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Abstract1

Accelerated synthesis of inorganic materials remains2

a significant challenge in the search for novel, func-3

tional materials. Many of the chemical principles4

which enable “synthesis by design” in synthetic or-5

ganic chemistry do not exist in solid-state chem-6

istry, despite extensive computed/experimental ther-7

mochemistry data. We present a chemical reaction8

network model constructed from thermochemistry9

databases that captures features of the thermody-10

namic phase space which synthesis reactions traverse.11

Directed edges in the network are assigned weights12

via a transformation that maps reaction parameters13

to costs. We devise a computationally tractable ap-14

proach for suggesting likely reaction pathways via ap-15

plication of pathfinding algorithms and linear com-16

bination of lowest-cost paths in the network. We17

demonstrate initial success of the reaction network in18

predicting a complex metathesis reaction pathway to-19

ward yttrium manganese oxide (YMnO3). The reac-20

tion network presents new opportunities for enabling21

reaction pathway prediction, rapid iteration between22

experimental/theoretical results, and ultimately, con-23

trol of synthesis of solid-state materials.24

Introduction25

Dating back to 18th century mineralogy,1 solid-state26

inorganic chemistry is a cornerstone in the design of27

novel, functional materials and continues to be driven28

by pressing technological demands. Consequently,29

the development of new techniques that accelerate30

materials synthesis/processing is vital for achieving31

multifunctional materials with complex properties32

that satisfy today’s technological needs. Solid materi-33

als with target functionality are often thermodynam-34

ically metastable, which can limit their accessibility35

via conventional solid-state synthesis routes such as36

the classic “shake and bake” ceramic methods that37

typically require high temperatures to overcome dif-38

fusion barriers and often proceed to global thermo-39

dynamic equilibrium.2 Indeed, solid-state chemistry40

itself has been dubbed a “black box” which is most41

effectively probed via systematic and extensive itera-42

tion, requiring significant experimental expertise akin43

to apprenticed artistry.3 The optimization of synthe-44

sis procedures for new materials is hence both highly45

time- and resource-consuming, demanding human-46

guided iteration over many combinations of precur-47

sors, processing steps, and environmental conditions.48

A more efficient approach to synthesizing novel in-49

organic materials is “synthesis by design”, in which50

a set of guiding principles and relationships is used51

to quickly devise a synthesis method towards a tar- 52

get material, much like the paradigm central to syn- 53

thetic organic chemistry.4,5 Recent work, fueled 54

by advances in solid-state in situ characterization 55

techniques,6,7 has taken steps in this direction by 56

exploring reaction pathways in select case systems 57

and identifying mechanistic relationships that explain 58

how synthesis conditions (e.g. precursor selection 59

and reaction environment) alter the reaction path- 60

way, leading to selective formation of different tar- 61

get products. For example, Neilson and coworkers 62

demonstrated the use of unconventional solid-state 63

metathesis reactions to kinetically control the re- 64

action pathway towards metastable polymorphs of 65

CuSe2
8 and YMnO3.9,10 Jiang et al. explored the use 66

of iron silicide reactants to bypass kinetic limitations 67

and achieve low-temperature synthesis of Fe2SiS4.11
68

Miura et al. demonstrated the synthesis of MgCr2S4 69

thiospinel via a metathesis route using novel precur- 70

sors, which was shown to be thermodynamically fa- 71

vorable through computational phase diagram con- 72

struction.12 Bianchini et al. showed that the first 73

phase formed in the synthesis of P2 type Na0.67MO2 74

(M=Co,Mn) can be predicted by minimizing compo- 75

sitionally unconstrained reaction energies, and that 76

formation of the initial phase can drastically alter the 77

kinetics of the subsequent reaction and final phase 78

selectivity.13 Each of these studies elucidates an 79

important concept: chemical reaction pathways fol- 80

low a complex thermodynamic free energy surface 81

which can be carefully manipulated and navigated 82

via thoughtful selection of precursors, processing, and 83

environmental conditions. 84

Explicit modelling of the free energy surface at an 85

atomistic level (i.e. the potential energy surface of 86

atomic interactions) has been successful in predicting 87

chemical reaction pathways/dynamics in molecules.14
88

However, in solid-state chemistry reactions, monitor- 89

ing the time dependence of each atom’s spatial coor- 90

dinates and interactions over the much larger scale 91

(∼ 1023 atoms per mole) becomes intractable. De- 92

spite these limitations, modelling of bounded solid- 93

state reaction mechanisms at the atomistic level has 94

been achieved in particular with molecular dynam- 95

ics (MD)15 and kinetic Monte Carlo (KMC)-based16
96

approaches. Reactive force fields, such as ReaxFF17
97

further permit the breaking of chemical bonds and 98

can be used to study specific chemical reaction mech- 99

anisms and kinetic parameters.18 KMC-based meth- 100

ods also explore parts of the potential energy surface, 101

given reaction rate constants that can be approxi- 102

mated with quantum mechanical calculations. How- 103

ever, such methods are ultimately confined to an a 104

priori selection of the relevant domains of the high 105
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dimensional solid-state potential energy surface.106

To aid in the development of materials synthesis107

by design, we propose to leverage recent advances in108

data-driven methods which have resulted in computa-109

tional/experimental thermochemical databases19–22
110

covering hundreds of thousands of materials and mil-111

lions of associated reaction energies.23 In the remain-112

der of this work, we describe a framework for pre-113

dicting and suggesting solid-state inorganic reaction114

pathways, which combined with experimental efforts,115

will ultimately realize inorganic synthesis by design.116

We propose a chemical reaction network which blends117

typical thermodynamic phase diagrams with the con-118

nectivity and kinetic heuristics derived from transi-119

tion state theory. The network model serves as a120

convenient data structure for exploring the underly-121

ing free energy surface of thermodynamic phase space122

in solid-state chemistry via the power and efficiency of123

existing computational infrastructure for large graph124

networks. We outline the methodology used to create125

the chemical reaction network from thermochemical126

databases and demonstrate its predictive power as a127

generator of probable reaction pathways, using the re-128

cent metathesis synthesis of the multiferroic YMnO3129

as a demonstrative case study.130

Results131

The following subsections describe the i) construction132

of the chemical reaction network and its relationship133

to previous models of thermodynamic phase space,134

ii) prediction of reaction pathways using pathfinding135

methods, and iii) demonstration in predicting reac-136

tion pathways in the experimental metathesis syn-137

thesis of YMnO3.138

A weighted directed graph of chemical139

reactions140

Following the thermodynamic equilibrium approach141

developed by Gibbs,24 we consider solid-state chem-142

ical reactions as traversing a thermodynamic phase143

space governed by a generalized thermodynamic po-144

tential or free energy, Φ, where the global minimum145

represents thermodynamic equilibrium for the sys-146

tem. Figure 1 depicts several models of chemical re-147

actions in thermodynamic phase space, ordered by148

increasing level of abstraction. The free energy con-149

vex hull construction of Figure 1(a) is a purely ther-150

modynamic model of a chemical reaction between a151

pair of two reactant phases, R1 and R2. The convex152

hull yields the chemical reactions which result in the153

largest decrease in free energy for a given mole ratio of154

the two reactants. Figure 1(b) abstracts the thermo- 155

dynamic model further by incorporating the concept 156

of activation energy, Ea, as defined in transition state 157

theory.25 This enables inclusion of simple kinetic be- 158

havior of reactions, where the height of the activation 159

energy barrier correlates with the rate of reaction. 160

Abstracting further, we can consider these reaction 161

coordinate diagrams as weighted directed graphs, as 162

in the upper portion of Figure 1(b). In these graphs, 163

the cost (or weight) of a chemical reaction edge rep- 164

resents an a priori unknown function of synthesis pa- 165

rameters such as the thermodynamic driving force, 166

activation energy, etc. Figure 1(c) shows the inter- 167

linking of many such graph representations within a 168

set of phases, where the nodes represent a combina- 169

tion of phases (e.g. R1 + R2) and the edges repre- 170

sent chemical reactions with a designated cost. This 171

weighted directed graph, or chemical reaction net- 172

work, is a densely connected model of thermodynamic 173

phase space where thermodynamic/kinetic features 174

can be combined and transformed into a unique cost 175

representation for each reaction. 176

Figure 2 illustrates the generalized graph struc- 177

ture of a reaction network for any chemical system. 178

Here, “chemical system” refers to the set of all N 179

phases pi (i = 1, 2, . . . N), which can be produced 180

from a designated set of chemical elements. Each re- 181

actant/product node on the graph is created by con- 182

sidering combinations of distinct phases up to a maxi- 183

mum size, n. This corresponds to the set of all nodes, 184

P , given by: 185

P = {pi|i ≤ N}
∪ {pi + pj |i, j ≤ N ; i 6= j} ∪ . . .

∪ {pi + pj + · · ·+ pn|i, j, . . . n ≤ N ;

i 6= j 6= . . . 6= n} (1)

Each of these phase combinations is added twice: 186

once as reactants node and again as a products node. 187

While higher values of n enable more complex reac- 188

tions, in general it suffices to choose n = 2, since 189

truly simultaneous reactions among three or more re- 190

actants are less likely due to kinetic and steric con- 191

straints in a solid composite. 192

To create the dense set of directed edges at the cen- 193

ter of the network, we algorithmically iterate through 194

every possible chemical reaction between all pairs of 195

reactants and product nodes. Using a reaction bal- 196

ancing algorithm, we then solve for the stoichiometric 197

coefficients and add a weighted, directed edge from 198

the reactant node to corresponding product node 199

for every chemical reaction which is successfully bal- 200

anced. Note that many of the generated trial reac- 201

tions cannot be stoichiometrically balanced and hence 202
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Figure 1: Models of chemical reactions in thermodynamic phase space, ordered by increasing
degree of abstraction. The label, A, indicates a combination of arbitrary amounts of phases R1 and R2.
Similarly, the other labels (B-F ) are combinations of arbitrary amounts of other phases which result from
the chemical reactions. (a) The convex hull construction for consecutive reactions between two reactants, R1

and R2. The points drawn indicate chemical reactions at different stoichiometric mixtures of the reactants,
and the lines trace the convex hull indicating the thermodynamic equilibrium (minimum free energy) for all
ratios of mixing, x. (b) A traditional reaction coordinate diagram used to represent both the free energies
of reaction, ∆Φ, and activation energies, Ea. This is generalized by a weighted, directed graph connecting
the three states (top). The cost/weight of the directed edges, shown as the colored number adjacent to
each edge, is some function of the free energy change, activation energy, and other reaction features. (c) A
chemical reaction network linking together many such possible reaction pathways that may occur within a
set of phases.

are excluded from the graph, e.g. there are no x, y, z203

that satisfy xY2O3 + yMnO2 −−→ zYMnO3, but the204

reaction is balanceable if O2 is included as an addi-205

tional product. We also exclude trivial “identity-like”206

reactions between identical reactants and products,207

e.g. Y2O3 −−→ Y2O3. The weight of the reaction208

edge is determined by a “cost function” that maps209

features of the chemical reaction (e.g. ∆Φrxn) to a210

single cost value. To facilitate product phases be-211

ing capable of reacting again (e.g. autocatalytic re-212

actions), zero-weight edges are added which connect213

each product node to all reactant nodes that contain,214

as a subset, at least one of the product phases and/or215

starting reactant phases (regardless of consideration216

of stoichiometric coefficients). This creates a large217

degree of cycles in the network, enabling the network218

to capture multiple step reaction pathways.219

Finally, two more nodes are added: one for the220

synthesis precursors and one for the selected target.221

These two external nodes act as single-source and222

destination nodes, defining a net (overall) synthesis223

reaction. The precursors node connects into the net-224

work via zero-weight edges directed towards all reac-225

tants nodes that contain, as a subset, at least one of226

the precursor phases. To allow for an open system,227

or excess with respect to precursors or specific reac-228

tants, zero-weight edges are optionally added from229

each from each product node to all reactant nodes 230

which include the excess precursor phases. This extra 231

layer of connectivity enables the precursors to react at 232

different steps along the reaction pathway. Lastly, the 233

network links into the target node via a set of zero- 234

weight edges directed from all product nodes which 235

contain the target phase. 236

The cost function used to determine the weight- 237

ing of edges is critical to its performance in gener- 238

ating probable reaction pathways. In this work, we 239

employ Dijkstra’s algorithm,26 which uses a priority 240

queue structure to determine the shortest path from a 241

single-source node to destination node. The shortest 242

path is defined as the path which has the smallest sum 243

of all its edge weights. The simplest, and possibly 244

most intuitive, cost function is a direct mapping onto 245

the thermodynamic landscape, such as the measured 246

or calculated Gibbs free energy of reaction, ∆Grxn. 247

However, using reaction energies alone poses several 248

problems: 1) negative reaction energies result in infi- 249

nite cycles during pathfinding which preclude the use 250

of Dijkstra’s algorithm and many other pathfinding 251

methods, 2) kinetic effects and other known heuristics 252

about the reaction are excluded, and 3) reaction costs 253

are affected by stoichiometric scaling. Instead, here 254

we choose a single, positive cost function that maps 255

the Gibbs free energy of reaction, per reactant atom, 256
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Figure 2: The generalized graph architecture
of a solid-state chemical reaction network.
The reaction network is constructed for a hypothet-
ical chemical system containing N phases pi (i =
1, 2, . . . N), with nodes made of distinct phase combi-
nations up to maximum size n. The precursors and
target nodes link into and out of the densely con-
nected network of reactions, respectively. The edge
directions between the reactant and product nodes
have been omitted for clarity. These central edges in-
clude chemical reactions weighted by their cost value,
as well as zero-weight edges which create loops from
product nodes back to reactant nodes, such that mul-
tiple step reaction pathways can be captured.

to a positive value for each reaction. The choice of a257

functional mapping also provides the opportunity to258

create different cost functions for chemical reactions259

where additional information is known, such as exper-260

imental data, kinetic factors and/or other heuristics.261

One example of a cost function that captures reaction262

thermodynamics is the softplus function, which was263

originally developed for use as an activation function264

in neural networks.27 This function maps the Gibbs265

free energy of a chemical reaction, ∆Grxn, to a posi-266

tive cost value, C, via:267

C = ln(1 +
273 K

T
e∆Grxn) (2)

where T is absolute temperature in Kelvin and268

∆Grxn is the Gibbs free energy of reaction in units269

of eV per reactant atom, divided by unity to be di-270

mensionless. Since molar reaction energies scale with271

the stoichiometric balancing of the reaction, ∆Grxn272

must be normalized on a per-atom basis independent273

of the stoichiometric coefficients. Figure 3 demon-274

strates the effect of the cost transformation on the275

distribution of reaction free energies in a chemical sys-276

tem. The softplus cost function transforms highly ex-277

ergonic (∆Grxn << 0) reactions into low (near zero) 278

cost events, whereas endergonic (∆Grxn > 0) reac- 279

tions exhibit a finite cost that smoothly approaches 280

a linear scaling as ∆Grxn → ∞. Note that different 281

environmental boundary conditions, such as open el- 282

ements, can be modelled by replacing ∆Grxn with 283

∆Φrxn, where Φ represents a customized thermo- 284

dynamic potential. Other monotonically increasing 285

functions were tested (Supplementary Figure 1) how- 286

ever the smooth and differentiable softplus function 287

was preferred. We hypothesize that there indeed ex- 288

ists a true cost function for each chemical reaction, 289

which depends on local and global environmental con- 290

ditions and transforms the thermodynamic/kinetic 291

factors to an appropriate cost that allows the net- 292

work to accurately capture the real behavior of the 293

system. 294

Predicting reaction pathways via graph 295

pathfinding 296

Ideally, predicting a reaction pathway using the net- 297

work would be equivalent to leveraging existing, pow- 298

erful algorithms for solving the single-source shortest 299

path problem from graph theory. However, chemical 300

reactions rarely trace a set of linear steps, even in 301

simple syntheses; instead the precursor phases often 302

undergo reactions concurrently in parallel, or react 303

again via autocatalytic reactions. Within the net- 304

work, parallel reactions can be modeled as simultane- 305

ous travel along multiple reaction edges. In the phys- 306

ical world these reactions must obey mass conserva- 307

tion, and phases produced in one reaction may react 308

with phases in another. These so-called “crossover” 309

reactions, along with the possibility of parallel reac- 310

tions, prohibit the direct application of shortest path 311

algorithms. 312

To solve this issue of parallel paths and crossover 313

reactions, we identify not only the single shortest 314

path from precursors to target phase, but all k- 315

shortest paths in the network, and then attempt to 316

find linear combinations of and interactions between 317

paths which satisfy the stoichiometric constraints of 318

a net/overall reaction which is known a priori. For 319

syntheses that involve multiple targets or byproducts 320

(e.g. CO2), pathfinding is performed towards each 321

target phase separately, and then all paths are accu- 322

mulated together; this ensures that generated paths 323

access all targets. With the set of likely paths, we 324

identify intermediate phases and supplement the set 325

with possible crossover reactions which result in fur- 326

ther production of the target phase(s). To computa- 327

tionally generate all k-shortest paths, we utilize Yen’s 328

algorithm28 which iteratively produces the next k−1 329
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Figure 3: The effect of the cost function transformation on reaction energies. (a) Distribution of
reaction Gibbs free energies (normalized per reactant atom) in the C-Cl-Li-Mn-O-Y chemical system. (b)
Transformation of reaction energies via the softplus cost function described in equation (2). (c) Final distri-
bution of reaction costs (in arbitrary units) after transformation. A reaction free energy of zero corresponds
to a cost of ∼ 0.265.

shortest paths via deviations from the first shortest330

path, as calculated with Dijkstra’s algorithm. Given331

that the cost function transformation provides only332

an approximation to the thermodynamics and kinet-333

ics of evolving reactions, the identification of many334

low-cost paths is also practical in the creation of335

a candidate set of possible paths. While the top336

shortest paths may not be experimentally feasible,337

the use of Yen’s algorithm to generate many such338

low-cost paths narrows down the range of probable339

reactions and facilitates tractable exploration of a340

combinatorially-dense phase space.341

Demonstration of reaction network342

model for synthesis of YMnO3343

To demonstrate the capabilities of the reaction net-344

work for predicting possible reaction pathways in a345

synthesis procedure, we consider the synthesis of yt-346

trium manganese oxide, YMnO3, through the solid-347

state assisted metathesis reaction reported by Todd348

& Neilson.9 The overall reaction,349

Mn2O3 + 2 YCl3 + 3 Li2CO3 −−→ 2 YMnO3

+ 6 LiCl + 3 CO2 (3)

was found to exhibit several steps with distinct inter-350

mediate compounds, as determined through in situ351

temperature-dependent x-ray diffraction performed352

at a synchrotron beamline.10 Figure 4(a) shows the353

chemical reaction network generated for the C-Cl-354

Li-Mn-O-Y chemical system. The C-Cl-Li-Mn-O-Y355

phase diagram constructed from Materials Project356

contains 768 entries; of these, 47 are predicted to357

be stable at T = 0 K. The machine-learned Gibbs 358

descriptor reported by Bartel et al.29 and NIST- 359

JANAF tables21 were further used to transform the 360

DFT-derived formation enthalpies into Gibbs free en- 361

ergies of formation at 900 K – the approximate tem- 362

perature at which YMnO3 was observed to form. The 363

transformation to Gibbs free energy at 900 K reduces 364

the number of stable phases in the phase diagram to 365

39. We include all of these stable entries as well as 366

metastable entries (not including polymorphs) up to 367

a filter of +20 meV/atom above the hull, resulting 368

in a total of 56 phases considered (Supplementary 369

Table 1). The final reaction network contains 3,194 370

nodes and 33,428 edges, where 20,116 of these edges 371

represent chemical reactions with a maximum phase 372

combination size of n = 2. Costs for all reaction edges 373

were mapped using the softplus function described in 374

equation (2) with T = 900 K and plotted in Figure 375

3b. 376

Reaction pathway prediction was performed given 377

the initial reactants and final products of the assisted 378

metathesis reaction in equation (3). The 60 short- 379

est paths (20 to each product of YMnO3, LiCl, and 380

CO2) were identified via Yen’s algorithm, resulting 381

in a set of 47 unique reactions. All 60 shortest paths 382

can be seen in Supplementary Tables 2-4. Combined 383

pathways were generated via this set of reactions by 384

solving for linear combinations of reactions, up to a 385

maximum size of four reactions, that obey stoichio- 386

metric constraints. Of the total 195,708 pathways 387

considered, only two combined reaction pathways fit 388

the stoichiometric constraints of the net reaction. 389

The shorter of the two combined pathways (in both 390

total and average cost per reaction) involves the for- 391
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Figure 4: The reaction network for the C-Cl-Li-Mn-O-Y chemical system. The network contains 56
phases: 39 stable and 17 within +20 meV/atom above the hull. Chemical subsystems are labeled by color.
The larger nodes indicate reactant nodes which are traversed on the 20 shortest pathways from precursors
to targets in the YMnO3 assisted metathesis reaction given by equation (3).

mation and reaction of Li3MnO3 which, to our knowl-392

edge, is an oxygen-deficit distorted rocksalt that is393

yet to be experimentally verified; in fact, the Materi-394

als Project contains tens of thousands of hypothetical395

compounds, which may or may not be readily synthe-396

sizable. According to available computed data, this397

compound is metastable (+12 meV/atom above the398

hull) at zero temperature, but is predicted to exhibit399

thermodynamic stability at 900 K according to the400

Gibbs free energy model. The proposed pathway is 401

reported below, along with the computed free energy 402

of reaction per reactant atom: 403

1.5Li2CO3 + 0.5Mn2O3 −−→ Li3MnO3 + 1.5CO2

(∆Grxn = 0.199 eV/atom) (4)

7



YCl3 + Li3MnO3 −−→ YMnO3 + 3LiCl

(∆Grxn = −0.225 eV/atom) (5)

The second ranked pathway by cost, however,404

closely matches the experimentally reported assisted405

metathesis pathway. The Li2CO3 first decomposes to406

Li2O and then reacts to make YOCl:407

Li2CO3 −−→ Li2O + CO2

(∆Grxn = 0.312 eV/atom) (6)

YCl3 + Li2O −−→ YOCl + 2 LiCl

(∆Grxn = −0.287 eV/atom) (7)

while simultaneously, LiMnO2 is formed:408

0.5 Li2CO3 + 0.5 Mn2O3 −−→ LiMnO2 + 0.5CO2

(∆Grxn = 0.099 eV/atom) (8)

And these two intermediates finally react together in409

a metathesis reaction to produce YMnO3:410

YOCl + LiMnO2 −−→ YMnO3 + LiCl

(∆Grxn = −0.086 eV/atom) (9)

This pathway is nearly identical to the experimentally411

reported pathway; with the added step that Li2CO3412

first decomposes to Li2O and CO2 before reacting.413

Discussion414

The primary challenge in creating a reaction network415

model is the high degree of complexity inherent to416

thermodynamic phase space, which quickly leads to417

a combinatorial explosion during both the creation of418

the network and subsequent pathfinding steps. As an419

example, consider a reaction network with N phases420

and a maximum phase combination size, n. If during421

the graph generation every possible chemical reaction422

between any two nodes is considered, the number of423

reactions, R, would be:424

R =

[
n∑

i=1

(
N

i

)]2

=

[(
N

1

)
+

(
N

2

)
+ . . . +

(
N

n

)]2

(10)

For example, for the C-Cl-Li-Mn-O-Y reaction net-425

work with N = 56 distinct phases, the maximum426

number of reactions described by equation (10), be-427

fore stoichiometric balancing, is R ≈ 3.14× 103 (n =428

1), 2.55× 106 (n = 2), and 8.59× 108 (n = 3).429

In this work, we present a computationally 430

tractable approach, which effectively introduces a se- 431

ries of filters which reduce the complexity and degrees 432

of freedom of the thermodynamic phase space. These 433

filters include: 1) restricting the number of phases 434

considered via thermodynamic stability arguments, 435

i.e. energy above the hull, 2) limiting the maximum 436

number of phases present on each side of the reaction 437

to a small number, e.g. n = 2, 3) using a cost func- 438

tion to prioritize reactions which are likely to occur, 439

and 4) enforcing mass conservation via stoichiomet- 440

ric constraints. The first two filters work together 441

during graph generation to limit the combinatorial 442

size/complexity of the network. This number can be 443

reduced by decreasing either N , n, or both. It is also 444

worth noting that the number of considered reactions 445

can be reduced by considering the connectivity of the 446

compositional phase diagram of the system; for exam- 447

ple, chemical reactions may be limited to only those 448

reactions which occur along facets of the phase di- 449

agram. Since it is typically optimal to consider as 450

many phases as possible, it is more favorable to re- 451

duce n, rather than N . Therefore the choice of n = 2 452

minimizes the combinatorics of the network without 453

inherently sacrificing the complexity of reactions that 454

can occur. Indeed, reaction pathways suggested by 455

the network adhering to the n = 2 limit must consist 456

of pseudo-elementary steps which more closely follow 457

the free energy surface. This behavior is nicely il- 458

lustrated in the second reaction pathway suggested 459

by the C-Cl-Li-Mn-O-Y network (equations (6)-(9)), 460

which closely resembles the experimentally observed 461

pathway. In the experimental synthesis of YMnO3, 462

however, the authors report a reaction step with three 463

products (YCl3+Li2CO3 −−→ YOCl+2 LiCl+CO2). 464

Due to the selection of n = 2, this reaction was not 465

explicitly present in the network. However, the net 466

effect of the reaction is indeed incorporated in the 467

second suggested pathway, where this reaction is es- 468

sentially divided into two smaller steps featuring the 469

decomposition of Li2CO3 into Li2O/CO2 and the re- 470

action of Li2O with YCl3 directly. It is reasonable 471

to postulate that this thermal decomposition step 472

might actually be occurring; the decomposition of 473

lithium carbonate has been well-studied and observed 474

to occur spontaneously at/above temperatures near 475

the maximum temperature of the assisted metathesis 476

synthesis route (T ∼ 900 K).30
477

The cost function approach provides another sim- 478

plification of the complex thermodynamic phase 479

space. Here we have shown that a smooth, mono- 480

tonic transformation of the Gibbs free energy of re- 481

action is sufficient itself in capturing realistic behav- 482

ior in solid-state materials synthesis, as exemplified 483
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by the network model of YMnO3 synthesis. The cost484

transformation to positive values allows for the uti-485

lization of existing shortest path algorithms such as486

Dijkstra’s algorithm, but also naturally incorporates487

several realistic/expected features of traversing the488

thermodynamic phase space. First, the cost function489

can in principle integrate multiple thermodynamic490

and kinetic heuristics. While we did not include any491

kinetic features in this work, we anticipate the fu-492

ture addition of kinetic features, such as the struc-493

tural (dis)similarity between phases,31,32 the average494

number of bonds broken/created, change in the infor-495

mation entropy description of atomic configurations,496

change in atomic density, etc. The relative weights497

of each of these features within the cost function,498

of course, must be carefully examined and validated.499

For example, the fact that the reaction network en-500

codes modular pseudo-elementary steps is highly con-501

ducive to the inclusion of modeled or experimentally502

obtained kinetic barriers, where the cost associated503

with a particular step may be high enough to remove504

the entire pathway from consideration.505

Second, shortest path algorithms are naturally506

cost-additive, which biases the pathway generation507

towards simpler reaction pathways with fewer steps.508

This also introduces a trade-off between the num-509

ber of steps in the pathway and the cost per step,510

i.e. paths with several low-cost steps may exhibit the511

same total cost as paths with only one medium/high512

cost step. The slope of the cost function determines513

the nature of this trade-off; however, the softplus514

function generally is found to favor shortest paths515

with fewer steps (Supplementary Tables 2-4). One516

unique result of the additive nature of the shortest517

path approach is that the shortest paths towards cer-518

tain products often involve unanticipated, endergonic519

(∆Grxn > 0) reaction steps. This is a major ad-520

vantage as compared to other thermodynamic mod-521

els where reaction pathways are often restricted to a522

cascade of monotonically decreasing free energy steps.523

Allowing endergonic steps introduces flexibility to the524

uncertainty (and lack) of thermochemistry data, lo-525

cal vs. global synthesis conditions, etc., allowing the526

full compositional space to be traversed when con-527

sidering chemical routes towards targets. This is ex-528

emplified in particular by the lithium carbonate de-529

composition reaction described previously, which is530

endergonic at low temperatures but is shown to oc-531

cur spontaneously at elevated temperatures.532

Finally, the network can also be used to identify533

shortest paths to or from any nodes in the net-534

work. This mechanism may lead to alternative in-535

sights about the network, such as lists of the shortest536

pathways to any target. We anticipate this setup of537

the network to be useful for speculating possible likely 538

products, when no net reaction information is known 539

a priori. Similarly, the network can be used in “re- 540

verse” to identify promising precursors which yield 541

efficient chemical routes towards desired targets. 542

Conclusions 543

A chemical reaction network model was designed, im- 544

plemented with thermodynamic data from the Mate- 545

rials Project, and demonstrated as a predictor of re- 546

action pathways in solid-state chemistry. The frame- 547

work effectively reduces the large, complex thermo- 548

chemical landscape to a computationally tractable 549

structure through i) creation of a weighted directed 550

graph representation of the available thermodynamic 551

phase space, ii) mapping of rigorous thermodynamic 552

data and possible heuristics into a versatile cost func- 553

tion and iii) application of existing pathfinding algo- 554

rithms to identify probable reaction routes. While the 555

framework explores reaction trajectories in the most 556

general way possible, allowing for parallel combined 557

pathways, the combinatorial complexity is reduced 558

by chemically motivated filters such as: 1) restricting 559

the number of phases considered via thermodynamic 560

stability arguments, 2) limiting the maximum num- 561

ber of simultaneously reacting phases, and 3) enforc- 562

ing mass conservation via stoichiometric constraints. 563

As a demonstration, the framework was shown to 564

successfully identify a complex reaction pathway in 565

a recently elucidated in-situ characterized solid-state 566

synthesis of YMnO3. We envision the methodology to 567

be used to suggest possible synthesis routes and pre- 568

cursors that allow for efficient thermodynamic condi- 569

tions towards desirable target phases, as well as iden- 570

tification of byproducts and possible thermodynamic 571

sinks along synthesis routes. Future work will ben- 572

efit tremendously by combining the framework ‘live’ 573

with automated data collection, in situ phase iden- 574

tification, rapid analysis techniques, and automated 575

feedback loops, moving towards active control of in- 576

organic solid-state synthesis. 577

Methods 578

Thermochemical data 579

While the chemical reaction network can be created 580

from any thermochemical data – computed, exper- 581

imental, or a combination of both – in this work, 582

we employ the Materials Project (MP), which con- 583

tains well-benchmarked ab initio calculated forma- 584

tion enthalpies for over one hundred thousand dif- 585
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ferent materials as calculated with density functional586

theory (DFT).19,33 To capture the temperature de-587

pendence of thermodynamic phase space, we employ588

the machine-learned Gibbs free energy descriptor re-589

ported by Bartel et al.,29 which estimates the finite590

temperature contribution to the Gibbs free energy591

of formation of solids, ∆Gf (T ). This contribution592

incorporates both temperature-dependent enthalpic593

and entropic effects, although the entropic contribu-594

tion (TS) typically dominates. The elemental Gibbs595

free energies used for these formation energy calcula-596

tions are acquired from FactSage.20 The Gibbs free597

energies of formation for non-elemental gases (e.g.598

CO2) are acquired from NIST-JANAF experimen-599

tal thermochemical tables where possible.21 Ther-600

modynamic stability (energy above the hull) is calcu-601

lated via phase diagram construction in the pymatgen602

package.34
603

Graph creation, traversal, and visual-604

ization605

All networks are implemented and analyzed using the606

graph-tool package.35 Chemical reactions are bal-607

anced and combined in a high-throughput manner608

via the reaction balancing algorithm implemented in609

pymatgen. Graphs are visualized using Graphistry610

Hub.36
611

Combining chemical reactions via mass612

conservation613

When a net reaction is known a priori, reaction steps614

identified during the pathfinding can be linearly com-615

bined to satisfy the stoichiometric mass constraints616

of the overall reaction. These constraints correspond617

to numerically solving the linear system of equations618

given by:619

Am = c (11)

where m is a vector containing the “multiplicity” of620

each reaction (i.e. the factor by which the entire621

reaction is multiplied), A is the matrix containing622

the stoichiometric coefficients of all phases present623

in all reactions where reactants/products have nega-624

tive/positive coefficients respectively, and c is a vec-625

tor containing the stoichiometric coefficients of the626

net synthesis reaction. We solve this system of equa-627

tions for the multiplicity vector, m, via application628

of the Moore-Penrose matrix pseudoinverse as imple-629

mented within the SciPy package.37
630
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Antônio H. Ribeiro, Fabian Pedregosa, Paul van 824

Mulbregt, and SciPy 1. 0 Contributors. SciPy 825

1.0: Fundamental Algorithms for Scientific Com- 826

puting in Python. Nature Methods, 17:261–272, 827

2020. 828

Author Contributions 829

M.J.M. and S.S.D. conceived the idea of the presented 830

work. M.J.M. designed and developed the reaction- 831

network code with feedback from S.S.D. and K.A.P. 832

M.J.M. wrote the manuscript with guidance of S.S.D. 833

and K.A.P. 834

Acknowledgements 835

This work was supported as part of GENESIS: A 836

Next Generation Synthesis Center, an Energy Fron- 837

tier Research Center funded by the U.S. Department 838

of Energy, Office of Science, Basic Energy Sciences 839

under Award Number DE-SC0019212. This research 840

used resources of the National Energy Research Sci- 841

entific Computing Center (NERSC), a U.S. Depart- 842

ment of Energy Office of Science User Facility oper- 843

ated under Contract No. DE-AC02-05CH11231. 844

The authors would like to thank J. Neilson and P. 845

Todd for their helpful discussion regarding the reac- 846

tion network model, as well as E. Persson for math 847

skills, and L. Meyerovich for assistance with graph 848

visualization. 849

Code availability 850

The reaction-network package was created in Python 851

to implement the reaction network model described 852

in this work. The code is free and available for use 853

by the general community, via GitHub at https:// 854

github.com/GENESIS-EFRC/reaction-network. 855

12

https://github.com/GENESIS-EFRC/reaction-network
https://github.com/GENESIS-EFRC/reaction-network
https://github.com/GENESIS-EFRC/reaction-network

