Small and Mighty: Adaptation of the Superphylum Patescibacteria

Renmao Tian
Daliang Ning
Zhili He
Ping Zhang
Sarah J. Spencer
Shuhong Gao
Weiling Shi
Linwei Wu
Ya Zhang
Yunfeng Yang
Benjamin G. Adams
Andrea M. Rocha
Brittny L. Detienne
Kenneth A. Lowe
Dominique C. Joyner
Dawn M. Klingeman
Adam P. Arkin
Matthew W. Fields
Terry C. Hazen
David A. Stahl
Eric J. Alm
Jizhong Zhou

Video Byte

Keywords: Patescibacteria, bacteria, phylum, superphylum, phylogenetics, groundwater, environment, Candidate Phylum Radiation, CPR, genome, adaptation, CRISPR, Microbiome

Posted Date: June 23rd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-37687/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

One-third of the Earth’s fresh water comes from groundwater repositories. These terrestrial subsurface aquifers are an important source of our drinking water. Understanding the geochemistry and ecology of groundwater – including its microbial communities – is critical for keeping our water safe. A recent study sought to further understand a newly discovered superphylum – Patescibacteria. Patescibacteria is a very large superphylum, with more than 20 candidate phyla defined since 2015. This newly discovered class of bacteria is prevalent in groundwater environments and has limited genetic material. With such little genetic information to work from, the researchers wondered how these bacteria were able to adapt to changes and thrive in their aquatic environment. Using genome-resolved metagenomics, they evaluated sequence data from groundwater-residing Patescibacteria. They found that although these bacteria have extremely small genomes, functions essential to growth and reproduction were retained, while redundant and nonessential functions were sharply reduced. Although more study is needed, the results suggest that Patescibacteria have adapted by streamlining their functions to use minimal genetic information, showing that with these groundwater bacteria, small means big - and less is more.