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Abstract
With the continuous rise in antibiotic resistance, novel methods that can reveal currently unknown
antibiotic resistance mechanisms are essential to prepare and inform health responses. Here we built a
library of species representative of the genus Mycobacterium and determined their antibiotic resistance
pro�les, allowing systematic multispecies comparisons. Analyzing antibiotic resistance in the context of
other closely related organisms revealed species with truly exceptional traits, thus providing a solid
starting point for the exploration of novel determinants of antibiotic resistance. We illustrate the utility of
this genus-level approach to discovery of novel traits by characterizing a previously unrecognized
rifamycin-inactivating enzyme that is present in a wide range of bacterial genera.

Introduction
The discovery and successful clinical deployment of antibiotics is one of the most important
breakthroughs in medical history, as it has dramatically reduced the morbidity and mortality in infections.
Conversely, the extensive use of antibiotics has promoted the selection of mechanisms that enable
bacteria to thrive regardless [1, 2]. Not all resistance mechanisms can be attributed to human-derived
antibiotic exposure, as many predate the clinical use of antibiotics and/or are observed in bacteria of no
clinical importance [3]. These mechanisms are derived from the natural evolution of species and the
environment they occupy, as bacteria that co-inhabit niches with antibiotic-producing organisms naturally
develop ways to avoid antibiotic-caused death [4, 5]. Of key importance, antibiotic resistance
mechanisms do not have to evolve de novo, as they can be incorporated from other organisms via
horizontal gene transfer (HGT).

Two main strategies are used to identify novel antibiotic resistance determinants. One clinical or host-
biased approach ensues when a patient who is infected with a presumably antibiotic-sensitive species
fails to improve upon treatment. Isolation and study of the resistant strain then leads to the identi�cation
of a novel determinant of antibiotic resistance. Several seminal discoveries of direct clinical importance
have taken place in this manner [6–8]. However, this approach mostly discovers incremental strain-
speci�c mechanisms, such as single nucleotide polymorphisms (SNP) that alter antibiotic binding to its
target. Another strategy involves ecological sampling and screening, using targeted approaches or
metagenomics [9]. The latter approach holds the promise to uncover truly novel mechanisms, although
these mechanisms might never �nd their ways into extant pathogens, and therefore will never represent a
clinically relevant problem.

Mycobacterium is a genus that includes both environmental and clinically relevant microorganisms.
Mycobacteria can be found in most environments including rivers and lakes [10], soil [11], plant roots [12],
moss [13], reptiles [14], amphibians [15], �sh [16] and mammals [17]. A typical divide of the genus is
based on growth rate in a de�ned solid medium when sub-cultured from highly dilute inoculums [18]. A
mycobacterial species is “fast-growing” if it forms visible colonies within seven days; this phenotype is
considered to be the ancestral state of the genus [19]. A species that takes longer than seven days to
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form mature colonies is classi�ed as “slow-growing”, this category includes the most devastating
disease-causing species Mycobacterium ulcerans, M. avium complex (MAC), M. leprae, and the M.
tuberculosis complex (MTBC). Until recently, human infections with mycobacteria other than the MTBC
and M. leprae, i.e. non-tuberculous mycobacteria (NTM), were overshadowed by the TB burden but are
now gaining increased attention due to their growing prevalence [20]. Some of the key NTM species that
cause disease are the fast-growers M. abscessus and M. fortuitum, and the slow-growers M. avium, M.
marinum, M. xenopi, M. gordonae and M. kansasii [21]. NTM can infect a variety of tissues including the
lungs, central nervous system, lymphatic system, joints, and skin [21]. As the frequency of NTM infections
is increasing, so is the worry of their severity and resistance to treatment with available antibiotics.
Contrasting with M. tuberculosis and M. leprae, which due to their isolation inside the host, do not show
cross-species horizontal gene transfer or HGT, NTM might acquire resistance determinants from
environmental bacteria. Therefore, the potential of mycobacterial species to contain and disseminate
antibiotic resistance determinants is likely as good as of other environmental bacteria.

Here, we propose a new method to study antibiotic resistance by comparing antibiotic resistance pro�les
across related bacterial species (macroevolution) to identify previously unknown high-level antibiotic
resistant species. Then, taking advantage of the natural genetic diversity among species (encoded in their
accessory genome) and their genetic similarity (encoded in their core genome), computational, molecular,
and cellular approaches can more readily pinpoint resistance determinants. We illustrate the power of this
method by characterizing a previously unrecognized rifamycin-inactivating enzyme that is widely
distributed across bacterial genera.

Results

Building a diverse library of mycobacterial species
A collection of 44 tractable mycobacterial species was assembled to cover most of the mycobacterial
phylogenetic tree (Fig. 1a). To evaluate the biological diversity of our library we analyzed the ecological
and genomic information available for the selected species. In terms of niche/pathogenicity,
mycobacteria can be broadly divided into bona �de avirulent saprophytes, opportunistic pathogens, and
professional pathogens. However, we considered necessary to add further nuance to the opportunistic
category by assessing the strength of the evidence of pathogenicity provided in the literature and used
this knowledge to establish a �ve-level scoring system (Fig. 1b). We determined doubling times in liquid
culture in equivalent experimental conditions for 26 of the species (Fig. 1c). The results revealed large
differences within the genus. For example, M. szulgai and M. �avescens divided every 1.3 and 2.0 hours,
respectively, while M. marinum and M. tuberculosis, divided every 17.1 hours. Strikingly, among slow-
growers a 13-fold change difference exists between the fastest and the slowest-growing species (M.
szulgai and M. tuberculosis respectively). The genome size of the library species is also highly different,
with genomes as small as 3.59 Mbp and 4.08 Mbp, for M. triviale and M. koreense, respectively, to
genomes as large as 6.99 Mbp and 8.01 Mbp for M. smegmatis and M. mageritense, respectively
(Fig. 1d). These genome size differences suggest that the nature of the accessory genome varies widely
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from species to species. Interestingly, there is only a very small difference when comparing the average
genome size of all fast and slow growers, 6.1 vs 5.8 Mbp, respectively. The high guanine-cytosine content
(GC%) is a de�ning characteristic of mycobacteria. Within our library, GC% varies from 66.9–68.8%, in
slow growers and the M. terrae clade respectively (Fig. 1e). Next, we investigated the number of ribosomal
RNA encoding genes (rrn operon), a feature that has often been linked to growth rate. Twenty-�ve species
possess a single copy of the rrn operon while the other 19 possess two copies (Fig. 1f). In general, but not
always, “fast growers” tend to have two copies while “slow growers” one. In the genus Bacillus a
correlation between growth rate and rrn operon copy number has been experimentally disproven [22], and
number of rrn operon copies could be related to response of resource availability [23]. Furthermore,
comparative pangenome analyses conducted by Bachmann and collaborators suggested that growth
limitation in slow growing mycobacteria might instead be related to loss of amino acid transporters [24].
Finally, we analyzed the gene ontology (GO) distribution for our library in order to evaluate functional
genetic diversity at the genome level. GO distribution varies noticeably across the analyzed genomes. The
number of genes associated with transcription and membrane transport (categories indicated by arrows
in Fig. 1g) appeared to be particularly variable. We noted that much of the genome of several of these
species is poorly annotated. Therefore, Fig. 1 supports the potential usefulness of our library as a
resource to investigate mycobacterial biology, antibiotic resistance, and pathogen evolution.

Wide variation in antibiotic resistance pro�les in
mycobacteria
To harness the potential of our library, we tested the antibiotic potency and the extent of its variation
across the Mycobacterium genus to identify biologically-relevant differences to be further studied. We
determined minimal inhibitory concentrations (MIC99) for 15 antibiotics, spanning most of the classes
employed to treat mycobacterial infections, including TB (Fig. 2a, Supplementary Table 1). We found that
several species displayed at least one MIC99 value that is considerably different from the mean
(Supplementary Figs. 1 and 2), highlighting the biological diversity of the genus with respect to antibiotic
action. As expected, notoriously multi-drug resistant M. abscessus was resistant to several antibiotics
(Fig. 2a) [21, 25], yet M. abscessus was not the most resistant of the species studied. M. mageritense, M.
salmoniphilum and M. houstonense were highly resistant to most of the antibiotics tested. M. abscessus
was somewhat sensitive to amikacin (AMK) and bedaquiline (BDQ), which is consistent with other
�ndings in the literature [26, 27]. Also, the magnitude of the changes in MIC99 is remarkable, of the order
of 100- to 1000-fold in some instances. Of note, when the data were re-ordered and unbiased clustered,
based on the overall antibiotic sensitivity of each individual species, the species distribution were divided
in three main clusters, which are dramatically different when compared to their phylogenetic positioning,
as shown by the tanglegram between the two heatmaps in Fig. 2a. To illustrate the absence of a
taxonomic trend in antibiotic resistance we explored in detail the clade composed by M. holsaticum, M.
phlei, M. �avescens, M. tusciae and M. moriokaense (Supplementary Fig. 3). While most antibiotics
behaved similarly across this group (i.e., MIC99 FC < 3-fold). M. holsaticum was highly sensitive to para-
aminosalicylic acid (PAS) and highly resistant to BDQ. High-level BDQ resistance was also observed with
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M. �avescens. Interestingly, M. �avescens is unusually sensitive to d-cycloserine (DCS). The mechanisms
underpinning these distinct responses to antibiotics are currently unknown. We also observed that once
ordered by antibiotic sensitivity, M. tuberculosis is positioned at the middle of the heatmap and the
number of NTM more resistant to antibiotics compared to M. tuberculosis is nearly equal to the number
of NTM that are more sensitive. Therefore, NTM are not generally intrinsically more drug resistant to the
antibiotics tested than M. tuberculosis. In summary, antibiotic sensitivity varies dramatically across the
Mycobacterium genus and our data provide the �rst quantitative blueprint of this variation.

There are striking differences in antibiotic response across the genus that highlight the value of a genus-
wide approach to inform antibiotic research efforts. For example, M. smegmatis is frequently used as a
model organism for M. tuberculosis in TB antibiotic discovery [28], but it displayed a completely different
sensitivity pro�le from M. tuberculosis, being highly resistant to PAS, ethionamide (ETH), DCS and RIF.
Our results suggest that M. marinum is a better M. tuberculosis proxy [29] as both have a similar
sensitivity pro�le except to o�oxacin (OFX) (Fig. 2b). The overall distribution of antibiotic potency (MIC99)
against different species is shown in Fig. 2c. Cell-envelope-targeting antibiotics and PAS exhibit a weaker
potency across the genus, while antibiotics that target protein synthesis, DNA gyrase and the ATP
synthase on average displayed an overall lower MIC99, indicating that most mycobacteria are sensitive to
them. From the antibiotics that inhibit protein synthesis, linezolid (LZD) displays the lowest overall MIC99

and was effective against most species (Fig. 2c). To verify whether there is a correlation between
doubling time and sensitivity to antibiotics we compared the doubling time of a subset of species
(Fig. 1c) with the MIC99 of a subset of antibiotics. As it can be seen in Fig. 2d, no correlation is apparent
between growth rate and antibiotic sensitivity in mycobacteria. Below, we explore the molecular causes of
these dramatic changes in antibiotic potency observed across the Mycobacterium genus.

Intra-bacterial antibiotic accumulation does not predict potency.

We employed liquid chromatography–time-of-�ight mass spectrometry (LC-MS) to determine the relative
internal concentration of antibiotic ([ABX]IB) with an antibiotic concentration in the growth medium of
6×MIC99. [ABX]IB is a function of three parameters: antibiotic uptake, e�ux, and modi�cation. Figure 3a
shows extracted ion chromatograms (EICs) in �ve mycobacterial species for BDQ, LZD and RIF (Fig. 3b).
Quanti�cation of [BDQ]IB, [LZD]IB and [RIF]IB illustrates the variability and the magnitude of the changes
observed in [ABX]IB, spanning from 2- to 200-fold (Fig. 3c). As the experiment was performed at a
concentration of antibiotic where every antibiotic was equally potent, we replotted these data as a
function of each antibiotic MIC99 (Fig. 3d). Only for BDQ we could observe a correlation between
antibiotic potency and [BDQ]IB which could be indicative of e�ux playing a role in antibiotic e�cacy. In
the case of RIF, where there is no correlation between antibiotic potency and its accumulation in
mycobacteria (Fig. 3d), factors other than uptake and e�ux as the dominant drivers of RIF potency in
mycobacteria.

A minor role for pre-existing target modi�cation in RIF resistance.
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Considering the importance of rifamycins for the treatment of TB, leprosy, Buruli ulcer, MAC and M.
kansasii infections, we focused on RIF resistance mechanisms operating in mycobacteria. Figure 4a
highlights the diversity in RIF potency across our library, ranging from an MIC99 of more than 100 µg/mL
to less than 0.2 µg/mL. Arranging species by decreasing MIC99 value highlights that there are species
better suited for the identi�cation of target-mediated resistance mechanisms (dark orange), and species
that are better suited for the identi�cation of non-target-based resistance mechanisms (dark purple). At
this stage, we focused our work on four species, all of which are resistant (MIC99 = 12.5 µg/mL) or super-
resistant (MIC99 ≥ 100.0 µg/mL) to RIF, compared to M. tuberculosis (MIC99 = 0.9 µg/mL): M. smegmatis
and M. �avescens (MIC99 = 12.5 µg/mL), M. houstonense (MIC99 = 25.0 µg/mL), and M. conceptionense
(MIC99 ≥ 100.0 µg/mL) (Fig. 4b).

In M. tuberculosis, the �xation of mutations that decrease the a�nity of RIF to the RNA polymerase β
subunit (RpoB) represents the dominant cause of RIF resistance [7, 30], and therefore target modi�cation
is an obvious starting point to explore probable mechanisms of resistance to the rifamycin class of
antibiotics in other mycobacteria. Figure 4c shows the Rifampicin Resistance Determining Region
(RRDR), the segment of RpoB where most mutations conferring resistance to RIF are found. Except for M.
branderi, no amino acid variations are found in our species of interest. This observation suggests that in
contrast to M. tuberculosis, most mycobacteria are not resistant to RIF due to variations in the RIF
binding region of RpoB.

As [RIF]IB or RpoB target variation cannot account for the observed resistance to RIF, we evaluated the
remaining major mechanism of resistance to rifamycins, drug modi�cation. RIF modi�cation is widely
found in nature and is carried out by various enzyme types, including phosphotransferases,
glycosyltransferases, ADP-ribosyltransferases (ARTs) and monooxygenases [31–35]. Importantly, a RIF-
ART has been characterized in M. smegmatis [36]; it is encoded by the gene MSMEG_1221, also known as
arr-ms, and it has been showed to be the sole determinant of RIF resistance in M. smegmatis by chemical
and genetic methods [37, 38]. We employed proteomics to �rst check whether Arr-ms is expressed in the
absence of RIF and if it is differentially expressed in the presence of RIF. Figure 4d shows that expression
of Arr-ms is stimulated (5.6-fold) in the presence of RIF at 6×MIC99, and therefore, proteomics can assist
on the identi�cation of RIF modifying enzymes in mycobacteria. Next, we evaluated whether the
annotated Arr homologous proteins in M. conceptionense (SAMEA3305051) and in M. �avescens
(SAMN05729960) were also induced in the presence of RIF (Fig. 4e), this was indeed the case (4.12- and
2.75-fold change respectively). To con�rm that these putative RIF-ARTs are inactivating RIF, we employed
LC-MS, to identify ribosyl-RIF (m/z 955.4601), a fragment of the larger ADP-ribosyl-RIF product, which
fragments under LC-MS conditions. Figure 4f illustrates that ribosyl-RIF was observed in M. smegmatis,
M. conceptionense and M. �avescens treated with RIF. Additionally, other mycobacteria with annotated
putative arr genes also displayed high levels of RIF ADP-ribose (Supplementary Fig. 4a and 4b),
indicating that RIF modi�cation, and precisely ADP-ribosylation, is the dominant mechanism of
resistance to RIF in mycobacteria.

A novel group of rifamycin ADP-ribosyltransferases
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In order to have a comprehensive understanding of the distribution of Arrs in mycobacteria we mined for
arr sequences in reference genomes and built a phylogenetic tree. Arr proteins were found to be
widespread in both fast- and slow-growing mycobacteria, but in a dispersed pattern suggesting that both
local vertical inheritance and gene losses and acquisitions have taken place. Mycobacterial Arrs form two
monophyletic groups (Fig. 5a; Supplementary Table 2). One of the groups, which we designated Arr-1,
corresponds to sequences closely related to Arr-ms (median sequence identity of 80%). Arr-1 group
members are predominantly Actinomycetota of the orders Geodermatophilales, Propionibacteriales,
Micrococcales and Mycobacteriales. The second group, which we have named Arr-X, is taxonomically
more broadly distributed, including members from Actinomycetota, Bacillota, Pseudomonadota and
Bacteroidota. Within mycobacteria, more species have an arr-1 gene than arr-X and a few species have
both, for example M. conceptionense and M. �avescens (Supplementary Fig. 4a). M. conceptionense Arr-
1 (Uniprot A0A0U1D6J3) and Arr-X (Uniprot A0A0U1DL14) share 50% identity and 63% similarity
(BLOSUM62). The equivalent of the three residues showed by Baysarowich and collaborators to be
necessary for enzymatic activity in Arr-ms (Asp84, His19 and Tyr49) are conserved in all mycobacterial
Arr-1 and Arr-Xs, suggesting that they are all active ADP ribosyltransferases [34]. However, the
hydrophobic nature of the RIF binding cleft of Arr-ms is not completely preserved in the Arr-X group
(Supplementary Table 3) hinting at probable differences in substrate binding preference.

To assess that Arr-X enzymes are indeed RIF-ARTs and to understand why some species have two arr
genes, we cloned, overexpressed, puri�ed, and tested the enzymatic activity of Arr-ms (as a control) and
Arr-1 and Arr-X from both M. conceptionense and M. �avescens. Figure 5c displays the catalytic activity
(Vapp) of the different proteins with six rifamycins. All Arr-1 enzymes had similar activity and substrate
preference, but Arr-X enzymes were much superior at inactivating rifamycins. For example, M. �avescens
Arr-X is 3.9-fold faster with rifapentine than Arr-ms. Surprisingly, M. conceptionense Arr-X is 29-fold faster
to inactivate rifabutin, compared to Arr-ms. These results therefore demonstrate that Arr-Xs are not only
bona �de rifamycin inactivating enzymes, but also that they are signi�cantly more e�cient than Arr-1s.
We also determined the MIC99 for different rifamycins in selected species (Supplementary Table 4).
Interestingly, these species are resistant to all rifamycins except for rifabutin. To probe whether Arr-X is
active in bacterio, we used CRISPR interference to reduce the transcription of arr-1, arr-X and both genes
in M. conceptionense. M. conceptionense continued to be resistant to rifabutin upon arr-1 silencing but
became more sensitive when arr-X was knocked down (Fig. 5d). Thus, Arr-X is an active “rifabutinase”
that confers rifamycin resistance in M. conceptionense.

Discussion
Discovery of unknown mechanisms for high-level antibiotic resistance in nature is essential for more
e�cient antibiotic discovery and development and for the continuous treatment of patients. Here we
propose a powerful approach for the discovery of novel antibiotic resistance determinants. Our strategy
consists of mapping and comparing the antibiotic response pro�le of a library of tractable species
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representative of the entire genus Mycobacterium; an approach that is applicable for the study of many
biological traits and to other bacterial genera.

Using our mycobacterial library, we identi�ed high- and ultra-high-level intrinsic resistance [3] to many of
the antibiotics tested. Resistance pro�les are highly variable across the genus and do not follow
phylogeny, implicating HGT as the key mechanism for acquisition of resistance determinants [39].

Our study revealed that resistance levels to BDQ, LZD and RIF were particularly divergent across the
genus and often could not be explained by our current knowledge of antibiotic resistance mechanisms [6,
7, 28]. We found that resistance to these antibiotics in mycobacteria cannot be explained by uptake/e�ux
mechanisms and it does not correlate with growth rate.

We illustrated the power of this comparative method by characterizing a previously unrecognized group
of rifamycin-inactivating enzymes (Arr-X) that is present in a wide range of bacteria including
Actinomycetes, Bacilli and Gammaproteobacteria. We found that several mycobacterial species have the
gene coding for the RIF inactivating enzyme RIF-ART (Arr-1), and revealed that some species also code for
a homologous protein Arr-X. The existence of a superior rifabutin-inactivating enzyme in several
mycobacterial species might jeopardize the use of rifabutin, currently an antibiotic of choice to treat M.
avium complex-caused infections and other infections. Novel inhibitors of these two distinct Arr enzymes
[37, 38]) might become essential to re-sensitize mycobacteria against rifamycins and against rifabutin in
particular.

Materials and Methods

Mycobacterial species and cultures
Mycobacterial species were acquired from the German Collection of Microorganisms and Cell Cultures
GmbH – DSMZ (Braunschweig, Germany). The species comprised in our library were selected based on
(i) broad genus coverage; (ii) diversity with respect to niche/pathogenicity; (iii) availability of genome
sequence; (iv) availability of the type or laboratory strain; and (v) ability to grow on Middlebrook 7H9
culture medium. Upon arrival, long-term (-80°C), short-term (-20°C) and agar plate stocks were prepared
according to DSMZ’s protocols.

Mycobacterial diversity
Genotypic and phenotypic diversity is an essential feature required for our approach. To describe the
niche/pathogenicity diversity encompassed in our library, we developed an ad-hoc pathogenicity score
system based on the number and detail of peer-reviewed publications describing a particular species as
pathogenic. We searched for the number of records in PubMed containing the species name and the
words “bacteraemia” or “pathogen” or “infection”. Species with more than twenty matches were
designated as a “common proven pathogen” (score of 4), and those with none as non-pathogenic (score
of 0). The remaining species were classi�ed as a “rare proven pathogen” (score of 3) if the diagnostic
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evidence presented in the paper was strong and the patient was immunocompetent, “pathogen” in either
we considered that the diagnostic evidence was insu�cient or if the patient was immunocompromised
(score of 2) and a score of 1 was used for those that did not meet either criterion.

Genome size and guanine-cytosine content (GC%) values were obtained from NCBI Microbial Genomes
[40] and ribosomal copy number was annotated using rrnDB [41] or BLAST. When more than one hit was
obtained, the genomic sequence and context were analyzed to con�rm duplication. The growth rate of
selected species was determined by turbidity measurements (OD600) taken in equal intervals. We
inoculated 100 mL Middlebrook 7H9 broth complete in roller bottles. Middlebrook 7H9 broth complete
contained 10% Albumin-Dextrose-Catalase (ADC) supplement, 0.05% Glycerol and 0.05% Tyloxapol.
Growth rate was calculated using the speci�c growth rate formula [42]. Finally, encoded genes were
classi�ed based on their gene ontology using OmicsBox’s functional analysis tool, with default
parameters [43, 44].

Minimal inhibitory concentration measurements
Our mid-throughput minimal inhibitory concentration assay (MIC99) was adapted from previously
described protocols [45]. Brie�y, in sterile Eppendorf tubes, each antibiotic was diluted in the
recommended solvent to 4 mg/mL. Fluoroquinolones and BDQ were diluted to 0.4 mg/mL. Subsequently,
200 µL of each drug was added to column 10 of a 96-well plate. In the same plate, 100 µL of DMSO or
water were added to columns 1–9 and 11. The drug titration was performed using a multi-channel
pipette, using the volume 100 µL for 1:2 dilutions. The remaining 100 µL left over from column 1 was
added to column 12, which is the negative control (contamination control). A secondary replicate plate
was prepared in the same manner, and then combined for a �nal volume of 200 µL in each well. These
plates were the master plates which were then copied into 36 new plates by transferring 5 µL of each well
using Biomek FX  Liquid Handling Automation (Beckman Coulter, California, USA). Once antibiotics were
in the wells, 195 µL of Middlebrook 7H10 containing 10% Oleic Acid Albumin Dextrose Catalase (OADC)
supplement was added each well and homogenized using Multidrop™ Combi Reagent Dispenser (Thermo
Fischer Scienti�c, Massachusetts, USA). All procedures were performed in a biosafety cabinet.

Bacterial cultures were grown in Middlebrook 7H9 broth complete at their preferred temperature, shaking
at 180 rpm. Once cultures reached approximately OD600 of 1, they were aliquoted in sterile micro tubes,
and frozen at -20°C for future use.

For the MIC99 determination, stock cultures were diluted OD600 of 0.006 in Middlebrook 7H9 broth
complete and 2 µL of the dilution were spotted into columns 1–11 of the 96-well plates. Plates were then
incubated at the appropriate temperature and analyzed after con�uent growth was observed in the
growth control wells (column 11). Pictures of the plates were taken, and visual analysis was carried out to
record the MIC99. At least three independent experiments were recorded for each species-antibiotic pair,
for 15 antibiotics and 44 species, totaling 1,980 individual MIC determinations.

Mass spectrometry and Proteomics
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Sample preparation for LC-MS and proteomics was performed as previously described [46].
Mycobacterial species were grown in roller bottles in a volume of 100 mL of Middlebrook 7H9 broth
complete to an OD600 of 1. Cultures were �ltered using MF-Millipore Membrane Filter – 0.22 µm pore size
to concentrate cell amount. For each species, 24 bacterial-laden �lters were prepared and 3 were placed in
petri-dish plates of Middlebrook 7H10 containing 10% OADC supplement and incubated at appropriate
temperature (37 or 30°C, depending on the species) for 5 doubling times, to expand the bacterial
biomass. Subsequently, �lters were transferred to fresh 7H10 containing 10% OADC supplement plates
with vehicle or antibiotic at the concentration of 6 × MIC99 and incubated for one doubling time, at
appropriate temperature. Cells were then scraped into screw-cap tubes containing either 1 mL of
ACN:MeOH:Water (2:2:1, v:v:v) and glass beads (150 µm) for LC-MS, or washed twice with 1 mL of PBS
and then placed in 4% SDS/100 mM HEPES/50 mM DTT lysis buffer and glass beads (150–212 µm), for
proteomics pilot experiment and 1% SDC/100 mM HEPES/50 mM DTT lysis buffer for remaining
proteomics experiments. All samples were lysed by bead beating. At this stage, LC-MS samples were
centrifuged, and the supernatant was collected and �ltered using Corning® Costar® Spin-X® Plastic
Centrifuge 0.22 µm tube �lters. Proteomics samples were heat killed and subjected to acetone
precipitation, only when extracted with SDS, and peptide digested with LysC and Trypsin in 100 mM
HEPES pH 8, Guanidine HCl 1 M.

LC-MS samples were analyzed using a previously described method [47]. Brie�y, aqueous normal phase
liquid chromatography was performed using an Agilent 1200 LC system at controlled temperature (4 ºC).
Flow rate of 0.4 ml min− 1 was used. Elution of polar compounds were performed using a gradient of two
solvents, A (MS-grade water and 0.1% of formic acid) and B (acetonitrile and 0.1% of formic acid) in
positive mode. The data were analyzed by MassHunter Qualitative Analysis B07.00 or XCMS [48]. To
verify the intracellular drug concentration for all samples, the molecular formulae of each drug was
searched against the raw spectra and the integrated Extracted Ion Chromatogram (EIC) was used to
extract quantitative information. The peak height of both the antibiotic standard and the samples was
used to calculate the relative drug concentration in each sample. Although area would generally be the
variable of choice for performing quanti�cations, the peak shape was not consistent for LZD, therefore
the peak height would correlate better with the amount of drug inside the cell. Further, the amount of drug
added to the cells was considered and used to perform normalization, given that each species was
exposed to a concentration of drug proportional to their MIC99. For identifying and quantifying Ribosyl-
RIF, XCMS was used to perform peak picking and alignment. Metaboanalyst was used to perform batch
effect corrections and statistical analysis [49]. A feature with m/z 955.4601 was identi�ed at 5.8 minutes
and con�rmed to be only present in RIF-treated samples. The feature abundance was normalized by the
abundance in the pooled biological quality control (PBQC) samples (shown in Supplementary Fig. 3).
This accurate mass was searched using MassHunter Qualitative Analysis B07.00 with an acceptable
error of ± 10 ppm and the obtained peaks were integrated to extract the peak area, which was normalized
by the peak area of the PBQC (shown in Fig. 4). Finally, the average and the standard deviation between
normalized values from six biological replicates were calculated and plotted.
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Proteomics analyses were performed at the Proteomics Scienti�c Technology Platform (STP) at The
Francis Crick Institute. Data Dependent Acquisition (DDA) was used to build a peptide library and Data
Independent Acquisition (DIA) was used to analyze the experimental samples. For both DDA and DIA,
Evosep LC system (Evosep) was employed with the standard gradient for a total LC runtime of 44 min,
using their supplied 15 cm column [50]. Each sample was loaded from the peptide digests at a minimum
volume of 10 µL (samples diluted for the optimum load for �nal loading volume of 10 µL to ensure all
liquid enters the tip). An aliquot of the recommended amount of iRT peptides (Biognosys AG,
Switzerland) was added to each sample at the sample loading stage. The protocol supplied with the
Evotips was followed for conditioning/equilibrating/loading and washing the tips.

The outlet of the analytical column was connected directly to an adapter that allowed the EasySpray
nano-source to be employed on the Orbitrap Fusion Lumos (Thermo Fischer Scienti�c, USA) using a
stainless-steel emitter. The spray voltage was set to 2.2kV. The default charge state was set to 2+. For the
DDA runs, MS1 data were acquired in pro�le mode at a resolution of 60000 (FWHM), with an AGC target
of 1E6 ions and a maximum injection time of 50ms. The ion funnel RF was set at 30%. Quadrupole
isolation was employed over the MS1 mass range of 375–1200 m/z. The monoisotopic precursor
selection (MIPS) was set to “Peptide” and an intensity threshold of 5E4 was applied. Charge states from
2 + to 6 + were considered for MS/MS and dynamic exclusion was set to 15 seconds/10 ppm including
exclusion of isotopes. Cycle time for the Data Dependent MS/MS Acquisition was set to 1 second. For the
MS/MS, quadrupole isolation was set to 1.4 Da and HCD collision energy was employed at 32%. Data
were acquired in the Orbitrap at a resolution of 15000 (FWHM) in centroid, with a �xed �rst mass of 120
m/z. The AGC was set at 1E6 and maximum injection time of 22 ms.

For the DIA data acquisition, the following parameters were adjusted. Default charge state was set to 4+,
and MS1 data were acquired in pro�le mode at a resolution of 120,000 (FWHM) with an AGC setting of
1E6 and maximum injection time of 20ms. The MS1 scan range was set from 393–907 m/z to allow
enough data points per peak. 27 DIA windows (20 Da / 1 Da overlap) were employed over this range for
DIA MS2 acquisition. These data were acquired at 30000 resolution (FWHM) in the Orbitrap in centroid
mode. HCD collision energy was the same as for the DDA runs. MS2 data were acquired over the mass
range 200–2000 m/z with an AGC setting of 1E6 and a maximum injection time of 54 ms. Ions were
injected for all available parallelizable time.

Gene knockdown using CRISPRi
Gene silencing of M. conceptionense arr-1 and arr-X and both genes was performed following the
protocols for M. smegmatis described in Wong and Rock [51] with the primers listed in Supplementary
table 4.

Electrocompetent M. conceptionense cells were transformed with one of the three silencing constructs
and with the empty vector pLJR962 as negative control. Transformants were selected by plating cells into
Middlebrook 7H9 broth complete and 20 µg/mL of kanamycin.
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Individual colonies were picked and inoculated into 10 mL of Middlebrook 7H9 broth complete and 20
µg/mL of kanamycin and glycerol stocks were prepared for subsequent experiments. To test for antibiotic
sensitivity of knockdown constructs, glycerol stocks were used to inoculate 5 mL of Middlebrook 7H9
broth complete with 20 µg/mL of kanamycin and incubated at 37°C with shaking to an OD600 of ca. 1.
This saturated cultures were then used to inoculate fresh 5 mL aliquots of medium with kanamycin to an
OD600 of 0.05 and the cultures were incubated at 37°C with shaking to an OD600 of 0.4–0.8. The cultures
were then diluted to an OD 0.1 in Middlebrook 7H9 broth complete with 20 µg/mL of kanamycin and 100
µg/mL of anhydrotetracycline (ATc) and grown at 37ºC with shaking to an OD600 of 0.4–0.8. This step
was repeated a second time. Cultures were then streaked into Middlebrook 7H10 plates containing 10%
OADC, 0.05% glycerol, 20 µg/mL of kanamycin, 200 µg/mL of ATc and rifabutin at 0.5 x, 1x and 2 x the
MIC99.

Cloning, expression and puri�cation of Arr enzymes
The RIF ADP-ribosyl transferase (arr) genes from M. smegmatis, M. �avescens and M. conceptionense
were cloned from genomic DNA by PCR and inserted via isothermal assembly into the pNIC-CTHF
expression vector (a gift from Opher Gileadi; Addgene plasmid #26105) [52]. The resulting plasmids were
Sanger sequenced to con�rm the correct insertion of the genes and then transformed into E. coli BL21
(DE3) Gold competent cells (Agilent Technologies).

The transformed cells with each of the arr genes were grown at 37°C and 200 rpm in 1 L of lysogeny
broth (LB) supplemented with 50 µg/mL kanamycin to an OD600 of 0.6, at this point the temperature was
dropped to 16°C. Protein expression was induced by addition of isopropyl β-D-thiogalactopyranoside
(IPTG) to a �nal concentration of 0.5 mM, and cells allowed to grow for 20 hours. Cells were harvested by
centrifugation at 4000 g for 30 min and stored at − 80°C.

The puri�cation was performed according to the previous reported protocols [34]. In summary, cells were
thawed on ice for 30 min before being resuspended in buffer A [50 mM HEPES (pH 7.5), 1 mM EDTA]
containing a tablet of cOmplete EDTA-free protease inhibitor cocktail (Roche), 2 µL Benzonase nuclease
(Millipore), and 6 mM MgCl2. Samples were further lysed by probe sonication (amplitude 35%, on 10 s, off
50 s, 2 min total on time per cycle, 2 − 3 × cycles) and centrifuged at 48000 g for 45 min to separate the
cell debris. The supernatant was �ltered through a 0.45-µm membrane and loaded onto a 20 mL HiPrep Q
Sepharose Column (GE Healthcare), pre-equilibrated with buffer A. The column was washed with 5
column volumes (CV) of 5% buffer B [50 mM HEPES (pH 7.5), 1 mM EDTA, 1 M NaCl], and the adsorbed
proteins were eluted with 5 CV of a linear gradient from 10 to 30% buffer B. Fractions containing the
desired Arr protein were pooled together and brought to 1.25 M (NH4)2SO4 by dropwise addition of the
ammonium sulfate solution while stirring. After 30 min, the sample was �ltered through a 0.45-µm
membrane and loaded onto a 1 mL HiTrap Phenyl Sepharose column (GE Healthcare) pre-equilibrated
with buffer C [50 mM sodium phosphate (pH 7.0), 1.25 M (NH4)2SO4]. The column was washed with 15
column volumes (CV) of 10% buffer D [50 mM sodium phosphate (pH 7)], and the adsorbed proteins were
eluted with 20 CV of a linear gradient from 10 to 90% buffer D. Fractions were analyzed by sodium
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dodecyl sulphate − polyacrylamide gel electrophoresis (SDS − PAGE) (NuPAGE Bis-Tris 4 − 12% Precast
gels, Thermo Fisher Scienti�c), pooled, dialyzed against 2 x 2 L of 20 mM HEPES (pH 8.0), concentrated
using 5000-molecular-weight-cut-off (MWCO) centrifugal ultra�ltration membranes (Millipore), aliquoted,
and stored at − 80°C. The concentration was determined spectrophotometrically (NanoDrop, Thermo
Fisher Scienti�c) at 280 nm using a theoretical extinction coe�cient of 16960 M-1 cm-1. (ExPASy’s
ProtParam, [53]

In vitro activity assay of Arr enzymes

Assays were carried out based on the previous reported methods. Brie�y, 150 nM protein (except for M.
conceptionense Arr-X where 50 nM was used) in 50 mM HEPES buffer (pH 7.5) was mixed with 150 µM
of rifampicin and 2 mM NAD+. Time points (50 µL) where quenched by the addition of methanol (200
µL). The samples were then analyzed by injecting 20 µL onto the HPLC column Poroshell 120 Å, EC-C18,
3.0 x 150 mm, 2.7 µm (Agilent Technologies) and monitoring the consumption of rifampicin and
formation of ADP-ribosylated rifampicin product. The same protocol was followed for each of the
rifamycins in study: rifabutin, rifapentine, rifaximin, rifamycin B and rifamycin S. A standard curve of
each rifamycin were measured independently.

Arr distribution analysis
In order to build a phylogenetic tree of mycobacterial Arr enzymes, Arr-ms (Uniprot A0QRS5) was used to
query a local BLAST [54] database of genomic coding sequences of the mycobacterial reference
genomes available in NCBI [40]. The matching sequences were combined with those obtained by
searching UniProt [55] entries matching the RIF-ART protein family (Pfam PF12120 [56]). CD-Hit [53, 57]
and Jalview [58] were used to reduce redundancy and a multiple protein sequence alignment was
calculated using MUSCLE [59]. Trees were generated with IQ-Tree 1.6.11 [60, 61] with 1000 ultrafast
bootstrap replicates.
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Figures

Figure 1

A diverse species library of the genus Mycobacterium.

a, Phylogenetic tree of mycobacterial species in our library calculated using the bcgTree pipeline v 1.1.0
[1-5]. b, Pathogenicity score. c, Doubling time. d, Genome size. e, Guanidine and cytosine percentage
(GC%). f, Ribosomal copies (rrn operon).g, Gene ontology (GO) distribution. Colors from left to right
represent the following GO categories: regulation of DNA-templated transcription (highlighted with a light
orange arrow), transmembrane transport (highlighted with a dark orange arrow); amino acid, lipid,
carbohydrate derivative, nucleobase-containing small molecule, and carbohydrate metabolic processes;
generation of precursor metabolites and energy; sulfur compound, vitamin, and tRNA metabolic
processes; DNA repair, protein modi�cation process, signaling, cell wall organization or biogenesis,
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cellular modi�ed amino acid metabolic process, DNA replication, DNA recombination, ribosome
biogenesis, anatomical structure development, protein catabolic process, protein-containing complex
assembly, protein maturation, nitrogen cycle metabolic process, intracellular protein transport, metal ion
homeostasis, cell division, protein secretion, mRNA metabolic process, DNA integration, transport, organic
substance transport, defense response to other organism, organic substance biosynthetic process,
organic substance metabolic process, cellular process, nitrogen compound transport, regulation of gene
expression, cellular biosynthetic process, other metabolic processes.
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Figure 2

Antibiotic sensitivity mapping reveals complex patterns.

a, Heatmaps of overall MIC99 values. In the X axis, antibiotics are organized based on their mechanism of
action; in the Y axis, mycobacterial species are organized phylogenetically in the left heatmap, and based
on their response to the set of antibiotics tested (Manhattan clustering) in the right heatmap. Colors
represent the standardized MIC99 (mean/SD and centered scaled). Lower MIC99 values are in
brown/orange and higher MIC99 values in lilac/purple. The details of the data can be found in
Supplementary Figure 2. b, Radar plots displaying the standardized MIC99 for all antibiotics tested. MIC99 -

values are normalized to be plotted in radar plots. All radar plots display the results for M. tuberculosis in
orange. M. branderi is displayed in purple, M. conceptionense in dark blue and M. smegmatis in light blue.
c, Violin plots showing the distribution of MIC99 values. In the X axis, the set of antibiotics tested; in the Y
axis the MIC99 values in µg/mL. d, Relationship between mycobacterial doubling time (X axis) and MIC99

for the antibiotics BDQ, LZD and RIF (Y axis). Antibiotics targeting the cell wall are: isoniazid (INH),
ethionamide (ETH), ethambutol (EMB), D-cycloserine (DCS), and meropenem (MEM); RNA/protein
synthesis: rifampicin (RIF), streptomycin (STR), kanamycin (KAN), amikacin (AMK) capreomycin (CAP)
and linezolid (LZD); DNA gyrase: moxi�oxacin (MFX) and o�oxacin (OFX); folate metabolism: para-
aminosalicylic acid (PAS); and ATP synthase: bedaquiline (BDQ).
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Figure 3

Intra-bacterial antibiotic concentration does not correlate with potency.

a, Positive mode extracted ion chromatograms (EIC) of whole-cell extracts of mycobacteria treated with
selected antibiotics. BDQ (m/z 555.1642), LZD (m/z 338.1511) and RIF (m/z 823.4124). b, Chemical
structure of BDQ, LZD and RIF. c, relative intracellular antibiotic concentration, obtained by comparing the
peak height of the samples with and injection of 10 µM of antibiotic, then normalized by the
concentration of antibiotic used to treat the cells. d, Relative intracellular antibiotic concentrations in
relation to the MIC99. Data in c and d come from independent experiments.
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Figure 4

High-level rifampicin resistance is caused by rifamycin modi�cation in selected mycobacteria.

a, RIF MIC99 values for the mycobacterial species in our library organized in decreasing MIC99 value order.
b, Cultures of selected species on solid medium (7H10) containing RIF at different concentrations,
starting at 1x M. tuberculosis MIC. c, Comparison of the amino acid residue sequence of the rifampicin
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resistance-determining region (RRDR) of RpoB in selected mycobacterial species; the only residue that
differs is Ser 450 in M. branderi. d and e, Volcano plots showing the differential protein expression in
whole-cells with and without RIF revealing inducible expression of RIF ADP-ribosyltransferase 1 (Arr-1) in
M. smegmatis, M. conceptionense and M. �avescens. f, Detection and quanti�cation of ribosyl-RIF in
whole-cell extracts by LC-MS.

Figure 5
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Characterization of a novel rifabutin-ADP ribosyltransferase in mycobacteria.

a, Phylogenetic tree of mycobacterial RIF ADP-ribosyltransferases (RIF-ARTs) and related PFAM family
PF12120 sequences. Many mycobacterial species encode the equivalent of M. smegmatis RIF-ART
(MSMEG_1221; Arr-1/ms in purple), and some mycobacterial species encode a previously unidenti�ed
sister group we have named Arr-X (dark orange). See Supplementary Table 3 for detailed information of
the sequences in the tree. b, Ribbon representation of the crystal structure of M. smegmatis RIF-ART (PDB
code 2HW2; light blue) with RIF bound (red) overlaid with the AlphaFold2 models of M. conceptionense
Arr-X (dark blue) and M. �avescens Arr-X (dark orange). c, Apparent velocity of reaction of each of the
enzymes (X axis) with different rifamycins as substrate. d, M. conceptionense single and double
knockdown (KD) arrstrains in the presence of rifabutin.
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