Artificial Intelligence-Assisted Reduction in Patients’ Waiting Time for Outpatient Procedures: A Matched Case-Control Study

Xiaoqing Li
School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Dan Tian
Shanghai Children's Medical Center

Weihua Li
Shanghai Children's Medical Center

Bin Dong
Shanghai Children's Medical Center

Hansong Wang
Shanghai Children's Medical Center

Jiajun Yuan
Shanghai Children's Medical Center

Biru Li
Shanghai Children's Medical Center

Lei Shi
Hangzhou YITU Healthcare Technology Co., Ltd

Xulin Lin
Hangzhou YITU Healthcare Technology Co., Ltd

Liebin Zhao
Shanghai Children's Medical Center

Shijian Liu (liushijian@scmc.com.cn)
Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine

Research article

Keywords: artificial intelligence, outpatient, waiting time, medical system

DOI: https://doi.org/10.21203/rs.3.rs-37105/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Many studies indicate that patient satisfaction is significantly negatively correlated with waiting time. A well-designed healthcare system should not keep patients waiting too long for appointment and consultation. However, in China, patients spend considerable time waiting, and the actual time spent on diagnosis and treatment in the consulting room is comparatively less.

Methods: We developed an artificial intelligence (AI)-assisted module that is embedded in hospital information systems. Through its use, outpatients were automatically recommended an imaging examination or a laboratory test based on their symptoms and chief complaint. Thus, they could get examined or tested before they went to see the doctor. People who saw a doctor in the traditional way were assigned to the conventional group, and those who used the AI-assisted system were assigned to the AI-assisted group. We conducted a 1:1 case-control study that applied propensity score matching to pair the data from patients in a pediatric tertiary hospital between August 1, 2019 and January 31, 2020. Waiting time was defined as the time from registration to preparation for a laboratory test or an imaging examination. The total cost included the registration fee, test fee, examination fee, and drug fee. The Wilcoxon rank-sum test was used to compare the differences in time and cost between the AI-assisted group and the conventional group. The statistical significance level was set at 0.05 for two sides.

Results: A total of 12,342 visits were recruited for this study, consisting of 6,171 visits in the conventional group and 6,171 visits in the AI-assisted group. The median waiting time was 0.38 (inter-quartile range: 0.20, 1.33) hours for the AI-assisted group compared with 1.97 (0.76, 3.48) hours for the conventional group (p < 0.05).

Conclusions: Using AI can significantly reduce the waiting time of patients for outpatient procedures, and thus, enhance the outpatient process of hospitals.

Background

Global population explosion and increasing life expectancy have led to a surge in patients seeking medical services. When the medical demand exceeds a hospital's capacity, the patients' waiting time is prolonged [1]. Waiting time in outpatient clinics is recognized as one of the main issues in outpatient healthcare worldwide [2]. It has two dimensions: actual waiting time and perceived waiting time [3]. Some studies indicate that patient satisfaction is significantly negatively correlated with actual waiting time [2, 4-7]. While some studies believe the perception towards waiting time will affect overall satisfaction, but actual waiting time will not [3, 8]. Table 1 introduces research on waiting times. But all in all, a well-functioning hospital ideally should not keep patients waiting too long for appointment and consultation [2, 9].

In China, outpatients need to wait for a considerable amount of time, whereas the actual time spent on diagnosis and treatment in the consulting room is comparatively very short. There are two main reasons for this. First, most Chinese hospitals do not require patients to have a prescheduled appointment [6]. Most patients wait to see a doctor on the day of their registration. Considering China has more than 1.4 billion people but fewer than 5 million doctors, it is conceivable that every doctor's availability is fully booked, especially in the tertiary hospitals. The second reason for hospital overcrowding is the imperfect family doctor appointment system. In Europe and North America, family doctors resolve residents' common illnesses, and they establish long-term service relationships with patients and their families [10]. The Chinese government has implemented a three-tier system. The primary hospital is responsible for basic needs and common diseases. For issues beyond the primary hospital's capabilities, the patient is referred to a secondary hospital and then to a tertiary hospital as necessary. However, the system is not mandatory, and the patient's choices are respected. Even if their conditions are likely to be resolved by primary or secondary hospitals, patients prefer tertiary general hospitals because of their better medical equipment and specialists [4].

Because of the large number of pediatric outpatient clinics and a brain drain of pediatricians in recent years, these problems are particularly prominent in pediatric hospitals. Therefore, it is of great practical significance to analyze the queuing process and simplify the outpatient procedure in order to reduce the waiting time. For this purpose, the use of artificial intelligence (AI) is worth exploring. AI-based methods have emerged as powerful tools to transform medical care. In one study, AI enabled high diagnostic accuracy for common diseases at a rate comparable with pediatricians [11]. AI has also been applied for emergency room and laboratory (lab) procedures; it showed strong performance in predicting waiting times and optimizing processes [12-16]. The emergency appointment systems in Europe and the United States are highly similar to the Chinese outpatient system, as they do not require advance appointments [17].

With this background, we propose an AI-assisted approach for enhancing the efficiency of the outpatient process. In this study, we applied AI to the existing system of the Shanghai Children's Medical Center (SCMC) to diagnose patients in advance and determine the corresponding prescription of an imaging examination or a laboratory test. Patients undertook the examination or the test prior to visiting
the doctor, which reduced their waiting time. We investigated the impacts of the AI-assisted outpatient system on patients’ waiting time and expenses.

Methods

Establishment of the AI model

Based on deep learning and deep neural networks, the SCMC and YI TU Technology Company jointly developed a personalized consultation and automatic diagnosis algorithm that can imitate the process of the doctor's consultation. At the same time, the medical records are structured through natural language processing. Following by automatic diagnosis based on medical records, the corresponding examinations or tests items are generated.

We selected 59,041 high-quality medical records hand-annotated by a team of professional doctors and informatics experts. Then AI model was used to find the internal rules between patients’ chief complaint/past history and the tests/examinations that needed to be done. The features of patients were captured and marked for prediction, then appropriate clinical test/examination decisions were finally made. In previous validation, the average value of the accuracy was 0.92.

Considering guardian's acceptance, though AI could theoretically generate most of the tests/examinations, our final model only considered certain kinds of the tests/examinations, which were non-invasive (or less invasive) and low-cost. Thus, XIAO YI just recommended common items to patients. If a 12-year-old child developed hematuria with lumbago for 1 day, the initial diagnosis might be kidney stones. According to the consultation, XIAO YI analyzed that the child needed blood routine, urine routine and urinary B-ultrasound. But for some kidney stones, doctors might also ask the patient to have a CT scan. The price of CT was higher, but B-ultrasound was sufficient for a preliminary diagnosis of kidney stones. In performance test, most errors were items missing (85%). This was the result of our deliberate choice, as we did not require XIAO YI to order all tests/examinations for patients. On the contrary, we only needed it to issue the simplest and most common parts. The rest of the complex, invasive ones would be left to professional doctors.

At the same time, we also had special doctors responsible for reviewing every item ordered by XIAO YI. If the doctors thought the tests/examinations were not enough, they would manually add some. Only after the doctors' approval, can the patients pay and complete the tests/examinations.

Procedure of the AI-assisted outpatient service

We explain the standard outpatient procedure and the AI-based modifications to it. A patient needs to be registered first. After registration, the patients wait in the waiting area. When it is their turn, they are called to the consulting room to see a doctor. In most cases, a lab test and an imaging examination are ordered to confirm diagnosis. The patient pays for these, and then goes to the appropriate place to get examined or tested. After receiving the report, the patient has to wait again to see the doctor and ascertain the diagnosis based on which the patient may be recommended another examination/test or medicines. In this study, we focus on the steps from registration to the examination or test.

The first step in the AI-assisted outpatient service remains the same. The patient is registered. In the next step, the patient opens the WeChat application (a Twitter-like social application widely used in China) on their mobile phone. The patient's unique outpatient number is linked to a small smart program based on WeChat named XIAO YI. XIAO YI is the materialization of the above-discussed algorithms, which has clients on both mobile phones and doctors' work computers. XIAO YI can automatically read the registration information of the patient. Depending on the symptoms, XIAO YI asks the patient a series of questions, like a real doctor would. The next question is decided intelligently based on the answer to the previous question. When the AI believes it has gathered enough information, the inquiry ends. XIAO YI orders any tests and examinations that must be done to help the doctors make the clinical diagnosis. The tests and examinations “prescribed” by XIAO YI are basic, non-invasive, and relatively inexpensive (e.g., blood routine). The patient then makes the payment for these tests and heads to the testing room. If the patient disagrees, they would then have to go through the traditional procedure of waiting in line to see the doctor. When the test or examination is completed and the report is obtained, the patient waits to be called to the doctor's office for consultation. The traditional and AI-assisted workflows are shown in Fig. 1.

Selection of subjects

SCMC is one of the biggest pediatric specialized hospitals in Shanghai. It is affiliated to Shanghai Jiao Tong University School of Medicine. We collected the information of patient's registrations from August 1, 2019 to January 31, 2020. The dataset included patients from the internal department, gastroenterology department, and respiratory department who visited SCMC during that period. It included their gender,
age (on the day of registration), registration code, registration time, time of meeting the doctor, time of examination/testing, time of
prescription by the doctor, and time of receiving the medicines, among others. We ensured patients’ privacy. In the dataset that we extracted
and used for analysis, researchers could not see the patient’s name or their outpatient number. The patient’s outpatient number was recoded
into a registration code, mainly because sometimes a patient would register multiple times in one day and therefore the outpatient number
needed to be recoded to make it unique. In addition, in this way, the information security of patients was also guaranteed.

During this period, uniformly trained volunteers and nurses would publicize XIAO YI to guardians of the children in the internal department,
gastroenterology department, and respiratory department, and taught them how to use it. Thus, patients were categorized into two groups,
namely, the conventional outpatient group and the AI-assisted group (AI group), depending on the type of medical procedure they chose.
Because there were far more patients in the conventional group than in the AI group, we conducted a 1:1 matched case–control study. The
two groups of patients were matched according to the registration time mainly because the time of registration may be the most influential
factor affecting the waiting time of an outpatient. Generally, there are more patients on holidays than on weekdays, and there are more
patients in the morning than in the afternoon. Moreover, weather, traffic jam, and other external factors (e.g., COVID-19 outbreak) could
influence the time spent by outpatients in the hospital. This complication can be resolved by matching the registration time to pair the
patients who visited the hospital at almost the same time. We employed propensity score matching (PSM) to pair the patients [18].

We found that using only the paired dataset was insufficient. This was because in our conceptual scenario, patients were first registered
and then queued up in the waiting area to see the doctor. However, the actual situation was that after some patients registered, they did not
wait to see the doctor if they perceived that there was a long waiting time due to too many patients. Some of these patients (i.e., children
accompanied by their guardians) returned to the waiting area after some time with a fresh registration. As a result, this kind of patients
spent a lot more time waiting than others. In addition, there were some patients who took advantage of the features of the system to make
an appointment, especially in the AI group, as it was more convenient to make an appointment through the AI system. For example, if a
patient came to register at 8 a.m. but the patient was not available until 2 p.m., the patient would request the nurse to schedule the
appointment for 2 p.m. This would greatly overestimate the time spent in the hospital.

To avoid these issues, we cleaned the data according to some criteria. We excluded the patients who did not have a lab test because the
main function of the AI was to order a lab test before the patient’s consultation with the doctor. Patients who spent more than five hours
from registration to consultation were also excluded, as were those who spent more than eight hours from registration to obtaining their
medicines. According to the experience of many doctors in the hospital, such long waiting times usually happened because the patients
either had appointment or were late for their appointment. The patients who spent less than five minutes waiting were also excluded, as
these were likely errors made by the AI system when reading the data.

Outcomes

The primary outcome was the time spent by the patient from registration to taking the laboratory test or examination, defined as the waiting
time. The secondary outcome was the expenses incurred by the patient in the hospital. Thus, we evaluated the performance of the AI-
system from two dimensions.

Statistical analysis

Stata 15 was used for statistical analysis and PSM. Continuous variables were expressed as means ± standard deviation (SD) or medians
and inter-quartile range (IQR). Categorical variables were summarized as counts and percentages. Missing data were not imputed and were
deleted. All of the analyses were two-sided, and P values of < 0.05 were considered to be significant. The skewness/kurtosis test for
normality was used to test the assumption of normal distribution. When normally distributed, continuous variables were expressed as mean
± SD and calculated using a paired Student’s t-test. If not, as was the case with almost all continuous variables, we used the nonparametric
Wilcoxon signed-rank test.

Propensity scores were estimated using logistic regression. The covariate was time of registration. This covariate was selected because it
may affect the time that the patient spent in the hospital. The time from registration to taking the test or examination was entered into the
regression model as a dependent variable. The group was defined as an independent variable. A 1:1 “nearest neighbor,” case-control match
without replacement was used [19]. Stata was used to test the equilibrium between the two groups after PSM, and p > 0.05 suggested that
the difference in registration time was not statistically significant. The chi-square test was used to compare the sex ratio in the two groups
and the ratio of visits in each department.

Results
Data preparation

Initially, our analysis recruited 156,635 visits obtained from the information department of the SCMC for the period from August 1, 2019 to January 31, 2020 (Fig. 2, step 1). There were a few appointments for which the patients came after a long time following their registration. These visits were excluded from our analysis (Fig. 2, step 2). We also discarded patients who arrived late (Fig. 2, step 3) to prevent such visits from interfering with the results. Because our purpose was to simplify the outpatient process by adjusting the order in which lab tests were performed, patients who did not receive lab tests were excluded (Fig. 2, step 4). In addition, for the data of some patients, the data on the medicine expenses were missing. This part of data was excluded (Fig. 2, step 5). Similarly, data of patients with illogical discrepancies were excluded. For example, for a few patients, the data indicated that they registered and received their medicines in just one minute, which was not possible (Fig. 2, step 6).

Patients were paired 1:1 with PSM according to the registration time (accurate to minutes). According to the results, there was no statistical difference (p > 0.05) in the registration time between the two groups after matching.

Demographic characteristics of the subjects

Our final dataset comprised 12,342 visits. Among them, 6,171 belonged to the conventional group (controls) and 6,171 belonged to the AI-assisted group (cases). The summary statistics are as follows: for the conventional group: 3,298 males, 2,873 females, and mean age: 4.57 ± 3.16 years; for the AI-assisted group: 3,266 males, 2,818 females, and mean age: 3.99 ± 2.87 years. The gender ratio was similar in both groups (P > 0.05). Although the difference in age was significant (p < 0.05), we did not consider it as a confounding factor that would affect the results. The majority of cases (97.68%) and controls (89.74%) went to the pediatric internal department for treatment (p < 0.05). During that period, few patients visited the gastroenterology (4.12% for controls and 0.16% for cases) or respiratory (6.14% for controls and 0.75% for cases) departments. Because of manual data entry errors, the registration department and birthdate of 87 AI-assisted patients had been lost. The detailed information about the patients’ gender, age, and medical department is shown as Table 2.

Comparison between case group and control group

To reiterate, the waiting time was defined as the time from registration to preparation for a laboratory test or examination, and the total cost included the registration fee, test fee, examination fee, and drug fee. As shown in Table 3, for the AI-assisted group, the median waiting time was about 0.38 hours compared with about 1.97 hours for the conventional group. The difference was statistically significant (p < 0.05). The expense of the AI-supported group was lower in terms of total cost (p < 0.05). Because the number of patients in each department was different, we divided the patients into 6 subgroups according to the departments and procedures. As shown in Table 4, there were more AI-assisted patients in the internal department, while AI-assisted patients in the respiratory and gastroenterology departments were significantly less than those in the control group. However, in all departments, we could see that the median waiting time in the AI-assisted group was lower than that in the conventional group (p<0.05). No other significant associations were found.

Discussions

In this study, we verified that getting a laboratory test or an imaging examination prior to seeing a doctor could significantly reduce patients’ waiting time. We also found that accepting the tests or examinations recommended by the AI-assisted system did not result in higher costs; on the contrary, the cost was lower than that of ordinary patients. This research suggests a way to enhance the outpatient procedure to a certain extent by reducing the links in the whole process. The number of outpatient services in public tertiary general hospitals has increased dramatically. Long waiting times can lead to patients with potentially urgent problems not receiving timely treatment [20]. They may also lead to canceled or no-show appointments [20, 21]. In other studies, the average waiting time at Chinese general tertiary general hospitals was 23 minutes [2]. The waiting time for outpatient service in pediatric hospitals was found to be generally longer at 42 minutes [22]. In our study, as the waiting time was defined as the time from registration to preparation for the examination or test, it was longer than that reported in other studies. With AI, the waiting time was reduced to 0.38 hours (i.e., < 5 minutes) from about two hours before.

The waiting time of outpatients has always been a matter of great concern in China and other developing countries. Substantial research has shown that evaluating and redesigning outpatient systems in the healthcare process would successfully reduce waiting times and improve satisfaction. Studies at tertiary general hospitals in China have reported similar findings. For example, Wang et al. reported that staff carried out a quality circle-themed activity, which reduced the time for patients to see a doctor [23]. Chen et al. suggested that waiting time could be substantially reduced through the introduction of an appointment system and flexible, demand-oriented doctor scheduling according to the number of patients waiting at different times of the workday [24]. However, for pediatric hospitals with a limited number of doctors, it would undoubtedly increase the daily workload of doctors. In addition, pediatric hospitals and general hospitals are different in many ways. The immune functions of children are still developing, and a variety of diseases caused by climate factors has a significant
impact on the number of pediatric visits. Therefore, it is questionable whether the advantages of redesigned outpatient systems are applicable to a large children's hospital. Accordingly, we believe that an AI-based system would simplify the pediatric outpatient process and reduce the waiting time of patients without increasing (or even reducing) doctors' workload in a children's hospital. In the emergency department and the radiology department, there is a precedent for using AI to reduce outpatient time. Curtis [12] investigated the applicability of machine learning models to predict waiting times at a walk-in radiology facility (for radiography) and delay times for scheduled radiology services (CT, MRI, and ultrasound). Accurately predicting waiting times and delays in scheduled appointments may enable staff members to more accurately respond to patient flow. In Lin's study [25], supervised machine learning models provided an accurate patient wait time prediction and were able to identify the factors with the largest contribution to patient wait times. It is important to note that patient satisfaction increases when patients are told about their expected wait time. Similar results have been reported in other studies [9, 26-30].

To our knowledge, ours is the first study to use AI for assisting in the outpatient process by predicting whether a lab test or an imaging examination is recommended prior to seeing a doctor. The innovation of our study lies in the embedding of the combination of AI-assisted diagnosis and prescription into the outpatient procedure. By extending this system, it is conceivable that the parents of the children could complete a series of steps, such as registration, pre-consultation, and prescription at home or on the way, to the hospital with the help of XIAO YI. After registration, patients could immediately undergo the required examination or tests, which considerably improves the efficiency of medical care. Since the implementation of the XIAO YI system in 2018, it has assisted in more than 270,000 visits, in total, and more than 60,000 children have experienced the new outpatient procedure. All of the datasets we used for training and validation were from patients with real medical experience, and they were more reflective of the real world than recruiting volunteers to participate in the experiment. As in the real world, a patient's medical process is often subject to change. In addition, a patient's waiting time is affected by a number of factors, and the most obvious one is the time of registration. Seasons, holidays, and periods of time may affect the flow of patients. Another advantage of this study is that PSM was used to pair the data of the control group and the case group in order to eliminate the influence of different registration times.

This study has the following limitations. First of all, the proportion of patients in the AI-assisted group was different in 3 departments. But in fact, during the study, uniformly trained volunteers and nurses in all 3 departments were unbiased educating patients about the new technology and teaching them how to use XIAO YI. Apparently, patients from internal department were more receptive to XIAO YI. The difference may be due to patients’ own choices. Internal department generally treated patients with common diseases, such as colds, coughs, gastroenteritis, and urinary tract infections. Most of these conditions, which everyone had one or more times in their life, were not fatal or intractable. So, children's guardians were more willing to try XIAO YI when there were too many people in line. But in gastroenterology or respiratory department, things might be complicated, such as unexplained abdominal pain, jaundice, asthma, and tuberculosis. In this case, the guardians might have insufficient trust in AI technology and prefer to seek help from the real doctors. But this was not a contradiction. According to previous data, there were far more patients from internal department in the same period than in the gastroenterology or respiratory departments. At the same time, most of the internal patients’ conditions were simple, the diagnoses were also clearer. So, the target group of XIAO YI was precisely this kind of patients. Having them check-up before seeing a doctor not only reduced the waiting time, but also relieved the doctor's pressure.

Second, the system was designed for the target patients, that is, the patients who needed an imaging examination or a lab test. The patients who did not undergo an imaging examination or a lab test were excluded. Third, the AI system and the hospital information system need to be connected by the unique outpatient number to make the data exchange. If the doctor forgets to enter the patient's outpatient number during diagnosis, there would be no way to connect this part of the data. This resulted in missing data and the appearance of illogical values. With debugging and other interventions, this issue can be resolved.

Chinese public hospitals, especially the tertiary hospitals, have strong similarities in patient's overload and doctor's shortage. Therefore, they all may become the applicable scenarios for XIAO YI and benefit from it. As a matter of fact, influenced by the successful experience of the SCMC, other hospitals in Shanghai Pudong New Area have already introduced XIAO YI to ease the work burden of doctors. In the near future, from a polycentric perspective, we will focus on using AI to help patients receive more efficient, accurate, and fair guidance and to reasonably triage patients according to their diseases and the examinations they need.

Conclusions

In this 1:1 matched case–control study, waiting times were significantly reduced when AI was used. AI can not only improve medical service but also potentially play a transformative role in the design of processes for enhancing patient flow.
Abbreviations

AI: artificial intelligence, SCMC: Shanghai Children's Medical Center, PSM: propensity score matching, SD: standard deviation, IQR: interquartile range

Declarations

Ethics approval and consent to participate

Ethical approval was obtained from the Institute Review Board of Shanghai Children’s Medical Center (SCMCIRB-K2019020-2). According to the experts, the data analysis was anonymous and respected the confidentiality and privacy of patients. The data has not been shared with other parties.

Consent for publication

Not applicable.

Availability of data and materials

The data that support the findings of this study are available from the authors upon reasonable request and with permission of the Shanghai Children's Medical Center.

Competing interests

The authors report no competing interests.

Funding

This study was supported by the National Science Foundation of China (No. 81872637), the Shanghai Municipal Commission of Health and Family Planning (No. 201840324), the Medical and Engineering Cooperation Project of Shanghai Jiao Tong University (No. YG2017ZD15), the Science and Technology Development Program of Pudong Shanghai New District (No. PKJ2017-Y01), the 2019 Science and Technology Innovation - Biomedical Supporting Program of Shanghai Science and Technology Committee (No. 19441904400), and the Chinese Translational Medicine Basic Infrastructure Project (No. TMSK-2020-124). The above funders provided financial support for the research. The funders had no role in the study design, data collection, analysis, interpretation, decision to publish or preparation of the manuscript.

Authors’ contributions

XL, DT, LZ, and SL designed and conceived the study. DT, WL, BD, HW, JY, and BL analyzed the data and conducted the statistical analysis. XL drafted the manuscript. XL advised on the methods, and LS and SL critically reviewed the manuscript. SL had the primary responsibility for this work. All of the authors revised the draft manuscript and read and approved the final manuscript.

Acknowledgments

We are grateful to all of the children and their parents for their assistance and cooperation in this study. We would also like to thank Letpub company for its proofreading service.

References

Tables

Table 1. Literature review and summary on perception waiting time and actual waiting time.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Outcome</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thompson DA, et al. [3]</td>
<td>1996</td>
<td>PWT</td>
<td>Satisfaction depended more on PWT than AWT.</td>
</tr>
<tr>
<td>Michael M, et al. [4]</td>
<td>2013</td>
<td>AWT</td>
<td>Significant reductions in AWT was observed along with an increase in patient satisfaction.</td>
</tr>
<tr>
<td>Xie Z, et al. [5]</td>
<td>2017</td>
<td>AWT</td>
<td>AWT was negatively associated with patient satisfaction.</td>
</tr>
<tr>
<td>Liu J, et al. [7]</td>
<td>2019</td>
<td>AWT</td>
<td>Outpatients’ overall satisfaction was associated with AWT.</td>
</tr>
</tbody>
</table>

PWT: Perception Waiting Time; AWT: Actual Waiting Time.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Overall N=12342</th>
<th>AI-assisted group N=6171</th>
<th>Conventional group N=6171</th>
<th>χ²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6564</td>
<td>3266</td>
<td>52.93</td>
<td>3298</td>
<td>53.44</td>
</tr>
<tr>
<td>Female</td>
<td>5691</td>
<td>2818</td>
<td>45.67</td>
<td>2873</td>
<td>46.56</td>
</tr>
<tr>
<td>Data Missing *</td>
<td>87</td>
<td>87</td>
<td>1.40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Medical department</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal department</td>
<td>11566</td>
<td>6028</td>
<td>97.68</td>
<td>5538</td>
<td>89.74</td>
</tr>
<tr>
<td>Respiratory department</td>
<td>425</td>
<td>46</td>
<td>0.75</td>
<td>379</td>
<td>6.14</td>
</tr>
<tr>
<td>Gastroenterology department</td>
<td>264</td>
<td>10</td>
<td>0.16</td>
<td>254</td>
<td>4.12</td>
</tr>
<tr>
<td>Data Missing *</td>
<td>87</td>
<td>87</td>
<td>1.41</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of the visits.

* Due to manual data entry errors, this part of data was lost and could not be exported.

AI: Artificial Intelligence.

Table 3. Efficiency and cost between AI-assisted group vs. Conventional group in pediatric outpatients.
Table 4. Efficiency and total cost of internal department, gastroenterology department, and respiratory department.

<table>
<thead>
<tr>
<th></th>
<th>Internal Department</th>
<th>Gastroenterology Department</th>
<th>Respiratory Department</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AI-assisted group</td>
<td>Conventional group</td>
<td>AI-assisted group</td>
</tr>
<tr>
<td>Visits(N)</td>
<td>6028</td>
<td>5538</td>
<td>46</td>
</tr>
<tr>
<td>Waiting time (h)</td>
<td>0.38 (0.20, 1.33)</td>
<td>2.16 (0.82, 3.58)*</td>
<td>0.54 (0.17, 1.44)</td>
</tr>
<tr>
<td>Total cost (CNY)</td>
<td>334.87 (243.92,434.30)</td>
<td>357.04 (245.16,474.59)*</td>
<td>405.53</td>
</tr>
</tbody>
</table>

After testing, all the data presented non-normal distribution. The median (inter-quartile range) was used to describe the centralized and discrete trend of the data.

* P < 0.05.