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Abstract

Trajectory planning aims at computing an optimal trajectory through the
minimization of a cost function. This paper considers four different scenarios: (i)
the first concerns a given trajectory on which a cost function is minimized by a
acting on the velocity along it; (ii) the second considers trajectories expressed
parametrically, from which an optimal path and the velocity along it are
computed; (iii), the case in which only the departure and arrival points of the
trajectory are known, and the optimal path (in the sense of minimizing a given
cost function) must be determined; and finally, (iv) the case involving uncertainty
in the environment in which the trajectory operates. When the considered cost
functions are expressed analytically, the application of Euler-Lagrange equations
constitutes an appealing option. However, in many applications, complex cost
functions are learned by using black-box machine learning techniques, for instance
deep neural networks. In such cases, a neural approach of the trajectory planning
becomes an appealing alternative. Different numerical experiments will serve to
illustrate the potential of the proposed methodologies on some selected use cases.

Keywords: Machine Learning; Artificial Intelligence; Optimal planning;
Trajectory optimization; Euler-Lagrange equations; Physics informed machine
learning

1 Introduction

Optimal trajectory planning is a topic present in many domains of science, engi-

neering and technology. To cite a few examples, one has to determine the optimal

velocity of an autonomous car moving along a prescribed path for example, the opti-

mal path of a drone, or the optimal deposition trajectory in additive manufacturing

and 3D printing processes.

In some cases, the trajectory is known, but the optimal conditions when moving

along the path must be defined to minimize a given cost function. When addressing

autonomous vehicles, for instance, fuel consumption must be minimized, with direct

consequences on the emission reduction [1, 2]. Many works focus on the definition

of an adequate cost function that should reflect a compromise between the energy

consumption and the travel time. Once such a cost function is defined, different

techniques exist to determine the optimal conditions all along the path [3, 4, 5, 6, 7].

Even if reinforced learning [8] seems particularly well adapted for that purpose [9],

the authors proposed recently an alternative route by making use of neural network-

based regressions informed by the Euler-Lagrange equation [10].

mailto:Chady.Ghnatios@ensam.eu
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The problem becomes more tricky when the trajectories are expressed paramet-

rically, or even more, when the trajectory could, and should, be obtained with

the only knowledge of the departure (at the initial time) and the arrival point (at

the expected arrival time). The situation becomes even more complex when the

environmental conditions exhibit unpredictable fluctuations, only expressible in a

statistical sense.

All these scenarios can be stated as optimization problems, which have been ex-

tensively addressed by using standard numerical optimization techniques. Even if

using these procedures implies a subsequent computational cost, in general, tra-

jectory planning has traditionally been performed offline, by assuming forecasted

environmental conditions involved in the cost functions. However, engineering ap-

plications are moving fast from offline procedures to online applications. Digital

twins are peopling all the domains of engineering and technology. In real-life oper-

ation applications, a digital twin of an agent or an asset, must react in real-time to

any environmental change. for instance the change of the wind orientation or speed

when operating a drone, or the sea current for a ship.

Nowadays, solutions of parametrized physics-based models including environmen-

tal conditions (e.g., temperature maps, wind map, current map, electromagnetic

maps, ...) can be obtained by using the most recent techniques of meta-modeling

for the construction of the associated surrogate models [11, 12, 13]. Thus, the en-

vironmental conditions evolving in time can be evaluated globally in almost real-

time, and then, optimizations involved in trajectory planning should perform online,

pushing the available standard techniques to their limits.

It is here that artificial intelligence and machine learning methods come into play

[14]. In order to speed-up optimal decisions, reinforcement learning is increasingly

considered, as commented before, in particular for autonomous system applications

[9]. However, fully data-based techniques face many difficulties: (i) accomplishing a

proper and complete training; (ii) the risks when operating outside the training re-

gion (out-of-distribution regime, extrapolation); and (iii) the difficulty of explaining

decisions (black-box procedures).

In mechanical engineering, many optimization problems can be efficiently solved

by minimizing a global cost function, that results from the integral of a local

cost along a path. The global cost optimality conditions result in the so-called

Euler-Lagrange equations. Thus, parametric cost functions can lead to parametrized

Euler-Lagrange equations, enabling the construction of parametric optimal trajec-

tories. Such an approach is extremely valuable for driving an autonomous asset in

operation, as discussed later in this paper.

However, such parametric optimal trajectories framework faces the difficulty of

addressing limitations imposed by black-box cost functions. For instance, when

the cost is obtained by testing the asset under several operating scenarios, and then

correlating the input features with the cost function, by using deep neural networks.

In such a case, the Euler-Lagrange equation must be solved in an unusual manner,

as detailed later in this work. Physics Informed Neural Networks (PINNs) offer an

appealing gateway for performing on those settings [15].

This work considers the four aforementioned scenarios. The first concerns a given

trajectory on which a cost function is minimized. This is addressed in Section 2. The
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second case, which tackles the case of parametric trajectories and the extraction of

the optimal path through parameter optimization, is discussed in Section 3. Section

4 addresses the case in which only the departure and arrival points of the trajectory

are known, and the optimal path (in the sense of minimizing a given cost function)

is to be determined. Finally, Section 5 discusses the route to extend the approach

to stochastic settings.

2 Optimality along a given trajectory

We assume a cost function C, defined as a function of the position s, the curvilinear

coordinate along a given trajectory Γ, and as a function of the (module of) velocity

v(s) and its variation with respect to the curvilinear coordinate s, v′(s) = dv/ds.

The dependence on v(s) accounts for the drag and v′(s) will be used to penalize

the change of the velocity along the trajectory [10]. Thus, the local cost C takes the

form C(s, v(s), v′(s)). The environmental conditions entering the cost function will

be described later.

Now, denoting by S the total path length, the total cost associated with the

trajectory Γ, IΓ, can be obtained using the integral

IΓ =

∫ S

0

C(s, v(s), v′(s)) ds. (1)

The optimization problem looks for the optimal velocity along the path Γ, vopt(s),

by minimizing the functional IΓ. This minimization implies δIΓ = 0, with prescribed

initial and final velocities, v(0) and v(S) respectively. This minimization becomes

equivalent to the fulfillment of the Euler-Lagrange (EL) equation:

∂C

∂v
−

d

ds

∂C

∂v′
= 0. (2)

When the cost function is expressed analytically as a function of s, v(s) and v′(s),

the EL equation results in a differential equation involving the variable v(s), whose

solution results in the optimal velocity vopt(s).

2.1 Cost functions expressed analytically

Let us consider, for example, the instantaneous cost function given by C =
1

2
v2(s) + β

2
(v(s) − v)2 + 1

2
v′2(s), where β is the weight enforcing the target ve-

locity v. The optimal velocity results from the EL equation solution, which, in the

present case, takes the form:

∂C

∂v
= v + β(v − v), (3)

and

d

ds

∂C

∂v′
= v′′, (4)

which result in the following ODE:

(1 + β)v(s)− βv − v′′ = 0. (5)
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The integration of Eq. (5) requires two boundary conditions. In this example, we

consider vanishing initial and final velocities, v(s = 0) = v(s = S) = 0. Solving the

ODE problem with the appropriate boundary conditions results in the optimal ve-

locity vopt(s) minimizing the total cost. Such a solution can be obtained analytically

or numerically, by using the finite difference method for example.

In the case of neglecting the term involving v′(s), the cost function reduces to

the algebraic equation C = 1

2
v2(s) + β

2
(v(s)− v)2, and the optimal velocity can be

trivially obtained from:

v(s) ≡ vopt(s) =
β

1 + β
v. (6)

In equation (6), when β → ∞, vopt(s) = v, and when β → 0, without any constraint

to perform the travel, the best choice is stay at rest to minimize the cost induced

by the drag, i.e., vopt = 0.

2.2 Cost functions expressed from black-box oracles

When the cost function is represented by a trained black-box, a sort of oracle—a

deep neural network (DNN) for instance—the just described procedure can not be

applied, as the explicit form of the ODE function can not be obtained.

In our recent work [10], we proposed the use of a neural network able to perform

the regression of an expression of the type v = NN v(s). Then, automatic differ-

entiation allowed us to compute v′(s). The velocity and its derivative, as well as

the contribution to the cost function, depend on the potion s, here called α(s), are

the inputs of the cost function neural network NN c. The output of the last neural

network is the cost function C, that is C = NN c(α, v, v
′). The last neural network

NN c is assumed to be trained during the asset calibration, offline, and then, it is

frozen, assumed to be known and accurate enough.

At this point, the EL equation can be enforced by computing the cost function

derivatives ∂C
∂v

and d
ds

(

∂C
∂v′

)

by automatic differentiation, and the EL equation is

finally enforced in the loss function. The loss function minimization allows the cal-

culation of the NN v parameters, that is, the NN v training. The whole architecture

and workflow is sketched in Fig. 1.

3 Optimal planning on parametrized trajectories

This section generalizes the procedure described in the previous one, by considering

parametrized trajectories Γp, where vector p groups the set of parameters involved

in the description of the trajectory. Usual parametric descriptions are based on

the use of polygonal curves or NURBS, whose parametric description involves the

control points position, among many other possibilities.

A more implicit way of expressing possible trajectories consists on solving a para-

metric partial differential equation, in such a way that the level-set curves could

represent valuable trajectories. This strategy was considered in our former work [16]

for addressing deposition trajectories in additive manufacturing.

In what follows, for the sake of simplicity but without loss of generality, a simple

case, involving a single parameter, noted by p, is considered, and illustrated in

Figure 2.
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Figure 1 Flow chart for the training of network NN v , when the cost function C is approximated
by a neural network based regression NN c. The weights and biases of NN v are noted Θ.

Figure 2 Parametrized trajectory by using a single parameter p defining Γp.

In the present case, the rationale described previously remains almost unchanged.

Here, again, a cost function, analytical or expressed with the help of a DNN, is

assumed to be available. This cost function is again represented by C(s, v, v′; p),

where the dependence on p of the cost function is highlighted, even if in the sequel,

this dependence will be omitted in the notation, for the sake of clarity, if there is

no risk of confusion.

In this section the only difference is the domain in which s takes its values, which

depends on the considered trajectory Γp. Each Γp involves a length Sp. Thus, the

global cost reads:

Ip =

∫ Sp

0

C(s, v(s), v′(s)) ds. (7)

3.1 Optimal planning on each trajectory offline, and optimal trajectory extraction

online

The simplest procedure consists in considering a set of parameters in the interval

of variation of p, p ∈ [0, P]. When considering N values uniformly distributed in the
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interval [0, P], they read:

pi = (i− 1)×
P

N− 1
, i = 1, ..., N. (8)

For each trajectory Γpi
, the optimal velocity is computed following the rationale

just described in Section 2, which leads to vopt(s ∈ Γpi
). Later on, by introducing

that optimal velocity into the total cost expression Ip, it results in:

Ipi
=

∫ Spi

0

C(s, vopt(s), v′ opt(s) ds. (9)

Finally the best trajectory, represented by popt is obtained by solving the mini-

mization problem:

popt = argmin
p=p1,...,pN

{Ip} , (10)

3.2 Parametric optimal planning and optimal trajectory extraction

A more appealing route consists in using a reference domain where the curvilinear

coordinate s is mapped into a reference interval, ξ ∈ [0, 1]. In the case considered

here, illustrated in Fig. 2, the coordinate mapping reads;

ξ =
s

S(p)
, (11)

with S(p) = 2
√

0.52 + p2 when considering a unit distance between the departure

and arrival points or, equivalently:

s = ξ S(p), (12)

representing the direct and inverse mappings, ξ(s; p) and s(ξ; p). Expressing the

global cost in the reference domain

Iξ =

∫

1

0

C(ξ, v(ξ), v′(ξ))
ds

dξ
dξ, (13)

with dv
ds

= dv
dξ

dξ
ds

= v′(ξ)dξ
ds
, the optimal velocity results from the solution of the

Euler-Lagrange equation.

3.3 Numerical experiments and discussion

3.3.1 Cost function

In this numerical example, the following cost function is considered

C =
1

2

(

v2(s) + κpv2(s) + β(v(s)− v)2 + γv′2
)

, (14)
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where κpv2(s) represents a trajectory-dependent cost, and the parameter γ is in-

troduced to easily evaluate solutions when the cost associated to v′(s) is neglected.

3.3.2 Euler-Lagrange equation

For the cost function given in Eq. (14), the derivative terms involved in the EL

equation write:

∂C

∂v
= v + κpv + β(v − v), (15)

and

d

ds

(

∂C

∂v′

)

= v′′, (16)

from which, the EL equation gives:

γv′′(s)− (1 + κp+ β)v(s) = −βv. (17)

The imposed boundary conditions for this problem are v(s = 0) = v(s = S(p)) = 0.

3.3.3 Expressing the Euler-Lagrange equation in the reference domain

By considering the mapping introduced in equations (11) and (12), one can write:

∂

∂s
=

∂ξ

∂s

∂

∂ξ
=

1
√

1 + 4p2
∂

∂ξ
, (18)

and

∂2

∂s2
=

1

1 + 4p2
∂

∂ξ
. (19)

Equations (18) and (19) allow us to express the EL equation in the reference domain:

γ

1 + 4p2
v′′(ξ)− (1 + κp+ β)v(ξ) = −βv. (20)

3.3.4 Inertia-less limit

When the inertia can be neglected in the cost function, i.e., γ = 0, the ODE

equation (20) reduces to:

(1 + κp+ β)v(ξ) = βv, (21)

which allows defining the optimal velocity as:

v(ξ) ≡ vopt(ξ) =
β

1 + κp+ β
v. (22)
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Figure 3 Comparing the optimal velocity on two trajectories characterized by p = 0 and p = 5
respectively, with vanishing v(ξ = 0) = 0 and v(ξ = 1) = 0.

One can note that the optimal velocity decreases with increasing κ and p, and

approaches v when β → ∞.

3.3.5 Numerical solution for increasing p

By considering κ = 1, β = 5, γ = 0.1 and v = 1, Fig. 3 compares the solutions

for p = 0 and p = 5, from which it can be noticed that the higher is the value of p,

the more intense is the resistance to movement (higher cost) and, consequently, the

maximum velocity decreases. The total costs when considering the just computed

optimal velocities result: I(p = 0) = 197.7 and I(p = 5) = 2818.6, which proves

that the rectilinear trajectory becomes the optimal one. In fact, the resistance (cost

induced by trajectories deviating from the rectilinear one defined by p = 0) increases

by increasing p.

To further illustrate the velocity profiles and the associate cost evolution with p,

Fig. 4 shows the optimal velocity profiles for p = 0, 0.5, 1, 1.5, . . . , 4.5 and Fig. 5 the

associated total cost with the optimal velocity profiles.

3.3.6 Evaluating effect of trajectory length

In this section, to evaluate the impact of the trajectory length on the planning, we

remove the dependence of the cost function on the parameter p by setting κ = 0.

Thus, from the point of view of the cost function C, no difference between one

trajectory or another exists. However, from the point of view of the global cost I,

the longer is the trajectory, the higher is the cost. Consequently, one expects that,

again, the rectilinear trajectory (p = 0) is the optimal one.

Figure 6 compares the optimal velocity profiles vopt(ξ; p), for p = 0 and p = 5 in

absence of a cost term depending on p. As expected, when computing the global
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Figure 4 Comparing the optimal velocity on different trajectories.

cost related to the optimal velocities profiles, the longer trajectory (p = 5) presents

the higher cost: I(p = 0) = 197.7 and I(p = 5) = 1009.7.

3.3.7 Optimal trajectories differing from the rectilinear one

In this section we set κ = 5, but a vanishing resistance for a trajectory that

deviates from the rectilinear one. For example, this can be achieved by setting

p = 1, with β = 4, γ = 0.1 and v = 1, and the following cost function:

C =
1

2

(

v2(s) + κ
√

(p− 1)2v2(s) + β(v(s)− v)2 + γv′2
)

, (23)

Figure 7 shows the evolution of the total cost I(p) evaluated by considering the

optimal velocities on each trajectory characterized by the parameter p. Figure 7

shows that the optimal trajectory is located somewhere between the rectilinear

shortest path (but having a high cost induced by the deviation from p = 1), and

the one in which the contribution scaling with |p−1| is minimum (however exhibiting

a longer path), with the minimum global cost for a trajectory close to p = 0.1 in

the present example.

Remark. In all the discussion until now, the cost function involves a term penalizing

deviations with respect to a reference velocity v. However, other forms of this term

can be designed to penalize the deviation with respect to the time spent to cover

the whole trajectory for example.

4 Optimal trajectory and planning

By ignoring inertia, and referring the time by t, the most general setting consists in

computing the optimal trajectory x(t) and the optimal velocity along it, v(t), by

applying the EL equation on the cost function.
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Figure 5 Cost evolution I(p).

The EL equation can be generalized to address higher-order derivatives. However,

for the sake of simplicity and without loss of generality, in what follows we assume

C(t,x,v), with v = ẋ.

We consider the simple 2D cost function C = (vx + y)
2
+ (vy − x)

2
, with (vx, vy)

the components of the velocity vector v = (ẋ, ẏ)
T
, and x, y the components of the

position vector x = (x, y)T .

We assume that the departure and arrival points are known, as well as the time

at which the arrival point is reached, t = T .

In the present case the EL equations read

{

∂C
∂x

− d
dt

∂C
∂ẋ

= 0,
∂C
∂y

− d
dt

∂C
∂ẏ

= 0.
(24)

Considering the expression of C = (vx + y)
2
+ (vy − x)

2
, equation (24) leads to:

{

ẍ− x+ 2ẏ = 0,

ÿ − y − 2ẋ = 0.
(25)

The departing and arrival points are defined respectively by (0, 0) at t = 0 and

(0, H) at t = T .

The EL equations given in Eq. (25) can be solved by applying the finite difference

method for example. The converged finite difference solution is considered as the

reference solution in this section.

When the cost function is not available analytically, an appealing neural archi-

tecture is presented in Fig. 8.

The solution of the problem for H = 1m and T = 1s is shown in Fig. 9, where the

solutions obtained with three different strategies are compared with the reference

one. The four strategies include:
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Figure 6 Comparing the optimal velocity on two trajectories characterized by p = 0 and p = 5
respectively, when κ = 0.

• Finite difference discretization. The finite difference method is applied to solve

monolithically both equations in (25), with a time discretization of nt = 1000

nodes uniformly distributed. The same time nodal distribution is considered

in the different strategies described below.

• Optimized cost. The cost function C is approximated by a neural network

NNc, then the parameters of NNc are frozen. Later on, NNx is trained with

a loss function Lc representing the total cost:

Lc =

nt
∑

i=1

Ci (26)

• Lagrange Net. This strategy uses the algorithm illustrated in figure 8. The

cost function C is approximated by the same neural network NNc, then the

parameters of NNc are set to non-trainable. Later on, NNx, is trained with

a loss function LLN defined by:

LLN =

T
∫

0

(

∂C

∂x
−

d

dt

∂C

∂ẋ

)2

+

(

∂C

∂y
−

d

dt

∂C

∂ẏ

)2

dt. (27)

• Physics Informed Neural Network, PINN. The PINN is employed to solve Eq.

(25). The same neural network architecture used for NNx is used again for the

PINN, with the same boundary conditions and same time mesh. The PINN

loss function, LPINN, reads:

LPINN =

T
∫

0

(

(ẍ− x+ 2ẏ)
2
+ (ÿ − y − 2ẋ)

2
)

dt (28)
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Figure 7 Cost evolution I(p) associated with the cost function depicted in equation (23).

Figure 8 Flow chart for the training of network NNx, when the cost function C is approximated
by a neural network based regression NNc. The weights and biases of NNx are noted Θ.

One may note that the PINN consider the explicit expression of the cost

function C instead of the neural network NNc that was considered by both

previous strategies.

The same training methodology is used for the three neural networksNNx: PINN,

Lagrange Net and Optimized Cost.

4.1 A first training

The ADAM stochastic gradient descent algorithm is considered, with a learning rate

of 10−4 and 2000 epochs. TheNNx neural network structure is illustrated in table 1.

Fig. 9 compares the computed trajectories x(t), from which we can conclude that

techniques involving derivatives calculation exhibit lower accuracy. The indicated

cost in Fig. 9 is computed as the sum of the cost C over all the time steps, as
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Figure 9 Solution for C = (vx + y)2 + (vy − x)2, H = 1m and T = 1s when using finite
difference (FD), optimizing the cost directly, the Lagrange-Net flow chart illustrated in figure 8,
and a Physics Informed Neural Network (PINN) solving the equations illustrated in 25.

Layer Building block for x prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation
2 Dense layer with 200 neurons tanh
3 Dense layer with 200 neurons tanh
4 Output layer having the size of x per node (= 1) linear

Layer Building block for y prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation
2 Dense layer with 200 neurons tanh
3 Dense layer with 200 neurons tanh
4 Output layer having the size of y per node (= 1) linear

Table 1 The neural network used as the surrogate model NNx. Independent networks are used for
predicting the coordinates x and y, while having the same structure. tanh stands for the hyperbolic
tangent.

expressed in equation (26). The fact that the optimized cost is slightly smaller that

the reference one can be explained by the fact that the former uses an approxima-

tion of the cost, that is, it proceeds from NNc.

4.2 Training deeper networks

The used training algorithm is again ADAM, with a learning rate of 10−3 and 100

epochs of gradient descent. The NNx neural network structure used in this section

is illustrated in Table 2. The optimal trajectories using the different schemas are

illustrated in Fig. 10.

It can be noticed that a deeper network with a rectified linear unit (relu) activation

does not produce a significant improvement in the Lagrange Net results, even if it

improves the PINN performances.

Thus, a third model, combining relu and tanh activations, is trained using the

structure given in Table 3, that improves the Lagrange Net results, as Figure 11

proves. The associated velocities all along the trajectory, are compared for the

horizontal and vertical velocity components in Figs. 12 and 13 respectively.
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Layer Building block for x prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation
2 Dense layer with 60 neurons relu
3 Dense layer with 60 neurons relu
4 Dense layer with 60 neurons relu
5 Dense layer with 60 neurons relu
6 Output layer having the size of x per node (= 1) linear

Layer Building block for y prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation
2 Dense layer with 60 neurons relu
3 Dense layer with 60 neurons relu
4 Dense layer with 60 neurons relu
5 Dense layer with 60 neurons relu
6 Output layer having the size of y per node (= 1) linear

Table 2 The deeper neural network used as the surrogate model NNx. Independent networks are
used for predicting the coordinates x and y, while having the same structure. relu stands for the
rectified linear unit.

Figure 10 Trajectory solutions when using the deeper network illustrated in table 2.

The results obtained with the three strategies exhibit similar accuracy. Their main

difference concerns the expression of the cost function, explicit in the case of the

PINN approach, and expressed from a general regression in the other two cases.

5 Stochastic setting

This section aims at determining the optimal velocity when the cost has a given

statistical variability. For that purpose we assume the flight of a drone, where the

resistance scales with the drone-wind relative velocity.

For the sake of simplicity we assume a rectilinear drone trajectory, with the wind

(uniform in space) aligned with the drone trajectory and characterized by a certain

statistical distribution. One expects that during the drone flight the wind velocity

will represent the entire known statistics (ergodicity assumption).

The considered cost function consists of two terms (here the inertia term is ne-

glected). The first representing the drag Cd, scaling with

Cd ∼ (vd − v)2vd, (29)
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Layer Building block for x prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation
2 Dense layer with 200 neurons tanh
3 Dense layer with 60 neurons relu
4 Dense layer with 60 neurons relu
5 Dense layer with 60 neurons relu
6 Output layer having the size of x per node (= 1) linear

Layer Building block for y prediction Activation

1 Input layer having the size of the time t coordinate (= 1) No activation
2 Dense layer with 200 neurons tanh
3 Dense layer with 60 neurons relu
4 Dense layer with 60 neurons relu
5 Dense layer with 60 neurons relu
6 Output layer having the size of y per node (= 1) linear

Table 3 A deeper neural network used as the surrogate model NNx combining relu and tanh
activation functions.

Figure 11 Trajectory solutions when using the deeper network illustrated in table 3, combining
relu and tanh activation functions.

with vd the drone velocity along the rectilinear trajectory and v the one of the wind,

uniform in space but that evolves in time.

The second contribution to the cost concerns the flight duration. Thus, if the path,

of length L, is expected be completed in the time period T , the nominal velocity will

result vnomd = L/T , and then, any deviation from it, is considered as an extra-cost.

By assuming a constant velocity of the drone, the cost could be expressed from

Ct ∼ (vdT − L)2. (30)

Both contributions are combined into the global cost function

C = Cd + Ct = (vd − v)2vd + λ(vdT − L)2, (31)

with λ a coefficient weighting both contributions.
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Figure 12 Optimal velocities vx when using the deeper network illustrated in table 3, combining
relu and tanh activation functions.

Now, being the wind velocity uniform in space, as well as the one of the drone,

the global minimization coincides with the local one. The later reads:

∂C

∂vd
= 0, (32)

leading to

3v2d − (4v − 2λT 2)vd + v2 − 2λTL = 0, (33)

that, in absence of traveling time constraints, that is, with λ = 0, the minimum

cost concerns, as expected, vd = v.

Now, we assume that the wind velocity is not constant in time, and that during

the flight, the wind velocity will represent the entire wind statistics.

Thus, for any possible wind velocity v, its probability (fraction of the flight time

in which the wind has that velocity) is given by p(v). The optimal drone velocity

when the wind velocity is v, is given by the solution of Eq. (33), whose associated

cost C(v) results from applying Eq. (31).

If, for example, we assume a uniform wind velocity distribution in the interval

v ∈ [vmin, vmax], p(v) = 1/l, with l = vmax − vmin, then, it is enough to consider the

mean of the cost, that is

C =

∫ vmax

vmin

C
1

l
dv, (34)

then, compute the wind velocity v∗ related to C, i.e. C(v∗) = C, and finally the

drone velocity associated to v∗ according to Eq. (31), that represents the optimal

constant drone velocity.

This procedure can of course be generalized for more complex scenarios.
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Figure 13 Optimal velocities vy when using the deeper network illustrated in table 3, combining
relu and tanh activation functions.

6 Conclusion

This work proposes a holistic approach to trajectory and velocity optimization

along a path, while minimizing the cost based on the Euler-Lagrange functional

minimization, along with the use of artificial neural networks for machine learning.

The approach leads to a path optimization if the cost function C is either explicitly

known or not.

We considered three different strategies for computing the optimal trajectory that

were compared with the one obtained by using the finite difference method, consid-

ered as reference.
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