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ABSTRACT

Automated, reliable, and objective microstructure inference from micrographs is an essential milestone towards a comprehensive
understanding of process-microstructure-property relations and tailored materials development. However, such inference,
with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning (DL),
in principle, offers new opportunities for this task, an intuition about the required data quality and quantity and an extensive
methodological DL guideline for microstructure quantification and classification are still missing. This, along with a lack of
open-access data sets and the seemingly intransparent decision-making process of DL models, hampers its breakthrough in
this field. We address all aforementioned obstacles by a multidisciplinary DL approach, devoting equal attention to specimen
preparation, contrasting, and imaging. To this end, we train distinct U-Net architectures with 30–50 micrographs of different
imaging modalities and corresponding EBSD-informed annotations. On the challenging task of lath-bainite segmentation
in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of
image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate
plausible model decisions based on grain boundary morphology and triple points. As a result, we resolve preconceptions about
required data amounts and interpretability to pave the way for DL’s day-to-day application for microstructure quantification.

1 Introduction
Deep learning (DL) is a lasting subject of attention and achieved remarkable results that culminated in a paradigm shift in
computer vision. In particular, research fields such as autonomous driving1, and biomedicine2, 3 acted as driving forces for the
development of data-driven approaches, which superseded conventional computer vision (CV) algorithms to a large extent. The
introduction of convolutional neural networks (CNN) with versatile architectures was accompanied by substantial improvements
in CV tasks4. This was rendered possible by the accessibility of source codes and open-access data sets, which enabled the
comparability of different modeling approaches and thus steady improvement.

Quality control in materials processing or of safety-critical components, as well as tailored materials development5 require
the segmentation and classification of material microstructures. Segmentation here refers to the pixel/voxel-wise materials
phase assignment. It is indispensable when relating microstructure with properties, e.g., the phase morphology with fatigue
properties6. Predominantly, 2D micrographs of different imaging modalities, such as light optical microscopy (LOM) or
scanning electron microscopy (SEM), are utilized for microstructure inference.

However, such micrographs’ automated, reliable, and objective segmentation is not established for all desirable material
classes. Although DL has more than proven its capability for image segmentation and classification, it is still waiting for its
breakthrough in materials science. This can be attributed to DL being frequently associated with a few drawbacks. Namely, the
requirement for (very) large data quantities and the black-box nature of CNNs concerning the intransparency of their decisions7.
Furthermore, microstructure recognition tasks, compared to real-world images, can be very complex regarding the degree
of detail and information density in the images. This further impedes the determination of accurate annotations8 needed for
supervised-learning, which may discourage the use of DL, ultimately resulting in a lack of representative annotated open-access
data sets.

Hence, there is no practical guide on suitable specimen preparation and contrasting, data acquisition and processing, and no
general intuition about the quality and quantity of data required to train a specific DL architecture in the material science domain.
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Consequently, material scientists’ recurrent questions address the required amount of training data, resolutions, annotation
accuracy, model architectures, and training strategies.

The work’s primary objective is to tackle former questions and provide a better grasp through an integral approach
systematically investigating methodological interdependencies in the whole metallographic and DL process chain. Moreover, a
CNN’s decision-making process is rendered more transparent by investigating the importance of certain microstructural features
for the CNN prediction. Using the microstructure of a complex phase (CP) steel, and particularly its lath-shaped bainitic phase,
as a case study, we demonstrate DL’s relevance in the field and aim to raise the awareness and acceptance of DL for such
tasks. This microstructure class exhibits pronounced importance in engineering, and its constituents can only be segmented to a
minimal extent using classic CV approaches9.

According to the classification scheme suggested by Zajac10, the microstructure of CP steels, a family of advanced
high-strength steels, typically consists of bainite (granular, upper, or degenerate upper bainite), ferrite, and dispersed carbon-
rich additional phases like martensite or retained austenite. In micrographs of such heterogeneous microstructures, not
all constituents can be distinguished through gray value distribution. Therefore, simple, traditional segmentation methods
operating on LOM or SEM quickly reach their limit. Approaches to quantify the separate microstructure constituents using
EBSD individually have been reported11, 12. Müller et al.13 developed a procedure to segment lath-shaped bainite in CP
steel micrographs consisting of lath-shaped and granular bainite by analyzing the microstructure constituents’ directionality.
Bulgarevich et al.14 used a trainable segmentation with a random forest classifier to segment ferrite, pearlite, and bainite in light
optical micrographs of three-phase steels. Although methods for quantifying multi-phase microstructures have been suggested,
the annotation and efficient segmentation of different microstructure constituents solely from LOM or SEM micrographs are
not satisfactory.

As opposed to these works, supporting correlative electron backscatter diffraction (EBSD) information is used in the LOM
and SEM annotation procedure to lay an appropriate foundation for learning. Moreover, the aforementioned conventional CV
or ML approaches require complex image processing pipelines and elaborate feature engineering to render predictions robust
against variances13. In contrast, the applied DL methods are directly based on input and target output image pairs (representation
learning). Their application to microstructure recognition demonstrated the potential for quantitative microstructure analysis15, 16,
steel type classification15, crack path prediction17, and micromechanical damage segmentation18. A CNN architecture referred
to as U-Net2 has proven its merit in the latter work and represents a common starting point due to its numerous implementations
in different DL frameworks and image processing tools19, 20. Therefore, this architecture represents a suitable candidate to
derive best practices.

2 Methods

2.1 Material
The material used in this study is a low-carbon CP steel, taken from industrially produced heavy plates. Steels were thermo-
mechanically rolled, followed by controlled accelerated cooling. The segmentation task is to distinguish between lath-shaped
bainite (hereafter called foreground) and the background, consisting of polygonal and irregular ferrite with dispersed granular
carbon-rich 2nd phase.

2.2 Specimen preparation
Specimens were taken in the plate’s rolling direction, ground using 80–1200 grid SiC papers, and then subjected to 6, 3,
and finally, 1µm diamond polishing. For LOM investigation, metallographic etching was carried out by immersing polished
specimen surfaces into a mixture of ethanol and nitric acid (2 vol.-%), also called “Nital” etching. For SEM examination, the
specimens were etched electrolytically using Struers electrolyte A2. Nital and electrolytic etching were chosen because they
attack and thus reveal grain boundaries. This contrasting step is crucial to identify the boundaries of lath-shaped bainite regions
during annotation. For investigation by electron backscatter diffraction, colloidal oxide polishing was additionally performed
after diamond polishing.

2.3 Microscopy
Light Optical Microscopy. For imaging, the LOM in an Olympus LEXT OLS 4100 laser scanning microscope was used.
Images were taken at a magnification of 1000× with an image size of 1024×1024 pixels, corresponding to an area of
129.6×129.6µm2 (pixel size = 126.6 nm). All images were acquired with the same image contrast and brightness settings.
Scanning Electron Microscopy. SEM images were recorded in a Zeiss Merlin FEG-SEM using secondary electron contrast at
a magnification of 2000× with an image size of 2048×1536 pixels, equal to 56.7×42.5µm2 (pixel size = 27.7 nm). The SEM
was operated at an acceleration voltage of 5 kV, a probe current of 300 pA, and a working distance of 5 mm. All images were
acquired with the same image contrast and brightness settings in the SEM.
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Figure 1. (a) LOM micrograph of CP steel microstructure after Nital etching. (b) enlarged detail from (a), showing an
annotated lath-shaped bainite region (blue). (c) correlative SEM micrograph of (b). The enlarged detail figures (d), (e) and (f)
depict polygonal ferrite with dispersed carbon-rich 2nd phase, lath-shaped bainite and irregular ferrite with dispersed
carbon-rich 2nd phase, respectively. In the SEM modality the carbon-rich 2nd phase particles appear bright.

Correlative Microscopy. In a correlative approach, LOM and SEM were combined with EBSD characterization. The specimen
regions of interest were marked by hardness indents for consistent imaging in different modalities. EBSD measurements
were performed in a Zeiss Merlin FEG-SEM with an acceleration voltage of 25 kV, a probe current of 10 nA, and 15 mm
working distance. Scans were done at a magnification of 200× with a step size of 0.35µm using a hexagonal grid. Data
were analyzed using software OIM TSL Analysis. As cleanup, neighbor confidence index (CI) correlation (CI ≥ 0.01) and
neighbor orientation correlation (5° grain tolerance angle) were applied. After EBSD measurements, specimens were etched,
and micrographs from the same regions of interest were taken in LOM and SEM, as described above. Several such micrographs
were stitched together using Microsoft Image Composite Editor to match the EBSD scanned region.

When combining different imaging techniques, the different micrographs must be aligned. This process is referred to as
multi-modal image registration and is accompanied by challenges including different specimen states, viewpoints, contrasts,
and fields of view21. For a general explanation of challenges during correlative characterization and image registration in
metallography, the authors refer to Britz et. al.22.

For registering EBSD maps with LOM and SEM images, the open-source tool ImageJ and its plugins SIFT feature extraction
and bUnwarpJ registration were used22. First, the Scale-Invariant-Feature Transform (SIFT)23 algorithm was used to find the
same features in both the EBSD map and the LOM/SEM image. For this purpose, the EBSD image quality map24 was chosen
due to its pronounced similarity to the other modalities. The common features extracted by SIFT facilitate the registration using
the bUnwarpJ25 algorithm. Thereby a transformation matrix is determined that is applied to register other EBSD-derived maps,
e.g., misorientation maps.

2.4 Data Set Preparation
Annotations for deep learning segmentation. Labeling of images was done manually by human experts on a Wacom Tablet.
Since human labeling based solely on the microstructure’s visual appearance in topography-sensitive LOM or SEM images
can be subjective, parameters from correlative EBSD measurements were used as additional information to annotate the
micrographs more objectively. Reasonable EBSD-derived information that assisted the annotation included grain structure
visualizations as well as intergranular and intragranular misorientation metrics. Namely, unique grain color, grain boundary,
grain orientation spread (GOS), grain average misorientation (GAM), and kernel average misorientation (KAM, with 3rd order
neighbors) maps were considered.

Because of time constraints, it is typically not feasible to obtain high-fidelity annotations through correlative EBSD
measurements for the comparatively large image sets required for DL. Therefore, correlative EBSD measurements were
collected only for a subset of images, and the knowledge and experience gained from the fused data was translated to regular
LOM and SEM images. Therefore, the correlative measurements can be regarded as references for the whole data set. Under
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these circumstances, well-founded and more objective annotations can be accomplished by human experts also without the
EBSD data.

The final LOM image set consists of 51 micrographs with corresponding masks for the segmentation (1024×1024 pixels,
approx. 28% lath-shaped bainite on average per image) and the final SEM image set of 36 micrographs with corresponding
masks (2048×1433 pixels due to cropping of the SEM annotation bar, approx. 60% lath-shaped bainite on average per image).
Data pre-processing for model training. To comply with network architectural and computational memory constraints,
the raw input and derived label images were cropped into tiles for both imaging modalities. Before extracting tiles with a
fixed resolution, an optional downscaling step by a factor of 0.5 in both spatial directions was performed to study the image
context-dependence.

Since convolutions can not be computed at the immediate image border, tile images are often artificially extended at the
border by few pixels (padding) at each convolution layer. This is used in the U-Net VGG16 variant by repeating the tile border
pixels. In contrast, by virtue of the vanilla U-Net and its unpadded convolutions, the prediction exhibits a reduced tile resolution
compared to the network input. To counteract this, the tiles were extracted with an offset that amounted to 62 pixels at all tile
edges to take the whole data into account and ensure data efficiency. As a consequence, adjacent input tiles had an overlap, but
the network’s predicted tiles were adjoining2. For tiles originating from the raw image border, this was facilitated by applying
mirror padding at the border of full frame images before extracting tiles. In case of previous downscaling or uneven raw image
resolutions, such as in SEM, the aforementioned border padding was combined with a minor additional padding that ensured
resolution conformity throughout the forward pass of the vanilla U-Net network. In total, four DL data sets were derived
from the LOM and SEM raw data sets —- native and scaled versions of both image modalities. Since the SEM images were
acquired with higher magnification, the raw images covered a substantially smaller field of view. Tiles with 380×380 pixels and
636×636 pixels were extracted for the LOM and SEM modality, respectively, to assimilate their contained image context. Input
images of both modalities were converted into grayscale. A summary of the data sets, including some characteristic metrics,
can be found in the Supplemental. The resulting tiles were randomly sampled in five data portions for k-fold cross-validation
(unstratified) with k = 5. For each of the five folds the test set was altered to be one of the data portions. Hence, the five distinct
data sets contained 80% and 20% of the total tile amount for training and testing, respectively.

2.5 Deep learning methodology
Two research groups collaborated on this segmentation task using their respective approaches and best practices. Both
approaches are based on the U-Net architecture, but still contain various differences. By comparing their results, important
conclusions regarding the universal applicability and robustness of deep learning techniques for the segmentation of CP steels
can be drawn.
Deep learning segmentation approach 1 – Vanilla U-Net. A vanilla U-Net model with an architecture implemented in the
PyTorch framework26 that included few adjustments with respect to18 was trained from scratch. Only two class channels in
the output were used since the work at hand covers a binary segmentation problem. Furthermore, batch normalization was
incorporated after convolutions to accelerate the training procedure by smoothing the optimization function27. The U-Net
architecture has four levels, discards padding for the non-dilated 3×3 convolutions in the encoder, utilizes 2×2 max-pooling,
applies “same” padding for transposed convolutions in the decoder, and contains skip-connections28 between the corresponding
encoder and decoder levels. A schematic of the architecture showing the designation of the individual layers is accessible
in the Supplemental since network visualization techniques shown hereafter are referring to specific layers. Different data
augmentation techniques from the Albumentations package29 were applied to investigate their impact on the performance.
In contrast to our prior study18, a more systematic approach to data augmentation was taken by applying grid, and random
search for optimization of relevant hyperparameters in Tune30. The set of optimized augmentation parameters for both image
modalities is outlined in the Supplemental. For training, the focal loss function31, and an Adam optimizer32 was used. Each
model was trained for 250 epochs on a NVIDIA Tesla V100 GPU with 32GB memory and CUDA (v10.0) acceleration. The α
and γ parameters of the focal loss function were also considered during hyperparameter optimization to account for data set
class imbalances.
Deep learning segmentation approach 2 – U-Net with VGG16 backbone. A U-Net model variant with a VGG16 encoder
that was pre-trained on ImageNet33 was applied. The model was implemented in PyTorch, and the pre-trained weights were
from torchvision. A schematic of the architecture is depicted in the Supplemental. The initial five convolution blocks of
VGG16 represent the four encoder levels and center level of the U-Net. The decoder contains four upsampling blocks. Each
upsampling block contains a bilinear upsampling and two convolutional layers with batch normalization and Relu activation.
Skip-connections are applied identically to the regular U-Net. In Table 1 relevant architectural differences are listed. Note that
due to padded convolutions in the encoder, the image shape is maintained by this model. Therefore, border mirror padding is
not required, and tile images were center-cropped to 256×256 pixels for LOM images and 512×512 pixels for SEM images.
The major difference compared to segmentation approach #1 in the training procedure is that the U-Net VGG16 leveraged a
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pre-trained encoder. For performance optimization in the training process, data augmentation (see Supplemental), cross-entropy
loss, and an Adam optimizer32 with cosine annealing schedule are utilized. No measures for the correction of class imbalance
were taken.

Table 1. Architectural differences between the vanilla U-Net and the U-Net VGG16.

Vanilla U-Net U-Net VGG16
Upsampling approach Transposed convolutions (learnable)

halving channels
Bilinear Interpolation maintaining
channels

Convolution approach encoder Unpadded, contains two convolution
layers in each level

Padded, contains three convolution lay-
ers in later encoder and center levels

Batch normalization Encoder and decoder Decoder

The model performances are evaluated in terms of the Accuracy metric and the intersection over union (IoU), also referred
to as Jaccard index, defined as follows.

Accuracy =
T P+T N

T P+T N +FP+FN
(1)

IoU =
T P

T P+FP+FN
(2)

Here, TP, TN, FP and FN are the true positive, true negative, false positive, and false negative pixel amounts, respectively.
Both metrics are defined in the range from zero to unity (or 0–100%), where latter corresponds to an ideal model prediction.
The accuracy metric measures the correctly predicted pixel percentage, while the IoU measures the ratio between intersection
and union of predicted and labeled pixel areas. We provide the accuracy metric due to its intuitiveness and despite its limited
sensitivity in case of notable class imbalances, such as in the LOM case. In contrast, the IoU captures the model differences
more adequately for data sets skewed towards the negative class, which is why we focus on it for the comparison between the
individual models.
Network visualization techniques In order to render model decisions explainable, the Network Dissection34 and Gradient
Weighted Class Activation Maps (Grad-CAM)35 visualization methods were used. The objective of the Network Dissection
method is to visualize concepts that were learned by individual filters in specific layers. This is achieved by evaluating activation
maps, i.e., single channels of the activation function output, with regard to its spatial attention for regions in the input image.
In particular, activation maps were thresholded such that the largest 1.0% of the activation map is obtained. In the original
implementation, the thresholded activation maps were then resized to input image resolution and subsequently superimposed.
However, since the encoder used unpadded convolutions, in the vanilla U-Net case, a combination of resizing and padding was
required.

Grad-CAM, on the other hand, aims to shed light on the decision-making process of models. This technique originally
focused on providing a class discriminative localization map for the output convolutional layer for a given input image,
highlighting the important regions in the image for a particular class prediction. However, it is also applicable for any
convolutional layer in a network. The localization map for a convolutional layer is constructed by a weighted combination of
feature maps of that layer for a given input image. The weights for feature maps are computed by propagating the gradient of the
particular class score with respect to the feature maps and performing a global average pooling over width and height dimensions.
Since the method is applicable only for classification problems, we converted our network prediction to a classification output
by global average pooling. Both methodologies for network visualization complement each other well and can, when combined,
generate detailed insights into the decision-making process of DL architectures3.

3 Results
Unifying the aforementioned methodologies entailing specimen preparation, image acquisition, multimodal data registration,
data fusion, deep learning modeling, and network visualization, facilitates a holistic approach for microstructure inference.
Ultimately, this puts us in a position to explore the interdependencies within and optimize this processing pipeline.

3.1 Image sets and corresponding annotations
For creating the annotation masks, correlative EBSD data was used. Figure 2 shows a LOM image (a), different overlays
of LOM with suitable EBSD-derived characteristics (b-e), and the resulting annotations of lath-shaped bainite based on the
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LOM image and this EBSD-derived information (f). Enlarged details in (g–j) illustrate how unique grain color maps or grain
boundary visualizations can be used to precisely define boundaries of the lath-shaped bainite regions. For instance, it is visible
which second phase particles belong to the object or are part of the surroundings (red encircled region in Figure 2g–j). This
data also helps if grain boundaries are not clearly visible in LOM images due to weak contrasting. Additionally, when the
determination of the class affiliation is impeded due to microstructural units with intermediate morphology between lath and
granular, complementing EBSD information can provide a remedy. Without EBSD data, this assignment would have to be
done solely based on the microstructure’s visual appearance, which can lead to disagreement between human experts and
inconsistencies during annotation. Enlarged details in k–n show that misorientation parameters, i.e., low values for KAM or
GOS (blue color in Figure 2l+m), indicate polygonal ferrite grains adjacent to or even inside lath-shaped regions (red arrows
in Figure 2k–n) that should be excluded during annotation. Distinct crystallographic orientation of the embedded grain (see
Figure 2c) does not suffice to unambiguously exclude it from the lath-bainite class. However, intragranular misorientation
metrics can characterize such marginal cases as ferritic regions since small intragranular misorientation is incompatible with
the notion of lath-shaped bainite36. These illustrations also clearly show the difficulty of the segmentation task at hand because
the different phases are not distinguishable by gray value distribution, show very complex-shaped borders, and can exhibit
objects of one class inside objects of the other class.

20µm b) c)

d)

a)

f) e)

5µm g) h)

l)

j)i)

m)k) n)

D1

D2

Figure 2. Illustration of correlative microscopy approach for objectively annotating lath-bainite regions. (a) Original LOM
micrograph. LOM overlayed with (b) an EBSD-derived grain boundary map, (c) unique grain color map, (d) kernel average
misorientation (KAM) map and (e) grain orientation spread (GOS) map. (f) LOM with annotated lath-bainite regions based on
EBSD information. Detail views D1 (red frame) and D2 (green frame) are highlighted here. D1 in figures (g–j) displays how
(h) grain boundary and (i) grain visualizations are used to correctly annotate the exact boundaries of the lath-bainite. In
contrast, D2 in figures (k–n) demonstrates how (l) KAM and (m) GOS indicate polygonal ferrite grains in or adjacent to the
lath-bainite region.

3.2 Segmentation results
Both architectures were trained according to Section 2.5 with data from both image modalities using native scale and downscaled
image tiles. The segmentation performance is evaluated in terms of intersection over union (IoU) metric for the foreground
(fg: lath-shaped bainite regions) and background (bg: polygonal and irregular ferrite with dispersed granular carbon-rich 2nd
phase) as positive classes each. Moreover, the accuracy metric is provided, which measures the pixel percentage that is in
agreement with the annotation. The given metrics for each model represent the average and standard deviation over all five-fold
cross-validation trials. Since the aleatoric uncertainity component37 introduced during training was previously confirmed to
be negligible, the standard deviations given in Tables 2 and 3 are predominately attributed to the k-fold sampling from the
low-quantity data sets. This is shown in a diagram in the Supplemental, where the class-averaged IoU is plotted over the fold
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number for multiple models. For this reason, and since the same overall data was used to train the models, the average values
can be utilized to deduce tendencies between the models within each modality.

3.2.1 LOM Image Set
In Table 2 the LOM image-trained models along with model initialization type, image resizing factor, and the resulting accuracy
as well as IoU metrics are listed.

Table 2. Intersection over Union metrics of U-Net-based networks trained on the light optical microscopy data set for different
model initializations and downscaling factors. The superscript v indicates a validation experiment conducted to test a particular
hypothesis, as described in Section 3.2.1. The superscripts ∗ and ∗∗ indicates that the model used padded convolutions and that
downscaling was performed after tiling respectively. The accuracy metric is provided to get an intuition about the model
performance, while the IoUs can be used to discriminate the model performance better, especially since they trained on an
imbalanced dataset.

# Model Model initialization Downscaling factor Accuracy IoUbg IoU f g

1 Vanilla U-Net random native 91.6 ± 0.6 88.9 ± 1.0 74.1 ± 1.1
1v Vanilla U-Net∗ random native 90.1 ± 0.9 87.0 ± 1.5 70.2 ± 1.2
2 Vanilla U-Net random 0.5×0.5 90.9 ± 1.1 88.1 ± 1.5 72.1 ± 2.2
2v Vanilla U-Net random 0.5×0.5∗∗ 90.3 ± 0.7 87.1 ± 1.3 71.6 ± 0.8
3 U-Net VGG16 pre-trained native 90.6 ± 0.6 87.6 ± 0.9 71.3 ± 1.7
3v U-Net VGG16 random native 89.6 ± 0.8 86.3 ± 1.3 69.3 ± 1.5
4 U-Net VGG16 pre-trained 0.5×0.5 90.3 ± 1.1 87.1 ± 1.7 71.6 ± 1.7

The results show that the best models of the two architectures trained on native and downscaled image tiles (#1, #2 ,#3, and
#4) attained accuracies of above 90%. This is comparable to the discrepancy in annotation by human experts, when relying
solely on topography information. It can also be observed that the conventional U-Net scored better than the VGG16-based
model. In an attempt to explain this, an additional ablation study was conducted by gradually assimilating both architectures. To
that end, in model #1v a vanilla U-Net with padded convolutions was trained. It is to be noted that in this particular experiment,
identical to the VGG16 case, non-overlapping tiles were provided as input thus reducing the context available in the images
compared to model #1. On the other hand, a random initialized VGG16 validation model #3v was introduced to facilitate
comparability between the VGG16 and vanilla U-Net models. The #1v model performed worse than #1, and converged towards
#3v. At the same time, model #3v acted as the random initialized equivalent of the ImageNet pre-trained U-Net VGG16 (#3),
therefore enabling assessment of the pre-training dependency. Their comparison showed that utilizing models pre-trained with
domain-external data sets such as ImageNet can be beneficial for material scientific challenges.

The downscaling of the images, in general, was performed before tiling, resulting in fewer tile images with sampling-induced
and interpolation-induced information loss but comparatively more context in individual tiles. Downscaling for the vanilla
U-Net did reduce the lath-bainite segmentation performance by 1–2% IoU on average. The validation experiment 2v, where
downscaling after tiling was used for validation purposes, showed an additional slight decrease in IoU. Further, a higher scatter
in IoU is observed for models when downscaling before tiling is applied.

In the case of the vanilla U-Net, a foreground weighing factor α = 1.5 to correct for the material-inherent class (i.e.,
phase) distribution imbalance was found during the hyperparameter optimization to improve the overall IoU slightly. While in
this study, tiled images were used for both training and evaluation, it was found that using tiled images during evaluation is
detrimental for the segmentation of such micrographs.

3.2.2 SEM Image Set
For the SEM image-trained models (Table 3), the difference between foreground and background IoUs is less pronounced
than for the LOM. Moreover, the IoUbg shows a strong dependence on the scale, where downscaling before tiling proves
advantageous (cf. IoUbg of models #5 and #6 or #7 and #8). While this result seems surprising on a first glance, its plausibility
will we validated later. This effect was more pronounced in the U-Net VGG16 case (cf. models #7 and #8). The pre-trained
U-Net VGG16 trained on downscaled data (#8) achieved, while not by a large margin, the best IoU for SEM images. Further, the
SEM model performances confirm the LOM-case observation that the vanilla U-Net performs better for random initialization.
However, while pre-training contributed to only mediocre improvements for LOM (cf. model #3 and #3v), it resulted in a
significant foreground and background IoU improvement for SEM, of approximately 8% IoU (cf. model #8 and #8v).

In Figure 3, the resulting segmentation map predictions of the best vanilla U-Net (Figure 3a+b) as well as best random
initialized and pre-trained U-Net VGG16 (Figure 3c–d and e–f) models are compared to the annotations for both modalities.
Note that the illustrated images are full frame, while for training and testing, tiles of such images were used. The vast majority
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Figure 3. Light optical and scanning electron micrographs superimposed with lath-bainite predictions of different models and
annotated regions showing the comparison between model prediction (red) and manual expert annotation (blue). (a, b) random
initialized vanilla U-Net (model #1 and #6). (c, d) random intialized U-Net VGG16 (model #3v and #8v). (e, f) pre-trained
U-Net VGG16 (model #3 and #8).
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Table 3. Intersection of Union metrics of U-Net-based networks trained on the scanning electron microscopy data set for
different model initializations and downscaling factors. The superscript v indicates a validation experiment conducted to test the
impact of pre-training.

# Model Model initialization Downscaling factor Accuracy IoUbg IoU f g

5 Vanilla U-Net random native 86.5 ± 0.8 71.6 ± 1.0 79.5 ± 2.1
6 Vanilla U-Net random 0.5×0.5 87.5 ± 1.1 76.2 ± 3.1 78.9 ± 2.3
7 U-Net VGG16 pre-trained native 86.7 ± 1.0 71.0 ± 2.5 80.1 ± 2.4
8 U-Net VGG16 pre-trained 0.5×0.5 88.4 ± 1.3 77.7 ± 3.2 80.4 ± 2.6
8v U-Net VGG16 random 0.5×0.5 83.1 ± 0.8 68.4 ± 4.0 73.1 ± 1.5

of lath-shaped bainite regions are well identified and the predictions are widely in accordance for all three models of each
modality. Moreover, locations of erroneous predictions match in the models to a large extent. Under-prediction (blue) occurs at
individual smaller foreground objects or at the borders of extensive lath-shaped bainite regions, where annotated parts do not
exhibit a clear lath structure. Over-prediction (red) tends to arise mostly in smaller areas in which carbides or grain boundaries
resemble lath shapes. In both modalities, but especially in the SEM-trained case, the random initialized VGG16 falls short as
opposed to the other models, which is mirrored by the performance metrics in Tables 2+3.

4 Discussion
To achieve reliable and objective microstructure inference, an understanding of fabrication, microscopy, DL methodology,
and their interdependencies is required. It is important not merely to look at the images and corresponding annotations as
an isolated step but also to consider building a DL model as a holistic approach where specimen preparation, reproducible
specimen contrasting, and suitable image acquisition techniques are of tremendous importance8.
Dataset acquisition. In our study, we successfully trained both random initialized networks and pre-trained networks with
comparatively small data sets of approximately 50 and 30 images for LOM and SEM, respectively. This invalidates the general
claim of DL being only applicable for large-scale data sets. Moreover, it indicates that given reproducible, high-quality imaging
can be ensured, a smaller number of images is sufficient for building an accurate DL model.

Special attention was paid to specimen preparation, optimal contrasting during etching, and consistent settings during image
acquisition. Moreover, the very reproducible imaging settings, e.g., viewing perspective, brightness, and contrast, lead to a low
degree of material-extrinsic variance in the images compared to real-world scenario image sets. The pronounced planarity
of the metallographic cross-sections avoids geometry-related image shading and distortions. Class imbalances often pose a
challenge for learning. Due to the comparatively lower magnifications during image acquisition, the LOM image data set is
representative for the microstructure in terms of phase fractions, where lath-shaped bainite is a minority class (28%). This poses
a material-inherent class imbalance. On the other hand, the lath bainite phase was oversampled during SEM image acquisition
to correct for the imbalance. If such imbalances were not artificially corrected at the image acquisition stage, post-processing
techniques such as sampling or weighting methods could be applied to account for them.

The choice of imaging modality primarily depends on the scale on which relevant microstructural features are to be
expected. For instance, while LOM might be well suited to deduce lath-shaped regions in CP steels, SEM was incorporated
as it additionally contains information on the exact nature of carbon-rich 2nd phases, which renders the distinction between
bainite subclasses possible. Perspectively, when the data quantities and imbalances between both modalities are matched, the
more suitable modality for lath-shaped bainite prediction or other tasks can be concluded.

Assigning the ground truth, i.e., correctly annotating the lath-shaped bainitic regions, is challenging, and disagreements
between human experts can arise when purely relying on the microstructure’s visual appearance in LOM or SEM. By
incorporating correlative EBSD data, even though for just a part of the image set, the objectivity and reproducibility for
annotating micrographs are improved. However, annotating the foreground regions manually by tracing their perceived object
boundaries on a tablet can still lead to some inconsistencies.
Material scientific impact. All segmentation models achieve performances that are comparable to expert segmentations
performed in absence of EBSD data. Since both groups applied their DL best practices and the architectures are fairly similar,
the changes in performance are not extremely pronounced. Nonetheless, for the first time applying DL best practices of
two groups on identical materials data gives important insights. These insights are essential to facilitate subsequent major
improvements through adapted pre-processing, architectural choices, and training procedures. The similar segmentation results
of U-Net-based models point towards general performance robustness concerning different architectures and training strategies.
Namely, no severe performance decrease was observed by different initial network conditions (random initialization as opposed
to ImageNet pre-trained model), different internal padding and normalization strategies. The regions at which the models fail
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are regions where human experts would primarily make mistakes during manual segmentation.
The segmentation enables the accurate calculation of lath-shaped bainite phase fractions. Reported IoUs for the foreground

(lath-shaped bainite, Table 2 and 3) correspond to minor phase fraction errors in the range of 1% compared to human expert
annotation. This error is lower than the variance in manual human expert evaluation. These are remarkable results considering
the intricacy of the segmentation task at hand. A prerequisite to archive accurate phase fraction predictions is that the training
data is not significantly skewed towards a specific class. Skewed data sets would result in models that favor the majority class38.
Therefore, for accurate phase fraction estimation of relatively uncommon phases, imbalance correction is advised.

Since there are some deviations along the border of lath-shaped bainite objects, localization of phase boundaries is only
possible to a limited extent. These border deviations are potentially partly attributed to the aforementioned border annotation
inconsistencies and hamper the calculation of individual bainite object morphological parameters associated with the objects’
spatial extent. On the other hand, segmentation enables the analysis of inner morphology of specific phases in the first place. In
this case of CP steel microstructures, it facilitates the detached calculation of the lath-shaped bainite regions’ lath-characteristics
(e.g., lath-width), instead of calculating these characteristics for the whole image, yielding a more sophisticated microstructure
quantification. These morphological parameters are known to impact mechanical properties significantly39, 40. Furthermore, the
also accessible relative spatial distribution of phases in such heterogeneous microstructures affects local fatigue properties
severely. Such focused microstructure analyses are the prerequisite to establish processing-microstructure-property correlations.
Furthermore, reliable and high-fidelity segmentation has implications for automated and targeted microscopy.
Image context dependency. Considering random initialized models, the vanilla U-Net scoring better than the U-Net VGG16
can be hypothesized to be ascribed to the following factors:

• Inclusion of comparatively more context in each image tile at the training and testing stage. When a complete prediction
is to be obtained for an image, tiles of that image passed to the network need to overlap in case of unpadded convolutions.

• The learnable transposed convolution upsampling can recover spatial localization in the decoder more accurately41.

• In vanilla U-Net training, the imbalance in the data set was corrected by employing a class weight inside the focal loss
function.

Indeed, a validation experiment demonstrated converging performances (cf. model #1v and #3v) when the model architecture
of the vanilla U-Net was assimilated to that of the U-Net VGG16 such that padded convolutions were utilized and images
were supplied accordingly (center-cropped). This indicates that the context contained in the images provided during training
and testing is of pronounced importance. This is confirmed by the SEM model associated results, where an increased image
field of view through downscaling before tiling resulted in a performance improvement (cf. model #7 and #8). Since even the
high-resolved SEM images at native resolution and scale cover a comparatively small field of view, tiles extracted with fixed
resolution do not represent the lath structure appropriately but only contain fragments of the lath-shaped regions. Therefore, in
this lath-bainite segmentation case, where parallel but distant inter-lath carbide islands are relevant to deduce the foreground,
it is valuable to increase the tile image field of view to increase the likelihood of obtaining multiple parallel carbide clusters
within a single image. It applies to many microstructure inference tasks that objects of interest in metallographic micrographs
(e.g., phases) and features within these objects are comparatively more dispersed than in many real-world scenario images.
Therefore, in phase quantification, where long-range features such as the morphology of grain boundary traces are relevant,
downscaling before tiling can potentially improve performance and accelerates training. When applying downscaling, it should
be used consistently at training and testing time. This holds especially true if no preventive measures, such as scaling data
augmentations, are taken at training time. While at training time, tiling and downscaling are often inevitable due to GPU
memory constraints, during testing, where the image size is not restricting, avoiding tiling proves to be beneficial. This was
observed in a preliminary study for the U-Net VGG16 where an increase of 3.3% IoU over the IoU values reported in Table 2
was achieved when evaluating full (uncropped) and unseen images.

Note that downscaling for increasing image context is dispensable when tile images contain sufficient features and should
be avoided when features are likely to disappear by downscaling. For instance, the LOM model performances are assumed
to improve only moderately by the increased image context since tiles extracted from native scale images capture sufficient
features of the microstructure. Moreover, while segregated carbides at lath interfaces are slender, we believe that these features
are still largely preserved when 0.5× downscaling is applied. The similar model performances #1 and #2 as well as #3 and #4
point towards the validity of both assumptions. A validation model training (#2v) was conducted in the LOM case to confirm
that these two competing effects (context increase and information loss) are not individually pronounced effects that compensate
each other due to superposition. To this end, data were tiled before downscaling as an exception. Both downscaled data sets
then had the same physical pixel size (i.e., same information loss) but differed in the image-wise field of view (i.e., image
resolution). When tiling before downscaling is applied, a slight reduction of less than 1.0% IoU (cf. model #2 and #2v) is
observed compared to tiling after downscaling. This confirms that, at such downscaling factors, the effect of increased image
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context and the information loss is negligible for the LOM images. Moreover, this is in accordance with42, where a plateau
of nearly constant performance for a range of downscaling factors (0.2-0.5×) was demonstrated. Downscaling factors below
a threshold are typically accompanied by a significant information loss and a decrease in segmentation performance. Such
information loss can be ascribed to the image downsampling and non-ideal interpolation. Literature42, 43 suggests that this
threshold depends on the specific foreground class. In these works, it was shown that specific classes that have fine features or
small object extent profit from discarding downscaling operations.
Network receptive field. Aside from ensuring appropriate feature representation in images, it is important to select a network
architecture for the task at hand that takes a sufficient amount of context into consideration. Characteristic image length scales
(e.g., phase boundary pixel distance) change depending on the applied magnifications and image resolutions required to resolve
relevant features during image acquisition. In such cases, it can be beneficial to adapt the image region that the network
considers, also referred to as theoretical receptive field (TRF), accordingly. In Luo et al.44, the effective receptive field (ERF)
metric was proposed for CNNs and was empirically computed for several architectures. The ERF revolves around the notion
that not every region within the TRF is taken into account equally. In fact, the predicted ERFs were substantially smaller than
the TRF and showed a 2D Gaussian distribution that strongly decays towards border regions of the TRF. This means, the closer
a pixel is to a target pixel, the more it influences the target pixels’ predicted class44. This represents a CNN-based inductive
bias appropriate for many scientific segmentation challenges, such as for fatigue damage localization where image features are
dense18. However, for phase segmentation tasks, where long-range features (parallelism of distant carbide islands) are relevant,
Attention-based networks45 could improve segmentation performance. The observation that the scale of features determines the
optimal downscaling factor has led to specialized architectures. Especially in such multi-class segmentation or classification
tasks where features are distributed across scales, aggregation of distinctly dilated convolutions is reasonable46. In conclusion,
it is important that individual tile images comprise sufficient learnable feature information, and the architecture facilitates their
appropriate extraction and processing.
Pre-training dependency. The fact that pre-training led only to a minor improvement for the U-Net VGG16 in the LOM case
leads us to conclude that the 50 full-frame LOM images with relatively even class distribution suffice for training such a binary
segmentation model. While this is dependent on the exact problem and model to be trained, we infer that given such data,
U-Net-based models, which score satisfactory results at such ambitious phase segmentation tasks, can be trained from scratch.
In contrast, for the SEM case, the pre-training culminates in a significant IoU increase of 7–9% over the random initialized
U-Net VGG16 (cf. model #8 and #8v). Therefore, the pre-training dependence is comparatively more pronounced in the SEM
modality. This can be ascribed to the fewer amount and higher magnifications of SEM images, hence covering considerably
fewer distinct microstructure scenarios. Moreover, the limited SEM data availability can explain that the ImageNet pre-trained
VGG16-based network, in contrast to the LOM case, outperformed the randomly initialized vanilla U-Net for SEM models.
Therefore, when the data set comprises few images that cover a small field of view, we advise pre-training with readily available
data sets. While ImageNet encompasses a wide range of classes, the noise characteristics in microscopic images are different.
Potentially, pre-training with other data sets exhibiting a smaller domain gap such as miscellaneous nanoscientific objects in
SEM47 or ultra-high carbon steel phases SEM48 can be advantageous.
Variances and generalization. The random k-fold sampling of low-quantity data, especially in SEM, results in notable IoU
scatter. In such cases, stratified sampling and training can prove beneficial before deployment of the model. The reproducible
preparation, mounting, and imaging rendered the data augmentation, and corresponding hyperparameter tuning negligible
as the performance improvement associated with it for both modalities was minimal. This implies that data augmentation
is not generally essential for small-scale data sets, but only when the applied transformations render the training set more
representative of the test set. In instances where such material-extrinsic variance can be ensured to be insignificant, data
augmentation through simple spatial (affine and even elastic) or intensity transformations can be evaded. Therefore, such
models trained on comparatively small data sets are suitable for tasks with inherently small scatter, such as quality inspection,
where recurring tasks and predefined workflows are set. When, for instance, etching-based contrasting methodologies are
concerned, reproducibility can be difficult to attain.

To this end, a generalization study was conducted to test the transferability of this model, trained with low variance data, to
an alternate data domain. Therefore, the previously best SEM vanilla U-Net model #6 was tested on a SEM image of a surface
etched with Nital as an exception. In contrast, another model was trained with dedicated augmentation settings to improve the
performance on the alternate etching domain. Figure 4a+b illustrates the comparison of the source domain (electrolytic etch)
with the alternate target domain. Moreover, Figure 4c+d depicts the segmentation of Figure 4b using model #6 and a model
trained with solely brightness and contrast augmented images of the source domain. The degree of both augmentations was
optimized for the target domain.

A substantial improvement of IoUbg and IoU f g of 46%→ 72% and 54%→ 62% is achieved, respectively. This corresponds
to a change in phase fraction prediction of 66% → 37% for a manually labeled phase fraction of 44%. Evidently, the
segmentation in Figure 4d is not satisfactory since applied augmentations do not close the domain gap entirely. More elaborate
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a) source b) target

c) standard augmentation d) altered augmentation
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Overlap10µm 10µm

Figure 4. An generalization study for alternatively etched surfaces. a+b) Comparison of the electrolytically-etched source
image domain (a) and the alternate Nital-etched specimen (b). c) Segmentation results of model #6. In this case augmentation
parameters were altered for the source domain (a). d) Segmentation results of a model like a) but with modified brightness and
contrast augmentation to improve performance on the alternately etched domain. The legend for c) and d) and the micron bar
for b), c) and d) is in positioned in b) to avoid concealing of relevant regions in the segmentation results.
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image transformations would be required to align the domains since the secondary electron image formation is strongly affected
by the different topographies. Nonetheless, the fact that even simple targeted optimizations of low-variance training data can
cause such improvements, implies that dedicated data augmentation pipelines can presumably render models robust against a
large range of perturbations in the specimen preparation or imaging. For instance, in our prior study18 a substantial improvement
was achieved by augmentation of our high-variance data. When training images are acquired from different instruments or at
different institutions, such regularization methods become increasingly relevant. In such instances, it is essential to track and
store all relevant process parameters along the entire process chain in a structured and ideally semantics-informed database.
Moreover, this outcome foreshadows that advanced augmentation with generative adversarial networks (GANs)49 or domain
adaptation50, potentially can address even more challenging generalization demands of the materials science community in the
future.
Network interpretability. Interpretability and explainability of DL models are important to build trust and push for successful
implementation in day-to-day applications. Moreover, it can help in finding failure modes of models and give insights on
tackling them. To that end, we computed network visualizations that highlight regions or concepts within an image that affected
the network’s decision. Meaningful examples of Grad-CAM and NetDissect visualization from several network layers are
illustrated in Figure 5 and 6, respectively. Furthermore, Grad-CAM visualizations of all network layers for both architectures
can be found in the Supplemental.

Grad-CAM masks are generated for a particular convolutional layer of the trained models #1 and #3 for a specific class.
These masks are formed by a weighted average of all activation maps originating from all the target layer filters. Hence, the
masks highlight those regions in the input image that the specific layer treats as essential for predicting the specified class. Thus,
by looking at the Grad-CAM masks of various layers for lath-bainite and background classes, we can deduce how the trained
model predicts a segmentation mask for a given input.

Although the following observations are qualitative, they are very helpful in interpretation. Concerning the background
in the LOM segmentation, strong activations are caused to a certain extent by particles of the carbon-rich 2nd phase (b, c, e,
h) and for the most part by grains and grain boundaries of the polygonal ferrite (b, d, f, g, i). Moreover, in the down4convr1
layer (c), there is a focus on grain boundary junctions, such as triple and quadruple points, which are discriminative features.
Activations in the vanilla U-Net and VGG16 U-Net mostly match (note that e and h show similar activations that differ in
scaling and the degree of focus on carbon-rich clusters). However, towards the end of the decoder (layer up4convr2), the vanilla
U-Net focuses on polygonal ferrite grain boundaries (f) to determine the final output, whereas the VGG16 U-Net focuses on
the grains themselves (i). The model during decision-making puts emphasis on image features that correlate with how human
experts interpret the image. For instance, the decision for the background will mostly depend on the existence of ferrite grains,
which are comparatively more equiaxed. It should be noted that the vertical and horizontal line artifacts visible in Figure 5d are
presumably attributed to the checkerboard problem associated with transposed convolutions51 as such artifacts do not occur in
the VGG16 case that used bilinear upsampling.

Lath-bainite activations in some layers are induced by second phase particles and grain boundaries in general or by elongated
second phase particles and grain boundaries. However, the strongest reactions are caused by pronounced, more extensive lath
regions. An analogy to the human expert examination can be supposed here, too. Pronounced, more extensive lath areas should
also be noticed strongly by the human eye because of regular lath structure compared to the surrounding. Significant differences
in feature importance between the different U-Net architectures were not found.

In contrast to Grad-CAM, NetDissect enables us to analyze what different filters in the model extracted from an input image,
regardless of its contribution to the final segmentation map. This technique offers us the prospect of finding disentangled feature
extractors from the model, which make sense to a human expert, see Figure 6. Note that these exemplary images represent
only a small portion of filters utilized in the whole network. In the case of LOM images, relevant features include 2nd phase
particles plus elongated grain boundaries (a), lath-shaped 2nd phase particles (b), and the area of more extensive grains (c).
Thus, an analogy to human expert interpretation can be assumed here as well. Moreover, considering that lath-shaped 2nd
phase particles are relevant features, similarities to how feature engineering is performed during conventional ML or CV can be
seen, too. For instance, in Müller et al.9 a sliding window technique which utilizes a Prewitt52 edge detection filter to calculate
directionalities of the 2nd phase particles is applied. Directionalities are used, in combination with a neighborhood analysis, to
detect lath-shaped regions.

5 Outlook
Given the large number of different materials and processes, and the time-intensive generation of data sets for many tasks,
materials science will always be accompanied by data scarcity. It is all the more important that strategies of model generalization
to alternate materials or processing conditions are pioneered. As a consequence of emerging high-speed image acquisition
technologies, annotation processes often pose the bottleneck in the creation of statistical data sets. This particularly holds true
for the supervised learning of segmentation models in the material scientific domain. By pushing the correlative approach with
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Figure 5. Gradient-weighted class activation maps indicating image regions that dictated the decision of the network with
respect to the background class (a–i) and lath-bainite regions (j–l). The Grad-CAM maps are derived from specific, designated
layers of light optical microscopy models 1 (black font) and 3 (white font).
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Figure 6. Thresholded activation maps of specific convolution filters (FX) using the NetDissect method. The high gray value
regions indicate disentangled concepts that were learned in model #1.

EBSD measurements forward, routines for automatically generating annotations based on EBSD data can be developed. This
promises to improve the annotation quality and make it less labor-intensive. Moreover, it enables further segmentation tasks to
be addressed, e.g., segmenting lath-shaped and granular bainite as well as distinguishing bainitic and pro-eutectoid ferrite.

Nonetheless, generalizing data-driven methodologies and alternate learning strategies will be indispensable to cope with
material diversity. In literature different training strategies to tackle the sparsity of annotated data have been developed which
rely on comparatively less data. These can be adopted for the segmentation of metallographic phases or the materials community
in general.

Rather than providing pixel-wise annotations for training a segmentation network, in a weakly-supervised learning setting,
e.g., image-wise annotations are used. There are different annotation abstraction levels ranging from bounding boxes53 to
naming the classes present in an image54. Typical methodologies rely on classification networks which provide seeds for
the segmentation network, and constrained seed region growing to respect object boundaries54, 55. In recent years a leap in
weakly-supervised segmentation performance was achieved56, rendering it a promising method for phase fractions. This is
affirmed, since well contrasted grain boundaries presumably can pose distinct and suitable borders for region growing. In
particular for metallographic segmentation tasks in which target phases are often dispersed across the whole image, pixel-wise
annotation is cumbersome. Here it can be particularly worthwhile to replace manual pixel-wise annotations by appropriate
weak labels.

Alternate techniques called semi- or unsupervised domain adaption evolve around the idea that for a specific task (e.g.,
segmentation) annotated data of one source domain (e.g., material A) can be used together with non-annotated or minimally
annotated data of a target domain (e.g., material B) to produce meaningful predictions in latter. The methods achieving this rely
on feature matching between both domains, self-training to provide pseudo labels or generative networks to produce target
data50. The range of materials and processes that can be covered with such techniques in material scientific challenges is yet to
be unveiled. Moreover, the materials science domain can profit from its longstanding experience in knowledge-driven, realistic
simulation techniques such as phase field simulations. The resulting synthetic data can be exploited in domain adaptation to
obtain annotated data in a source domain or for pre-training57.

Another promising candidate to reduce annotated data requirements are physics-constrained DL models58. Rather than
supplying a multitude of input-output pairs, conditions that represent domain knowledge are imposed on the output space.
In such cases the domain knowledge is typically encoded into the loss function. For microstructure inference, laws from
thermodynamics including different crystal growth or segregation/precipitate formation models potentially can condition DL
models.

6 Conclusion
In this study we demonstrate the applicability of deep learning (DL) for the segmentation of complex phase steel microstructures.
Since its individual constituents differ only in shape and arrangement of ferritic and carbon-rich phases rather than image
intensity levels, traditional segmentation approaches reach their limits. We propose a holistic approach since the contrasting
and imaging has pronounced implications for the DL methodology in terms of data imbalance, variance and spatial feature
density. Amongst others, this includes annotations informed by electron backscatter diffraction to alleviate the burden of the
manual annotation process based on how the microstructure in topography contrast micrographs visually appears to the expert
eye. This allowed to provide a well-founded, objective annotation. While the segmentation models presumably benefit from
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more data, the trained U-Net networks achieved a satisfying performance from training with only 30–50 microscopic images.
We hope that rebutting the general preconceptions about the large required data quantities, mitigates the reservations towards
DL and ultimately encourages more scientists to research in this interdisciplinary field. The results point towards a general
robustness of the U-Net with respect to modifications in the training procedure and architecture. Through the experimental
design, a general guideline for the application of DL for microstructure inference could be derived. This applies in particular to
the appropriate consideration of image context, data augmentation, imaging modalities and pre-training. The network decisions
to distinguish lath-bainite from its surroundings are visualized through the Grad-CAM and NetDissect methodologies. These
suggest plausible and human comprehensible choices for features such as parallelism of inter-lath carbides, grain boundary
junctions, grain aspect ratios and carbon-rich clusters. This is an important step towards the acceptance of DL segmentation
in material science community. Finally, we provide an outlook on aspiring and auspicious cutting-edge methodologies from
computer science that hold the potential to render microstructure inference from micrographs generalizable across materials
and processes. A fundamental requirement to achieve this is the interoperability of diverse data generated across institutes.
With the development of materials ontologies and the systematic digitalization of workflows, identifying and unifying relevant
data across institutes will come within reach and thus increase the scope of such deep learning techniques substantially.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available because they are part of an
ongoing study and subject to third party (AG der Dillinger Hüttenwerke) restrictions.
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