ∗ ∗ −γ2
i I



+Ξ T

1tPt+1Ξ1t < 0

where Ξ1t =
[

Ait Ft Bt Γt Dit

]
.

According to the Schur complement lemma, the above

inequality holds if and only if



−Pt+1 Pt+1Ait Pt+1Ft Pt+1Bt Pt+1Γt Pt+1Dit

∗ M22t 0 λitΦ
gT
2 0 0

∗ ∗ −Qt−τ 0 0 0

∗ ∗ ∗ −λitI 0 0

∗ ∗ ∗ ∗ −γ2
i I 0

∗ ∗ ∗ ∗ ∗ −γ2
i I



< 0 (30)

is true. Denoting K̂it = Pt+1Ki(t), the inequality (30) can

transform into



−Pt+1 M12t M13t M14t M15t M16t

∗ M22t 0 λitΦ
gT
2 0 0

∗ ∗ −Qt−τ 0 0 0

∗ ∗ ∗ −λitI 0 0

∗ ∗ ∗ ∗ −γ2
i I 0

∗ ∗ ∗ ∗ ∗ −γ2
i I



< 0.

Therefore, it can be drawn that this inequality will be right,

if there exists a matrix K̂it such that the inequality (28) holds.

This completes the proof.

Lemma 3 Let parameters γF > 0 and weighted matrices

Q̄3 and Q̄4 be given. The dynamics of FE (8) satisfies the

desired H∞ performance constraint (10) for all nonzero w(t)

and v̄(t), if there exist positive definite matrices Rt > 0, Tt >
0 and positive scalars λ0t > 0 and matrices Ωi(t)(i= 1, · · · ,L)
such that the condition (12) and the following linear matrix

inequality hold:




Λ11t 0 Λ13t 0 0 0 0

∗ −Rt+1 Λ23t Λ24t Λ25t Λ26t Λ27t

∗ ∗ Λ33t 0 λ0tΦ
gT
2 0 0

∗ ∗ ∗ −Tt−τ 0 0 0

∗ ∗ ∗ ∗ −λ0t I 0 0

∗ ∗ ∗ ∗ ∗ −γ2
F I 0

∗ ∗ ∗ ∗ ∗ ∗ −γ2
F I




< 0

(31)

where



Λ11t =−I, Λ13t = [E1t · · · E2t · · · E3t Ψ̄0t ]
T

E1t =
√

β (1−β )Ψ̃ 1
01t , E2t =

√
β (1−β )Ψ̃ i

0it

E3t =
√

β (1−β )Ψ̃ L
0Lt , Λ33t = Tt −Rt −λ0tΦ

g
1

Λ23t = Rt+1Āt , Λ24t = Rt+1F̄t , Λ25t = Rt+1B̄t ,

Λ26t = Rt+1Γ̄t , Λ27t = Rt+1D̄t .

Table 1 the desired fusion estimation x̂(t)

Algorithm 1

Step 1. Given γF and γi and a group of variables

χi j(t) (i = 1, · · · ,L, and j = 1, · · · ,n);

Step 2. Calculate the estimator gains Ki(t) (i = 1, · · · ,L)

such that the inequality (28) holds;

Step 3. Calculate the weighted matrices Ωi(t) (i = 1, · · · ,L)

such that the inequality (31) holds;

Step 4. Estimate LSEs x̂i(t)(i = 1, · · · ,L) by

substituting (29) into (3);

Step 5. Collect the received LSEs x̂ri
(t)(i = 1, · · · ,L) by (5);

Step 6. Calculate the fusion estimation x̂(t) by (6).

Proof Similar to Lemma 2, the inequality (14) is equivalent

to



Nt 0 λ0tΦ
gT
2 0 0

∗ −Tt−τ 0 0 0

∗ ∗ −λ0t I 0 0

∗ ∗ ∗ −γ2
F I 0

∗ ∗ ∗ ∗ −γ2
F I



+Ξ T

2tPt+1Ξ2t < 0 (32)

where Ξ2t =
[

Āt F̄t B̄t Γ̄t D̄t

]
and Nt = Tt −Rt −λ0tΦ

g
1 +

χ0t .

Applying the Schur complement lemma again, the above

inequality holds if and only if




−Rt+1 Rt+1Āt Rt+1F̄t Rt+1B̄t Rt+1Γ̄t Rt+1D̄t

∗ Nt 0 λ0tΦ
gT
2 0 0

∗ ∗ −Tt−τ 0 0 0

∗ ∗ ∗ −λ0t I 0 0

∗ ∗ ∗ ∗ −γ2
F I 0

∗ ∗ ∗ ∗ ∗ −γ2
F I



< 0. (33)

Noting that Nt includes χ0t , we adopt the Schur complement

lemma again to conclude that the above inequality is true

when the inequality (31) holds, which completes the proof.

Theorem 2 Let parameters γF > 0 and γi (i = 1,2, · · · ,L)

and weighted matrices Q̄i (i = 1,2,3,4) be given. The dy-

namics of LEE (7) and the dynamics of FE (8) satisfy, re-

spectively, the desired H∞ performance constraint (9) and

(10), if there exist positive definite matrices Pt , Qt , Rt , Tt and

positive scalars λit(i = 0,1, · · · ,L) and K̂it (i = 1, · · · ,L) and

matrices Ωi(t) (i = 1, · · · ,L) such that the conditions (11)

and (12) in Theorem 1 and the linear matrix inequalities

(28) and (31) in Lemmas 2 and 3 hold.

Up to now, based on Theorem 2, the desired fusion esti-

mation x̂(t) can be calculated by Algorithm 1.

Remark 2 It is worth noting that a set of analytical condi-

tions on the predetermined finite-horizon H∞ performance

for the dynamics of both LEEs (7) and FE (8) is established

in Theorem 1 with the help of constructed Lyapunov func-

tions. Obviously, these conditions in this theorem is nonlin-

ear on the filter gains Ki(t), fusion weighted matrices Ωi(t),
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and free matrices Pt . In other words, these matrix inequal-

ities cannot be solved via existing tools, and hence the de-

sired matrices Ki(t) and Ωi(t) cannot be obtained reliably.

To overcome this shortage, the nonlinear conditions are trans-

formed into linear matrix inequalities by resorting to the

element matrix transformation combined with the famous

Schur complement lemma, which gives rise to Lemma 2 and

Lemma 3. In light of these two lemmas, Theorem 2 definite-

ly provides a set of applicable conditions to perform the gain

and weight design.

Remark 3 Note that Theorem 2 and the corresponding algo-

rithm disclose that the established design scheme is a two-

step process. Specifically, the condition (31) reflected the lo-

cal H∞ performance is independent of the fusion weight ma-

trices of sensor networks, and therefore can be independent-

ly solved to catch the desired local estimator gain of each

node. Such a feature avoids the coupling of gain matrices

and weight matrices. The developed fusion scheme has the

capability of deal with time-delays and energy constraints,

reducing energy cost when communicating with FC, and

therefore satisfies the requirement of practical engineering.

Furthermore, the computation cost of the developed design

scheme is related with linear matrix inequalities (LMIs) (28)

and (31), and decision variables Pt , Qt , Rt , Tt , Ωi(t), λit and

K̂it . Note that the standard LMI system has a polynomial-

time complexity O(MN 3), where M is the total row size of

LMIs and N is the total number of scalar decision variables.

Similar to the analysis in [40], the computational complex-

ity of the developed design scheme in Theorem 2 can be

represented as O(Nn7L7).

Remark 4 In the past few years, some interesting fusion al-

gorithms have been developed in [7,11–13] based on Kalman

filtering techniques for linear networked systems and in [1,

9,14,32] based on LMIs for linear/nonlinear networked sys-

tems. In comparison with these existing results, the novelty

of this paper lies in that a unified framework of fusion es-

timation is established to effectively handle the complexity

coming from energy constraints based on channel schedul-

ing, nonlinear terms, time-delays as well as time-varying pa-

rameters. All information about the above factors are reflect-

ed in the developed matrix inequalities to affect their solv-

ability.

4 Numerical Examples

In this section, a numerical example of sensor networks is p-

resented to verify the effectiveness of the proposed method-

s. Consider the discrete time-varying nonlinear system with

parameters

A = 1.25∗




0.72+0.1sin(t) 0.1 0.2 0.2
0.2 0.35 0.8−0.1cos(t) −0.1

0.1 0 0.1 −0.5
−0.1 0 0.2 0.8


 ,

and

F =




0.1 0 0.3 0

0 0.1 0 0

0.2 0.2 0 0.01

0.1 0 0 0.01


 ,B =




0.1 0 0.2 0

0.1 0.1 0 0

0 0.2 0.1 0.1
0.1 0 0.1 0.1


 ,

Γ =




0.1 0 0 0

0 0 0.1 0.1

0 0.1 0 0

0 0 0 0.1


 .

The nonlinear vector-valued functions g(x(t)) is taken as

g(x(t)) =




−0.4x1(t)+0.3x2(t)+ tanh(0.3x1(t))
−0.1x2(t)+0.2x3(t)

0.1x1(t)+0.2x3(t)
0.2x1(t)+0.1x2(t)+0.2x4(t)− tanh(0.1x4(t))


 .

Then, it is easy to see that the condition (2) can be met

with

φ g
1 =




−0.4 0.3 0 0

0 −0.1 0.2 0

0.1 0 0.2 0

0.2 0.1 0 0.1


 ,φ g

2 =




−0.2 0.3 0 0

0 −0.1 0.2 0

0.1 0 0.2 0

0.2 0.1 0 0.2


 .

There are three sink nodes, and suppose that each sink n-

ode has sufficient processing capability to compute the LSE

x̂i(t) in this example. The measurement matrices are

C1 =




0.75 0 0 0.75

0.75 0 0.75 0

0 0.75 0 0.75


 , C2 =




0.65 0.65 0 0

0 0 0.65 0.65

0 0.65 0 0.65


 ,

C3 =




0.7 0.7 0 0

0.7 0 0.7 0

0.7 0 0 0.7


 ,

and the measured noise matrices are

D1 =




0.1 0.1 0 0

0 0.1 0 0.1
0 0 0.1 0.1


 , D2 =




0.1 0 0 0

0 0.1 0 0.1
0 0 0.1 0.1


 ,

D3 =




0 0.1 0 0

0 0.1 0 0.1
0 0 0.1 0.1


 .

The disturbance inputs are chosen as

w(t) = 0.1




exp(−0.1t)sin(t)
exp(−0.2t)sin(t)
exp(−0.1t)cos(t)

exp(−0.1t)sin(t)


 ,vi(t) = 0.1




cos(0.2t)/t

cos(0.2t)/t

cos(0.2t)/t

cos(0.2t)/t


 .
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Table 2 Estimator parameters.

t 1 2

K1(t)




0.7266 0.5841 −0.2888

−0.9551 1.3186 0.7077

−0.4607 0.4347 −0.3180

0.3952 −0.3261 0.6355







0.6004 0.4736 −0.1145

−1.0054 1.3938 0.7148

−0.4797 0.3484 −0.2272

0.4628 −0.1959 0.4188




K2(t)




1.2090 0.5953 −0.6608

0.9507 1.1842 −0.8627

0.3688 −0.0774 −0.6718

−0.4129 0.5661 0.6540







1.0912 0.6169 −0.6055

0.9548 1.1602 −0.8731

0.3650 −0.1232 −0.6524

−0.4176 0.5792 0.6425




K3(t)




0.4156 0.4427 0.4918

0.0433 1.1624 −0.5564

0.3550 0.3308 −0.7909

−0.7293 −0.0858 1.0289







0.2956 0.4312 0.4637

0.1846 1.1740 −0.6159

0.2320 0.3570 −0.7466

−0.5100 −0.1334 0.9546




t 3 ...

K1(t)




0.5324 0.4297 −0.0726

−0.9435 1.3341 0.6598

−0.4908 0.3674 −0.2201

0.4911 −0.1987 0.3984


 ...

K2(t)




0.9573 0.5945 −0.5311

0.9429 1.1360 −0.8622

0.3551 −0.1326 −0.6178

−0.3800 0.6007 0.6016


 ...

K3(t)




0.2337 0.3839 0.4327

0.2271 1.1301 −0.6139

0.2415 0.3419 −0.7341

−0.4952 −0.1305 0.9529


 ...

Owing to the energy constraint, only one element of the

LSE x̂i(t) is admitted to be transmitted to FC via a reli-

able channel and others are transmitted via a general chan-

nel with data missing probability 1−β = 0.1. The selection

matrices Hi(t) (i = 1,2,3,4) are taken as

Hi(t) = diag{ϑs1,ϑs2,ϑs3}, s = mod(t − i,4)+1

for any time instant t.

In the simulation, the delay parameter is taken as τ = 2.

When the disturbance attenuation levels are chosen as γi = 5

(i = 1,2,3) , using the LMI toolbox in MATLAB software

(with the YALMIP 3.0, Version No. R20100813) to solve

the linear matrix inequality (28), the estimator gain matrices

Ki(t) (i = 1, · · · ,L) are shown in Table 2. When the distur-

bance attenuation level is chosen as γF = 5, using the LMI

toolbox in MATLAB to solve the linear matrix inequality

(31), the suboptimal weighting matrices Ωi(t) (i = 1, · · · ,L)

are shown in Table 3.

The trajectories of state x(t), received LSE x̂ri
(t) and fu-

sion estimation x̂(t) are plotted in Fig. 1 by resorting to the

developed results in Theorem 1 and Theorem 2. It is not

difficult to see from these four subgraphs that the state tra-

jectories of the target dynamics can be well tracked in an

ideal communication scenario, but emerge some fluctuations

when general channels are subject to packet losses. Further-

more, fluctuation amplitudes of estimated states via local fil-

ters are obviously larger than that of fused states via the pro-

Table 3 Weight matrix parameters.

t 1 2

Ω1(t)




0.3337 0 0 0

0 0.3339 0 0

0 0 0.3321 0

0 0 0 0.3346







0.3330 0 0 0

0 0.3334 0 0

0 0 0.3346 0

0 0 0 0.3337




Ω2(t)




0.3335 0 0 0

0 0.3393 0 0

0 0 0.3373 0

0 0 0 0.3321







0.3331 0 0 0

0 0.3340 0 0

0 0 0.3332 0

0 0 0 0.3336




Ω3(t)




0.3328 0 0 0

0 0.3268 0 0

0 0 0.3307 0

0 0 0 0.3332







0.3338 0 0 0

0 0.3326 0 0

0 0 0.3322 0

0 0 0 0.3327




t 3 ...

Ω1(t)




0.3333 0 0 0

0 0.3335 0 0

0 0 0.3330 0

0 0 0 0.3348


 ...

Ω2(t)




0.3335 0 0 0

0 0.3332 0 0

0 0 0.3346 0

0 0 0 0.3330


 ...

Ω3(t)




0.3332 0 0 0

0 0.3333 0 0

0 0 0.3324 0

0 0 0 0.3321


 ...

posed fusion algorithm, which is further verified by Fig. 2

on estimation errors ei,t and fusion error eF,t . For the conve-

nience of comparison analysis, the fused trajectories via the

obtained algorithm are further drawn in Fig. 4 for the cases

with and without packet loss, and the instants of packet loss

are plotted in Fig. 3. According to the above four figures,

we can conclude that the performance of suboptimal fusion

estimation is better than that of received LSE although they

are degraded by the phenomenon of packet loss.

5 Conclusion

In this paper, the fusion estimation problem of sensor net-

works has been investigated for nonlinear time-varying sys-

tems with energy constraints, time-delays as well as pack-

et loss. In this problem, because of the low energy cost in

comparison with the case of reliable channels, general chan-

nels subject to packet loss have been employed to carry out

the information transmission with the purpose of increasing

the service life of the battery. It should be pointed out that

the traditional fusion algorithm based on Kalman filtering

techniques is difficult to effectively deal with the challenges

brought by energy constraints, time-delays as well as non-

linear functions. Therefore, some local estimations are first

obtained by using the designed Luenberger-type local esti-

mator and then transmitted to a FC to obtain a desired fusion
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Fig. 1 Trajectories of state x(t), LSE x̂ri
(t) and fusion estimation x̂(t).
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Fig. 2 Local estimation errors ei,t and fusion error eF,t .
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Fig. 3 Packet loss times.

value. With the help of the Lyapunov stability theory, suffi-

cient conditions are established to guarantee the predeter-

mined local and fused H∞ performances over a finite hori-

zon. Furthermore, based on the established conditions, by

means of the Schur complement lemma, the desired gains of

local estimators and the suboptimal fusion weight matrices

are obtained in light of the solution of linear matrix inequal-

ities.
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