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ABSTRACT: 7 

Blurring coherence events is the result of applying many spatial and temporal filtering algorithms 8 

when they are applied in order to suppress background random noise. Bayesian Filtering (BF) also 9 

suffers from mentioned problem. This paper develops a method for optimizing BF by Adaptive 10 

Neuro-Fuzzy Inference System (ANFIS) and Fuzzy C-Mean (FCM) clustering. First the structure 11 

of the GPR image is extracted using FCM. The structure and output of the BF for a random part of 12 

the data are used to produce output values for training ANFIS and after that, by generalizing the 13 

trained network to all data, filtered data would be achieved. The proposed method is applied on 14 

synthetic data-sets as well as two real 2-D GPR images gathered in an environmental study project. 15 

Performance of the method is evaluated by comparing the results of the proposed method to the 16 

output of BF. In synthetic data, the SNR value improved 63 percent more than of BF�¶�V���R�X�W�S�X�W and 17 

the visual comparison of the results are suggesting better performance in noise cancellation and 18 

resolution enhancement, both in synthetic and real data-sets.  19 

KEYWORDS:  GPR Data Filtering, Bayesian Filtering, ANFIS, FCM. 20 
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1.  INTRODUCTION 22 

GPR data are contaminated with random noise like all other kinds of geophysical data and this 23 

unwanted part of the raw records, negatively affects all further processing and interpreting steps. 24 

Furthermore the resolution��of the data, in terms of continuity of events, is inversely proportional to 25 

the amount of the background random noise [1].  26 

Characteristics of the transmitted signal, geology and the amount of the existing random noise, are 27 

the most important parameters that a supervising expert would consider and attenuate random 28 

noise by using conventional methods such as, filtering based on Hilbert transform [2], median and 29 

Wiener adaptive filtering [3] and methods based on multiresolution transforms [4, 5]. In recent 30 

years, methods based on artificial intelligence and soft computing are getting more and more 31 

popular in all aspects of geophysical methods [6]. Approaching to semi- and fully- automated 32 

methods is one of the main reasons of this commonness [7, ????????]. 33 

This paper intends to enhance the resolution of the GPR profile data by attenuating background 34 

random noise, utilizing powerful potential of the ANFIS and FCM in model discrimination and the 35 

ability of BF in random noise attenuation. The automation of the procedure and the performance of 36 

the method, in cases where signal to noise ratio is low, are also in the focus of attention.  37 

2.  BAYESIAN FILTERING 38 

Bayes filters are a probabilistic tool for estimating the state of dynamic systems based on the 39 

bayesian formula where the state of the system refers to the package of dynamic variables which 40 

fully describe the system. The noise in the measurements are considered uncertainly even if the 41 

true system state is known. The measurements are not deterministic functions of the state, but are 42 

considered as distribution of possible values [50]. The time evolution is modeled dynamically that 43 

is perturbed by a certain process noise which is used for modeling the uncertainties in the system 44 
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dynamics. In most cases, the system is not truly stochastic, but is considered in such way to 45 

represent the model uncertainties. 46 

Using a stochastic discrete-time state transition (Eq. 1) and an observation process (Eq. 2), any 47 

nonlinear stochastic system could be defined as [8]: 48 

xn = fn (x�Q�í��,w�Q�í��) (1) 

yn = hn (xn,vn) (2) 

For the n-th sample (or time),  xn  stands for system state vector that is not usually observable. wn is 49 

the noise vector, yn is observation vector and vn is the observation noise vector. fn and hn relate the 50 

prior state to the current state and the current state to the observation vector. 51 

The main problem in a typical bayesian context is to measure the posterior density, p(xn|y1:n), 52 

where the set of observations are defined by y1:n �A�^�\1,y2,...,yn}. 53 

The mentioned nonlinear and non-Gaussian state-space model (Eq. 1)���� �V�S�H�F�L�¿�H�V�� �W�K�H�� �S�U�H�G�L�F�W�L�Y�H��54 

conditional transition density, p(xn|x�Q�í��,y�����Q�í��), of the current state, considering the previous state 55 

and all previous observations. Also, the observation process equation, Eq. 2, determines the 56 

likelihood function of the current observation given the current state, p(yn|xn) [8]. 57 

�7�K�H���S�U�L�R�U���S�U�R�E�D�E�L�O�L�W�\���L�V���G�H�¿�Q�H�G���E�\���%�D�\�H�V�¶���U�X�O�H���D�V���� 58 

p(xn|y�����Q�í��)=�{p(xn|x�Q�í��,y�����Q�í��)p(x�Q�í��|y�����Q�í��)dx�Q�í�� (3) 

p(x�Q�í��|y�����Q�í��) is  the previous posterior density and The correction step generates the posterior 59 

probability density function from: 60 

p(xn|y1:n) = c× p(yn|xn) × p(xn|y�����Q�í��) (4) 

Where c is a normalization constant. 61 
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T�K�H�� �¿�O�W�H�U�L�Q�J���S�U�R�E�O�H�P���L�V���W�R���H�V�W�L�P�D�W�H���W�K�H�� �¿�U�V�W���W�Z�R�� �P�R�P�H�Q�W�V���R�I��xn given y1:n. In a recursive manner 62 

and for a general distribution, p(x), this consists of the recursive estimation of the expected value 63 

of any function of x, like �½�J���[���¾p(x), using Eq. 3 and Eq. 4 and requires calculation of integrals of the 64 

form [8]: 65 

 66 

 67 

Usually this integral is solved by numerical approximation as the multivariate distribution of these 68 

kinds of integrals cannot be evaluated in closed form. 69 

 70 

 71 

3.  METHOD 72 

�½�J���[���¾p(x) = �{���J���[�����S���[�� (5) 

Figure 1: Schematic representation of bayesian filtering. 
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As illustrated in Fig. 1, in the proposed method, at the very first stage, noise level of the input data 73 

is calculated based on the fact that, higher  noise level cause more difference between original 74 

(noisy) and filtered value and vice versa. Hence computing correlation of the outputs of BFs with 75 

different setups, logically could present an estimation of noise level [10].  76 

By comparing known value of the noise variance for a synthetic data (Fig. 4a) with the calculated 77 

noise level, based on mentioned logic in an empirical manner, this method is evaluated and the 78 

result is illustrated in Fig. 2. The calculated noise level has could be considered as the noise 79 

variance with an acceptable approximation. It should be noticed that calculated noise level changes 80 

almost linearly and noise level increase (decrease) could be considered as noise variance increase 81 

(decrease).  The calculated noise value has two usage in the method. It is used for determining 82 

Figure 1: flowchart of the proposed method 
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windows size range (for instance, 3 by 3, to, 17 by 17) and also for determination of training data 83 

percentage.  84 

At the next step, outputs of BF with different window sizes are calculated. These values��are 85 

suppliers of FCM clustering input data, for extracting structure of the data, which would be very 86 

useful in, especially, denoising data with low signal to noise ratio. Also mentioned values are used 87 

for ANFIS training as part of the input data. Among different fuzzy clustering methods, FCM was 88 

chosen mainly because of its performance in solving problems in diverse issues [11].  89 

Figure 2: real and calculated noise level for a synthetic 
2-D data with different noise variance from 0.2 to 2. 
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The structure extraction procedure is evaluated by performing the method to the �³�U�L�F�H�´��with 90 

different amount of additive white gaussian random noise. The results of FCM clustering, 91 

structures, are shown in Fig. 3. The noise level is expressed by noise variance here. Although the 92 

clustered data (right column of images is Fig. 3) are showing to have less random  components, but 93 

the main reason for calculating them is the ability of providing data  structure specially in case data 94 

has high level of additive noise, like Fig. 3c and 3d. In such mentioned circumstances, usually 95 

�)�L�J�X�U�H�� ������ �³�U�L�F�H�´�� �L�P�D�J�H�� �Z�L�W�K�� �G�L�I�I�H�U�H�Q�W�� �O�H�Y�H�O�� �R�I�� �U�D�Q�G�R�P�� �Q�R�L�V�H�� ���D�� �W�R�� �G���� �D�Q�G�� �W�K�H��
structure extracted by FCM clustering (g to h respectively��. 
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�G�H�Q�R�L�V�L�Q�J���D�O�J�R�U�L�W�K�P�V���P�D�N�H���W�K�H���R�X�W�S�X�W�¶�V��details smooth and unattainable. Averaging structure with 96 

other components of the output could be an alternative for regular outputs and a way for 97 

overcoming the problem. 98 

Using original data and the set of BF values for each selected points (as ANFIS input data) and a 99 

weighted average of mentioned values� � � �as well as extracted structure (as ANFIS output), the 100 

training pairs for ANFIS network will be ready. The output of this stage will be automatically 101 

achieved by generalizing the trained network to all data. This optimized output or as named here as 102 

Bayesian-ANFIS Filtered (BAF) data, will be determined.   103 

4.  EXPERMIENTS 104 

The method was tested on one synthetic and two real GPR data-sets which were extracted from a 105 

data-set recorded during an environmental study handled by United States Geological Survey 106 

(USGS) [12].   107 
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At the very first step, some zero mean white gaussian noise was added to the synthetic 250 by 250 108 

pixel, layered image. After that, calculating noise level, suggested 10 percent for training data 109 

percentage and a maximum of 17 by 17 window size for BF calculation. A set of 36 inputs 110 

including BF values calculated in 3 to 17 square shape neighborhood, and the value of the pixel (in 111 

noisy data) were contributed in FCM. The number of clusters as mentioned before is two. The 112 

output of FCM provided structure of the data (this structure could be very beneficial in data with 113 

low SNR values). The procedure of filtering proceeded by randomly selecting 10 percent of the 114 

provided data and by weighting the BF values, the output for each row of input data was 115 

determined.                                                                            After training data ANFIS network 116 

Fig. 4: (a) A synthetic 
GPR data with varying 
dips and layer 
thickness, (b) noisy 
version (Gaussian 
random noise added to 
original image),  
denoised images by (c) 
BF  and (d) BAF. The 
output of proposed 
method is obviously 
brighter and more 
interpretable and the 
SNR has been 
improved 63 percent 
more than the output of 
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(Sugeno-type fuzzy inference system), using an initial grid partitioning fuzzy inference system and 117 

a hybrid optimization method (least-squares estimation with backpropagation), the trained network 118 

was generalized to all data resulting filtered data. 119 

The original noise-free synthetic GPR data, noisy version and the data filtered by BF and BAF are 120 

illustrated in Fig. 2. The SNR values shown in this figure are calculate by Eq. 6 as: 121 

SNR = 
�É�Þ
�É�Ù

 (6) 

Where Ps and Pn refer to average power of noise-free data and noise, respectively.  122 

Confirmed by SNR values, obviously the performance of BAF is better than BF in eliminating 123 

random noise. Note to the high amount of the additive random noise in �W�K�L�V���G�D�W�D�����D�V���W�K�H���P�H�W�K�R�G�¶�V��124 

ability could be evaluated better in such circumstances.  125 

Beside visual and SNR confirmation and as another assessment tool, the cross-section of the 126 

original, noisy and filtered images (50th row and column of mentioned data) are plotted in Fig. 4.  127 

In terms of performance, efficiency of BAF in recovering the noisy signal could be visually 128 

corroborated. In deeper times and far offsets, (Fig. 4a and 4b and samples located between samples 129 

150 to 250, where the frequency of layering is relatively higher) original trace has been recovered 130 

better by BAF. 131 

It should be in the focus of attention that both BF and BAF outputs are structurally same although 132 

modified version of BF is more robust in separating noise from original data and resolution 133 

enhancement in an adaptive manner.  134 
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As the results from synthetic experiment exhibited the robustness of the proposed method, in the 135 

following, the method is applied to real �¿�H�O�G�� �G�D�W�D��sets. Illustrated in Fig. 6 and 7, two real GPR 136 

data-sets [12] which are covered with different level of random noise are selected. This first data-137 

set (Fig. 6) is selected mainly because there are almost two zones with different amplitude 138 

characteristics. The two-phase structure of the data could result in data masking or causing artifacts 139 

on the output. The bottom�±left corner of the data which is specified by yellow box, contains some 140 

faulting coherent events. It is expected that an ideal denoising algorithm not to perform much 141 

changes in the structure of this events. For �W�K�H�� �%�)�¶�V output, these events are not clearly showing 142 

Fig. 5: Cross sections for data plotted in Fig. 4, at column (top) and row (bottom) No. 50. Higher 
�S�H�U�I�R�U�P�D�Q�F�H���F�R�X�O�G���E�H���Y�L�V�X�D�O�O�\���F�R�Q�I�L�U�P�H�G���I�R�U���W�K�H���%�$�)�¶�V���R�X�W�S�X�W�����D�V���L�W�V���S�O�R�W���L�V���F�O�R�V�H�U���W�R���R�U�L�J�L�Q�D�O��data 
plot. 
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mentione�G���I�D�X�O�W�L�Q�J���V�\�V�W�H�P���H�V�S�H�F�L�D�O�O�\���L�Q���F�R�Q�W�U�D�V�W���Z�L�W�K���%�$�)�¶�V���R�X�W�S�X�W�� 143 
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The second real data-set (Fig. 7) is covered highly with random components. Many of coherent 144 

energy is masked and detecting layers could not easily be handled. Having applied ��BF and BAF 145 

(parts b and c in Fig 7) and comparing the resolution of the outputs, �F�R�Q�¿�U�Ps the claim that the 146 

proposed, ANFIS modified version of BF, can be considered as a powerful alternative for the 147 

original BF. �,�Q�� �%�$�)�¶�V�� �R�X�W�S�X�W���� �U�D�Q�G�R�P�� �H�Q�H�U�J�\�� �L�V�� �D�W�W�H�Q�X�D�W�Hd strongly in all part of the data in an 148 

even manner while the details are preserved in the data.  149 

Fig. 6: (a) part of a real GPR data [12] and 
denoised versions by (b) BF and (c) BAF.  
manner for all regions alongside preserving 
data details. 
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5. CONCLUSIONS 150 

In the method introduced in this paper, the ability of ANFIS and Fuzzy Clustering in model 151 

discrimination and problem solving was used for attenuating random noise in GPR data-sets. BF 152 

calculated with different setups, was used in noise-signal separation, structure extraction and 153 

automation of algorithm. Noise level estimation measure was also used here for determination of 154 

optimized output. The method was applied on one synthetic and two real data-sets and the results 155 

Fig. 7: (a) part of a real GPR data [12], 
denoised data by (b) BF and (c) BAF. 
Relatively data has high amount of random 
noise and despite BF, the output of the 
proposed method is brighter and could be 
easily interpreted. 
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showed that BAF has better performance in SNR improvement (more than 2 times) that of BF. In 156 

real data-sets, resolution enhanced by proposed method definitely better and event tracing was 157 

easier in BAF output. 158 
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