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ABSTRACT:

Blurring coherence events is the result of applying many spatial and temporal filtering algorithms
when they are applied in order to suppress background random noise. Bayesian Filtering (BF) also
suffers from mentioned problem. This paper develops a method for optimizing BF by Adaptive
Neuro-Fuzzy Inference System (ANFIS) and Fuzzy C-Mean (FCM) clustering. First theirstruc

of the GPR image is extracted using FCM. The structure and output of the BF for a random part of
the data are used to produce output values for training ANFIS and after that, by generaizing th
trained network to all data, filtered data would be achieved. The proposed neetppulied on
synthetic data-sets as well as two re@l &PR images gathered in an environmental study project
Performance of the methas evaluated by comparing the results of the proposed method to the
output of BF. In synthetic data, the SNR value improved 63 percent more tharfiaf BR XandS X W
the visual comparison of the results are suggesting better performance in noise cancellation and
resolution enhancement, both in synthetic and real data-sets.

KEYWORDS: GPR Data Filtering, Bayesian Filtering, ANFIS, FCM
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1. INTRODUCTION

GPR data are contaminated with random noise like all other kinds of geophysical data and this
unwanted part of the raw records, negatively affects all further processing and interpreting steps.
Furthermore the resolutiaf the data, in terms of continuity of events, is inversely proportional to

the amount of the background random noise [1].

Characteristics of the transmitted signal, geology and the amount of the existing random noise, are
the most important parameters that a supervising expert would consider and attenuate random
noise by using conventional methods such as, filtering based on Hilbert transform [2], median and
Wiener adaptive filtering [3] and methods based on multiresolution transforms [4, 5]. In recent
years, methods based on artificial intelligence and soft computing are getting more and more
popular in all aspects of geophysical methods [6]. Approaching to semi- and fully- automated
methods is one of the main reasons of this commonne88q77??7?].

This paper intends to enhance the resolution of the GPR profile data by attenuating background
random noise, utilizing powerful potential of the ANFIS and FCM in model discrimination and the
ability of BF in random noise attenuation. The automation of the procedure and the performance of

the method, in cases where signal to noise ratio is low, are also in the focus of attention.

2. BAYESIAN FILTERING

Bayes filters are a probabilistic tool for estimating the state of dynamic systems based on the
bayesian formula where the state of the system refers to the package of dynamic variahles whic
fully describe the system. The noise in the measurements are considered Umaaréinf the

true system state is known. The measurements are not deterministic functions of the state, but are
considered as distribution of possible values [50]. The time evolution is modeled dynamically that

is perturbed by a certain process noise which is used for modeling the uncertainties in the system
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dynamics. In most cases, the system is not truly stochastic, but is considered in such way to
represent the model uncertainties.
Using a stochastic discrete-time state transition (Eg. 1) and an observation process (Bq. 2), a

nonlinear stochastic system could be defined as [8]:

%n = fn (X@1,Wqi) (1)

Yo = D (X0, V) (2)

For the nth sample (or time)x, stands for system state vector that is not usually observafie

the noise vecton, is observation vector ang is the observation noise vectérandh, relate the

prior state to the current state and the current state to the observation vector.

The main problem in a typical bayesian context is to measure the posterior defsiyvy.),

where the set of observations are defineghbyA ™M\ys,...,\h}.

The mentioned nonlinear and non-Gaussian state-space model (Eqv $HFL¢,HV WKH SUH
conditional transition densitp(X.|Xoi,Y o), of the current state, considering the previous state

and all previous observations. Also, the observation process equation, Eq. 2, determines the
likelihood function of the current observation given the current siéigx,) [8].

7KH SULRU SUREDELOLW\ LV GH¢{¢QHG E\ %D\HVY UXOH DV

POAlY @)= POalXaony qdPXaily oidxqi (3)

P(Xoily o1 is the previous posterior density and The correction step generates the posterior

probability density function from:

POGIY1n) = €% P(YHIX) X POGY 1) (4)

Wherec is a normalization constant.
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63 and for a general distributiop(x), this consists of the recursive estimation of the expected value
64 of any function ok, like Y2 J fx,3sing Eq. 3 and Eq. 4 and requires calculation of integrals of the
65 form [8]:
el o I [ S | ®
67
68 Usually this integral is solved by numerical approximation as the multivariate distribution of these

69 kinds of integrals cannot be evaluated in closed form.
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Figure 1: Schematic representation of bayesian filtering.
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As illustrated in Fig. 1, in the proposed method, at the very first stage, noise level of the input data

is calculated based on the fact that, higher noise level cause more difference between original

GPR Data —

Y

Noise Level Calculation

I

Determining BF
Parameters and Training
Data Percentage

I

Calculating BFs Based

on Determined f—
Parameters
Preparing Training Data ||
and Training the Network v

FCM Clustering for

Y Structure Extraction
Generalizing Trained
Network to all Thata

Y

Enhanced GPR Data

Figure 1: flowchart of the proposed methot

(noisy) and filtered value and vice versa. Hence computing correlation of the outputs of BFs with
different setups, logically could present an estimation of noise level [10].

By comparing known value of the noise variance for a synthetic data (Fig. 4a) with the calculated
noise level, based on mentioned @ an empirical manner, this method is evaluated and the
result is illustrated in Fig. 2. The calculated noise level has could be considered as the noise
variance with an acceptable approximation. It should be noticed that calculated noise level changes
almost linearly and noise level increase (decrease) could be considered as noise variance increase

(decrease). The calculated noise value has two usage in the method. It is used for determining
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windows size range (for instance, 3 by 3, to, 17 by 17) and also for determination of training data
percentage.

At the next step, outputs of BF with different window sizes are calculated. These asdues
suppliers of FCM clustering input data, for extracting structure of the data, which would be very
useful in, especially, denoising data with low signal to noise ratio. Also mentioned values are used
for ANFIS training as part of the input data. Among different fuzzy clustering methods, FGM w

chosen mainly because of its performance in solving problems in diverse issues [11].

Real and Estimated Random Noise Level

T T T

—— Estimated
—Real

0.5 1

0 1 1 1
0 0.5 1 1.5 2

Figure 2 real and calculated noise level for a synthe
2-D data with different noise variance from 0.2 to 2.
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(a)Noise Var. = 0.3

(d)Noise Var. =1.2

J)LIXUH SULFH” LPDJH ZLWK GLIITHUHQW OHY\
structure extracted by FCM clustering (g to h respectively

The structure extraction procedure is evaluated by performing the method toUthemith

different amount of additive white gaussian random noise. The results of FCM clustering,
structures, are shown in Fig. 3. The noise level is expressed by noise variance here. Although the
clustered data (right column of images is Fig. 3) are showing to have less random components, but
the main reason for calculating them is the ability of providing data structure specially in case data

has high level of additive noise, like Fig. 3c and Bdsuch mentioned circumstances, usually
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GHQRLVLQJ DOJRULW KdetdilsPsthobth avokuHatRiKaM& AWridging structure with
other components of the output could be an alternative for regular outputs and a way for
overcoming the problem.

Using original data and the set of BF values for each selected points (as ANFIS inpuhdia@a) a
weighted average of mentioned values well as extracted structure (as ANFIS output), the
training pairs for ANFIS network will be ready. The output of this stage will be automatically
achieved by generalizing the trained network to all data. This optimized output or as named here as

Bayesian-ANFIS Filtered (BAF) data, will be determined.

4. EXPERMIENTS
The method was tested on one synthetic and two real GPR data-sets which were extraced from
data-set recorded during an environmental study handled by United States Geological Survey

(USGS) [12].



108 At the very first step, some zero mean white gaussian noise was added to the synthetic 250 by 250
109 pixel, layered image. After that, calculating noise level, suggested 10 percent for training data
110 percentage and a maximum of 17 by 17 window size for BF calculation. A set of 36 inputs
111  including BF values calculated in 3 to 17 square shape neighborhood, and the value of the pixel (in
112 noisy data) were contributed in FCM. The number of clusters as mentioned before is two. The
113  output of FCM provided structure of the data (this structure could be very beneficial in data with
114 low SNR values). The procedure of filtering proceeded by randomly selecting 10 percent of the

115 provided data and by weighting the BF values, the output for each row of input data was

116  determined. After training data ANFIS network
a) Original b) Noisy ( SNR =1.5243 )
50 100 150 200 50 100 150 200

Fig. 4: (a) A synthetic
GPR data with varying

50 50 dips and layer
100 100 thickpess, (b) no!sy
version (Gaussiar
150 150 random noise added t
original image),
200 200 denoised images by (c

BF and (d) BAF. The
output of proposec
method is obviously
brighter and more
interpretable and the
SNR has beer
improved 63 percen
more than the output o

e) BAF ( SNR = 5.8205))
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(Sugeno-type fuzzy inference system), using an initial grid partitioning fuzzy infesgsieen and

a hybrid optimization method (least-squares estimation with backpropagation), the trained network

was generalized to all data resulting filtered data.

The original noise-free synthetic GPR data, noisy version and the data filtered by BF and BAF are

illustrated in Fig. 2. The SNR values shown in this figure are calculate by Eqg. 6 as:

B 6
SNR. 2 (6)

WherePs andP,, refer to average power of noise-free data and noise, respectively.

Confirmed by SNR values, obviously the performance of BAF is better than BF in eliminating

random noise. Note to the high amount of the additive random imoig¢KLYV GDWD DV WKH

ability could be evaluated better in such circumstances.

Beside visual and SNR confirmation and as another assessment tool, the cross-section of the
original, noisy and filtered images (50th row and column of mentioned data) are plotted in Fig. 4.

In terms of performance, efficiency of BAF in recovering the noisy signal could be visually
corroborated. In deeper times and far offsets, (Fig. 4a and 4b and samples located between samples

150 to 250, where the frequency of layering is relatively higher) original trace hascbeeared

better by BAF.

It should be in the focus of attention that both BF and BAF outputs are structurally same although

modified version of BF is more robust in separating noise from original data and resolution

enhancement in an adaptive manner.
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Plot of Original, Noisy and Filtered Data for Col. No. 50
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Fig. 5: Cross sections for data plotted in Fig. 4, at column (top) and row (bottom) No. 50. |
SHUIRUPDQFH FRXOG EH YLVXDOO\ FRQILUPHG IRU \akat
plot.

As the results from synthetic experiment exhibited the robustness of the proposed method, in the
following, the method is applied to regl H O G s&< Mufirated in Fig. 6 and 7, two real GPR
data-sets [12] which are covered with different level of random noise are selected. This first data-
set (Fig. 6) is selected mainly because there are almost two zones with different amplitude
characteristics. The two-phase structure of the data could result in data masking or causing artifacts
on the output. The bottodeft corner of the data which is specified by yellow box, contains some
faulting coherent events. It is expected that an ideal denoising algorithm not to perform much

changes in the structure of this events. F6IK H 8ty these events are not clearly showing

11
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The second real data-set (Fig. 7) is covered highly with random components. Many of coherent

energy is masked and detecting layers could not easily be handled. Having Bppaed BAF
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c) BAF
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Fig. 6: (a) part of a real GPR data [12] a
denoised versions by (b) BF and (c) BAF.
manner for all regions alongside preservi

data details.
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proposed, ANFIS modified version of BF, can be considered as a powerful alternative for the
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even manner while the details are preserved in the data.
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150 5. CONCLUSIONS

151 In the method introduced in this paper, the ability of ANFIS and Fuzzy Clustering in model
152 discrimination and problem solving was used for attenuating random noise in GPR data-sets. BF
153 calculated with different setups, was used in noise-signal separation, structure extraction and
154  automation of algorithm. Noise level estimation measure was also used here for determination of

155 optimized output. The method was applied on one synthetic and two real data-sets and the results

14
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showed that BAF has better performance in SNR improvement (more than 2 times) that of BF. In
real data-sets, resolution enhanced by proposed method definitely better and event tracing was

easier in BAF output.
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