Supplementary Material

A new strategy for canine visceral leishmaniasis diagnosis based on molecular spectroscopy and machine learning

Gustavo Larios¹, Matheus Ribeiro¹, Carla Arruda², Samuel L. Oliveira¹, Thalita Canassa¹, Matthew J. Baker³, Bruno Marangoni¹, Carlos Ramos⁴, Cícero Cena¹*

¹Grupo de Óptica e Fotônica, Instituto de Física, UFMS – Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
²Laboratório de Parasitologia Humana, Instituto de Biociências, UFMS – Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
³Pure and Applied Chemistry, University of Stratchclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1 RD, UK
⁴Faculdade de Medicina Veterinária e Zootecnia, UFMS – Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.

* cicero.cena@ufms.br
Figure S1: Score plot (left) and loadings (right) from principal component analysis (PCA) for three sample groups; non-infected (black square), *L. infantum* (red circle), and *T. evansi* (blue diamond) infected canine blood serum. (a, b) entire spectral range 4000 until 800 cm$^{-1}$, involving all molecular groups in the sample. (c, d) 1800 until 800 cm$^{-1}$ range, related to lipids, proteins, carbohydrates, and fatty acids molecules. (e, f) 3000 until 2800 cm$^{-1}$ range, main contributions assigned to lipids. (g, h) 1700 until 1450 cm$^{-1}$ range, mainly related to proteins contributions.
Figure S2: Score plot (left) and loadings (right) from principal component analysis (PCA) for two sample groups; non-infected (black square), and *L. infantum* (red circle) infected canine blood serum. (a, b) entire spectral range 4000 until 800 cm\(^{-1}\), involving all molecular groups in the sample. (c, d) 1800 until 800 cm\(^{-1}\) range, related to lipids, proteins, carbohydrates, and fatty acids molecules. (e, f) 3000 until 2800 cm\(^{-1}\) range, main contributions assigned to lipids. (g, h) 1700 until 1450 cm\(^{-1}\) range, mainly related to proteins contributions.
Figure S3: Score plot (left) and loadings (right) from principal component analysis (PCA) for two sample groups; non-infected (black square), and *T. evansi* (blue diamond) infected canine blood serum. (a, b) entire spectral range 4000 until 800 cm\(^{-1}\), involving all molecular groups in the sample. (c, d) 1800 until 800 cm\(^{-1}\) range, related to lipids, proteins, carbohydrates, and fatty acids molecules. (e, f) 3000 until 2800 cm\(^{-1}\) range, main contributions assigned to lipids. (g, h) 1700 until 1450 cm\(^{-1}\) range, mainly related to proteins contributions.
Figure S4: Score plot (left) and loadings (right) from principal component analysis (PCA) for two sample groups; *L. infantum* (red circle), and *T. evansi* (blue diamond) infected, canine blood serum. (a, b) entire spectral range 4000 until 800 cm⁻¹, involving all molecular groups in the sample. (c, d) 1800 until 800 cm⁻¹ range, related to lipids, proteins, carbohydrates, and fatty acids molecules. (e, f) 3000 until 2800 cm⁻¹ range, main contributions assigned to lipids. (g, h) 1700 until 1450 cm⁻¹ range, mainly related to proteins contributions.
Figure S5: Accuracy of learning machine methods for different spectral ranges: Gray bars (inclined dash pattern) for 3800 until 800 cm⁻¹; Red bars for 3000 until 2800 cm⁻¹; Blue bars (mesh pattern) for 1700 until 1450 cm⁻¹; and Green bars (horizontal dash pattern) for 1800 until 800 cm⁻¹. Groups classification: (A) non-infected versus L. infantum versus T. evansi. (B) non-infected versus L. infantum. (C) L. infantum versus T. evansi. (D) non-infected versus T. evansi, classification. The letter G abbreviated in the label means “gaussian”.
Figure S6: Higher overall accuracy of learning machine methods achieved for different groups classification and spectral ranges: Gray bars (inclined dash pattern) for 3800 until 800 cm\(^{-1}\); Red bars for 3000 until 2800 cm\(^{-1}\); Blue bars (mesh pattern) for 1700 until 1450 cm\(^{-1}\); and Green bars (horizontal dash pattern) for 1800 until 800 cm\(^{-1}\). ML methods: Support vector machine (SVM), with Linear (L), Quadratic (Q), Cubic (C), and Fine Gaussian (FG) functions; k-nearest neighbor (KNN), with Fine (F), Medium (M), and Weighted (W) functions; Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA).