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COVLIAS 3.0XEDL: Multicentre, Cloud-Based, Explainable 
Ensemble Artificial Intelligence Deep Learning System for 

COVID-19 in Computed Tomography Scans 

Abstract 

Background and Motivation: Lung computed tomography (CT) techniques have been utilized in the 

intensive care unit (ICU) for COVID-19 disease characterization due to its high-resolution imaging. 

Artificial Intelligence (AI) has significantly helped researchers in diagnosing COVID-19, and the 

proposed study hypothesized that the cloud-based explainable ensemble deep learning (XEDL) 

paradigm is superior to transfer learning (TL) models for disease classification. 

Methodology: We propose a cloud-based ensemble deep learning (EDL) approach to classify COVID-

19 versus Control patients. In the proposed study two cohorts are used: (i) 80 Croatian COVID-19 and 

(ii)70 Italian COVID-19 patients and 30 Control Italian patients. ResNet-SegNet-based lung 

segmentation of CT scans on five different data combinations (DC1-DC5) using two cohorts have been 

designed. Five deep convolutional neural network models namely, DenseNet-169, DenseNet-121, 

DenseNet-201, EfficientNet-B1, and EfficientNet-B6 models are utilized for ensemble. The focal loss 

function is used with a gamma value of 2. Five-fold cross-validation has been performed during model 

training and testing on unseen data. Statistical analysis and heatmaps are generated to validate the 

model. This model was also available for global use on Amazon Web Services as COVLIAS 3.0XEDL. 

The proposed COVLIAS 3.0XEDL is superior to TL models. 

Results: The XEDL showed an accuracy of 99.99%, AUC 1 (p<0.0001) for DC1, 98.23%, AUC 0.97 

(p<0.0001) for DC5, 96.45%, AUC 0.92 (p<0.0001) for DC2, 88.20%, AUC 0.85 (p<0.0001) for DC3, 

and 87.87%, AUC 0.81 (p<0.0001) for DC4. The proposed XEDL accuracy was 8.59% superior to the 

mean TL accuracy. 

Conclusions: Our hypothesis holds true where XEDL is superior to TL in a cloud-based explainable 

framework using heatmaps. 

Keywords: COVID-19, Control, ResNet-SegNet, feature fusion, ensemble deep learning, validation.  
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1. Introduction 

COVID-19 has affected globally since 2020. Deep learning (DL) techniques have been used to classify 

COVID-19 diseased patients against normal patients based on segmented computed tomography (CT) 

scans [1-3]. Although transfer learning (TL) models are effective, their inability to combine them has 

forced the use of ensemble methods [4-7]. Ensemble deep learning (EDL) is a powerful technique for 

improving prediction accuracy by combining the results of multiple machine learning [8, 9]  and deep 

learning models [6, 10-13]. Earlier EDL methods were focused on classification, but statistical analysis, 

heatmaps to detect COVID lesions and model validations were neglected [14-18].  

We hypothesize that the fusion of features of TL models can improve the system performance. 

Previous studies have used various DL techniques to predict COVID-19 [11, 19, 20], this literature 

review helped us select the right TL models for the ensemble paradigm [21, 22]. We propose an EDL 

approach to classify COVID-19 and Control patients using five pre-trained models, namely, 

DenseNet169, DenseNet121, DenseNet201, EfficientNetB1, and EfficientNetB6. Further to feature 

fusion, the proposed EDL uses multicentre cohorts and presents novelty in terms of explainability in 

cloua d-based framework. We used Croatian (CroMED) and Novara, Italian (NovMED) cohorts for the 

validation of our hypothesis and experimentations [2, 23, 24].  

2. Methodology 

The proposed model uses five pre-trained models, namely DenseNet-169, DenseNet-121, DenseNet-

201, EfficientNet-B1, and EfficientNet-B6, to extract features from the dataset [25-27]. The extracted 

features are combined using ensemble learning to improve the prediction accuracy. The focal loss 

function was used for training the model, and the training validation loss was 0.1%. Statistical analysis, 

receiver operating characteristics (ROC), and explainable EDL heatmaps are used to validate the model 

[28-30].  

2.1 Image Acquisition and Data Demographics 

In the proposed study, two distinct cohorts were utilized. Physicians and radiologists are the co-authors 

of this article have already validated this dataset. The first cohort, also known as the experimental data 
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set, consists of 80 CroMED COVID-19 positive individuals, out of which 57 are male and the remaining 

31 are female. Sample images are shown in Figure 1. We have used this data [2] in our previous 

publications.  A detailed descriptofboutthe  datasepresentedesent in Appendix A. 

 
 

Figure 1. Raw “COVID-19 CT lung slices” taken from the CroMED dataset. 
 

 

 
 

Figure 2. Raw “COVID-19 CT lung slices” taken from the NovMED dataset. 
 

Figure 2 depicts 72 NovMED COVID-19 positive individuals, including 47 males and the remaining 

29 females. The CroMED COVID-19 dataset consists of 5396 raw images with 512x512 dimensions, 
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while the NovMED COVID-19 dataset contains 5797 raw images with 768x768 dimensions  and the 

Control (Italy) dataset has 1855 raw images with 768x768 dimensions . Figure 3 depicts the Control 

patient data slices. This data appears imimbalancedbut synthetic data is not advisable in tedical research. 

We have used focal loss to handle the data imbalance situation. 

 

 
 

Figure 3. Raw “Control CT slices” taken from the NovMED dataset. 
 

2.2 Global Architecture 

The global architecture is illustrated in Figure 4.  This consists of the cascade of four key blocks, namely 

CT volume acquisition along with quality control (block 1), HDL-based lung segmentation (block 2), 

TL-based feature extractor with explainable heatmaps (block 3), feature fusion-based EDL and 

classification (block 4), followed by performance evaluation.  The HDL-based lung segmentation is 

superior compared to solo deep learning models [31]. For classification, we used five TL models, It is 

selected based on empiricalexperimentst over many TL models [32] , DenseNet-169, DenseNet-121, 

DenseNet-201, EfficientNet-B1, and EfficientNet-B6, to visualize lesion sections in a grayscale CT 

image, which was later explainable using heatmaps. Hyperparameters are optimizer: Adam, learning 

rate (lr=0.001), Regularizer: L2 (0.01), Dropout: 0.2, Batch Size: 64, classification layer activation 

function: Sigmoid, intermediate layer activation function: ReLu, and Epoch:30. Extracted features from 

TL models were then concatenated for COVID-19 patients’ prediction. Fully connectedlayersr and 

dropout layers were added for classification. The sigmoid activation function performed the binary 
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classification between COVID-19 versus Control. K-cross-validationohasve been used for training 

(80%) and validation (10%) then trained modes are used for testing (10%). 

 
Figure 4. COVLIAS 3.0XEDL: CT volume acquisition, ResNet-SegNet-based segmentation, TL-based 

feature extraction and explainability, and feature fusion-based EDL classification.  
 

2.3 ResNet-SegNet Architecture for Lung Segmentation 

Figure 5 shows the ResNet-SegNet architecture of CT lung segmentation consisting of convolution and 

maxpooling (yellow).  Here, a new connection known as the skip connection (crossing lines) allowed 

gradients to pass through a predetermined number of layers, thus solving the vanishing gradient issue. 

Moreover, during the backpropagation step, the local gradient value stayed at one with the aid of one 

more addition to the network, namely an identity function (green) [33]. Here we have used Backbone-

encoder: ResNet50, parameter: ~15 million, model size: 170 Mega Byte (MB). 

 
Figure 5. ResNet-SegNet architecture of CT lung segmentation [33]. 

 

2.4 Focal Loss Function 

By introducing a hyperparameter gamma ‘γ’  (gamma = 2.0 has been decided by iterative method range 

from gamma 1.0 to 2.5 and its performance over model), referred  s the focusing parameter, this loss 

function generalizes binary cross-entropy by penalizing tricky-to-classify examples far more severely 

than simple-to-classify examples [34, 35]. Focal loss (FL) is mathematically given by thuation 1. 
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FL (y, p) = -αy(1-p)γ log(p)- (1-y) pγ log(1- p)  (1) 

Where, y Є [1, 0] is a binary class label, p Є [0,1] is the probability of COVID-19 classes, γ is the 

focusing parameter, and α is a hyperparameter (whose default value 1.0) 

2.5 Performance Metric 

To estimate the various performance evaluation metrics, we computed the true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN). Equation 2 to Equation 5 fundamental 

equations for computing F1-score, recall (Ɍ), recision (Ƥ) and mean accuracy (ɳ ), respectively. 

Equation 6 shows the mean accuracy of the EDL (ɳ̅𝐸𝐷𝐿). quations 7 and 8, prespresentet of requested 

objects (ƶ) and a set of discovered items (ƴ), one can the alculate Dice (ẞ) and Jaccard (ℐ). Additionally 

calculated for each model are the probability curve ROC and degree of separability AUC (the-area-

under-the-curve).  

Ƒ = 2 x (Ƥ x ɌƤ+Ɍ)    (2),               Ɍ = TPTP+FN   (3), Ɍ = TPTP+FN     (4), ɳ = TP+TNTP+FP+FN+TN     (5) 

2.6 Experimental Protocol  

Five Data Combinations  

Using the multicentre cohorts from Italy and Croatia, we created five different sorts of data combination 

scenarios to ensure generalization using unseen data analysis. 

• DC1: Training and Testing both using the combination of CroMED (COVID-19) + NovMED 

(Control). 

• DC2: Training and Testing both using the data from Novara, Italy: NovMED (COVID-19) + 

NovMED (Control). 

• DC3: Training using a combination of two cohorts: CroMED (COVID-19) + NovMED (Control) and 

Testing only from Novara, Italy: NovMED (COVID-19) + NovMED (Control). 

• DC4: Training using Novara, Italy: NovMED (COVID-19) + NovMED (Control), and Testing using 

Croatia: CroMED (COVID-19) + NovMED (Control). 

ɳ̅𝐸𝐷𝐿 = ∑ ɳEDL iMi=1M     (6), e(ƴ, ƶ) = 2 |ƴ||ƶ||ƴ|+|ƶ|     (7), ℐ(ƴ, ƶ) 
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• DC5 Training and Testing on CroMED (COVID-19) + NovMED (COVID-19) + NovMED (Control), 

so-called, Mix data. 

 

 

Experiment #1: CT Lung Segmentation Using Hybrid Deep Learning 

In this experiment, lungs are segmented in CT scans using ResNet-SegNet-based HDL [1, 13]. K5-

based cross-validation was used for training/testing combination and performance was evaluated with 

given ground truth lung borders, as traced by the radiologists. 

Experiment #2: Feature Fusion-based Ensemble Deep Learning Models for Classification 

We have extracted features using TL-based DenseNet-169, DenseNet-121, DenseNet-201, 

EfficientNet-B1, and EfficientNet-B6 and concatenated their features. These fused features were then 

utilized for classification. This was then benchmarked against the voting-based EDL. 

Experiment #3: Unseen Data Analysis for Classification 

This experiment uses unseen data as part of the test data set ensuring the generalization concept [36, 

37]. K5-based cross-validation was used for tthe raining/testing combination. 

Experiment #4: System Reliability Test 

The fourth and last experiment was performed to check the reliability of COVLIAS 3.0XEDL. Two 

statistical analyses were conducted and heatmaps were visualized using Grad-CAM.  

Hardware and Optimization: All models were executed using DC1 to DC5 on the NVIDIA GPU cluster 

at Idaho State University (ISU), Idaho, USA. We used the Tensorflow 2.0 libraries to create the program 

and MedCalc statistical software for performance evaluation. We have used optimizer: Adam, learning 

rate: 0.001, activation functions: ReLU, Sigmoid ,and selection of freezing layers vary among TL 

models to achieve best accuracy in unseen data analysis.  Loss/Accuracy curves were generated. 

3. Results and Performance Evaluation  

3.1 Results  

Results on Lung Segmentation using Hybrid Deep Learning: Figure 6 depicts the CroMED (COVID-

19), NovMED (COVID-19), and NovMED (Control) HDL segmented dataset using ResNet-SegNet.  
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Figure 6. ResNet-SegNet-based segmentation. Row #1: Raw (Croatia), Row #2: Segmented (Croatia), 
Row #3: Raw (Italy), Row #4: Segmentation (Italy), Row #5: Raw (Control) Row #6: Segmented 

(Control). 
 

Figure 7 shows the cumulative frequency of Jaccard (Right) and Dice (Left). Figure 8 (a) shows the 

regression curve of the GT area vs. the AI area, while Figure 8 (b) shows the Bland-Altman (BA) plots. 

The CC for regression is 0.99 while the BA plshowhoa ws low standard deviation. 
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Figure 7. Cumulative frequency distribution of Dice and Jaccard indices. 

                  

Figure 8. Left (a): AI Area vs. GT Area using CroMED dataset. Right (b): Bland-Altman plots. 
 

Results on Feature Fusion-based Ensemble Deep Learning Models for Classification: The outcomes of 

experiments 1 are displayed in Table 1. DC1 hasane accuracy of 99.99% which is 3.67% better than 

DC2, 1.79% better than DC5, 13.59% better than DC3, and 13.79% better than DC4. 

Results on Unseen Data Analysis for Classification: Unseen data analysis is shown in Table 1 where 

DC3 and DC4 had an accuracy of 88.20% and 87.87% respectively. It demonstrates that extra steps 

should be taken to reliably forecast COVID-19 patients.  

We have also applied the voting ensemble method [10, 16, 38] using five TL models the and mean 

accuracy is 98.64%. The proposed EDL is 1.3% bettthe er than voting method. 

Results on System Reliability Test: We have performed the fourth experiment to validate the system. 

Statistical T-test and Chi-square test have demonstrated very low p-values (p<0.0001) using MedCalc 

software. The heatmap has showna  clear lesion section. 

 

 

Table 1. EDL comparative results on five data combinations (DC1-DC5) using six attributes. 

EDL Statistics 

Data Combination DC1 DC2 DC3 DC4 DC5 
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Mean ACC (%) 99.99 96.45 88.20 87.87 98.23 

COVID-19 Precision (%) 100 100 93 99 98 

Control Precision (%) 100 86.7 75 68 100 

COVID-19 Recall (%) 100 95.4 84 84 100 

Control Recall (%) 100 99.4 97 98 85.9 

COVID-19 F1-score (%) 100 97.6 91.4 91 99.4 

Control F1-score (%) 100 92.4 84 80 92.6 

AUC [0-1] 1 0.97 0.85 0.81 0.92 

Sensitivity (%) 100 99.2 99.37 99.37 84.9 

Specificity (%) 100 94.9 68.5 67.7 100 

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

 

3.2 Performance Evaluation 

Statistical Test 

We have performed a T-test to compare the lesion region and a categorical Chi-square test among 

different groups of patients. Additionally, the p-value is computed, and it serves as a gauge of the 

strength of the evidence opposing the null hypothesis. The null hypothesis should be rejected if the 

observed frequencies are significantly different from the predicted frequencies, as shown by a low p-

value <0.0001 as shown in Table 2. 

       Table 2. T-test and Chi-square test p-values. 

 

Explainability 

This paper includes explainability using the Grad-CAM technique. Grad-CAM helps in (i) debugging 

the working of the AI model, (ii) validating the predicted results, and (iii) visualizing and determining 

what the AI model considers as important features while making its prediction. It generates a heatmap 

lDopplerpler [39] of the important places that make the image belong to a particular class according to 

the trained EDL model. Figure 9 below depicts the heatmap produced by the trained model. We have 

already done extensive work on heatmap in our previous publications [2, 40].    

EDL using DC 
T-Test Chi-square 

Test 
DC1 p<0.0001 p<0.0001 

DC2 p<0.0001 p<0.0001 

DC3 p<0.0001 p<0.0001 

DC4 p<0.0001 p<0.0001 

DC5 p<0.0001 p<0.0001 
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Figure 9. Grad-CAM-based proposed EDL heatmaps for COVLIAS 3.0XEDL. 
 

 

Receiver Operating Characteristics 

Figure 10 shows the loss vs. accuracy graph using DC1, DC2, DC3, DC,4 and DC5. The ROC of the 

EDL model using five data combinationhasve been shown in Figure 11. It shows the AUC over DC1, 

DC2, DC3, DC,4 and DC5 are 1, 0.97, 0.85, 0.92, and 0.81.  It presents that DC1 is the best model in 

seen analysis and DC3 is the best in unseen analysis.  

 



13 
 

 

     

   

  Figure 10.   Loss vs. Accuracy of EDL model using DC1, DC2, DC3, DC4, and DC5. 
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Figure 11. ROC of EDL model using DC1, DC2, DC3, DC4, and DC5. 

4. Cloud-based COVLIAS 3.0XEDL 

This study also presents a cloud app for COVLIAS 3.0XEDL. The app takes in CT lung images (Figure 

12) as input and processes them using the trained EDL model. The results of the prediction, including 

the predicted class and probability scores, are displayed on the results page (Figure 13). Each uploaded 

image is given a unique ID, which can be used to view the prediction results at any time. This app is 

deployed using Amazon Web Services and utilizes a 6-core CPU and 16 GB of RAM. COVLIAS 

3.0XEDL uses multiprocessing to process batch images in a parallel manner, resulting in a faster 

turnaround time. COVLIAS 3.0XEDL system is currently only available for internal use and accessible 

through restricted IP addresses. We faced some challenges at the time of deployment like data security, 

performance, and contingency planning, weovercamee these issuey.  
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Figure 12. Home page showing the COVLIAS 3.0XEDL Cloud App. 

 

Figure 13. COVLIAS 3.0XEDL Cloud App showing a COVID-19 CT scan. 

5. Discussion 

The proposed ensemble learning model showed promising results in predicting COVID-19 and Control 

patients. The focal loss function was effective in training the model, and the low training validation loss 

indicated that the model was not overfitting. The statistical analysis and heatmap provided additional 

validation of the model. 

Principal Findings 

The proposed ensemble model outperformed the benchmark model in terms of accuracy, precision, 

recall, p-value, and F1 score. The statistical analysis and heatmap showed that the model was reliable 

and accurate. The system had the following novelties: (i) usage of HDL model, namely ResNet-SegNet 

for segmentation, (ii) Five TL models, their extracted features and feature fusion, (iii) the generalized 
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COVLIAS system using unseen data, and (iv) explainability, system stability/reliability, and cloud-

based application. The ensemble model makes use of the variety among base models through feature 

fusion EDL. The use of EDL is essential for adding more features and improving the performance of 

the ensemble model. 

Benchmarking 

The proposed model was compared to a benchmark model using a five-fold cross-validation approach. 

The ensemble model outperformed the benchmark model in terms of mean accuracy, precision (Pre), 

recall (Re), F1-score (F1), p-value, clinical validation (Cli. Val.), and scientific validation (Sci. Val.). 

Our EDL model achieved an accuracy of 99.99%, and other performance matrix values were better than 

existing models, as presented in Table 3. Scientific validation has also been done in this paper. We have 

also compared the TL model to the proposed EDL in Table 4. The mean accuracy for five TL was 

92.08% which is 8.59% lower tthe han proposed model. 

Table 3. Proposed model comparison of accuracy (Accu), precision (Pre), recall (Re), F1-score (F1), 

AUC, p-value, clinical validation (Cli. Val.), and scientific validation (Sci. Val.) with existing EDL. 

Year 2021 2022 2021 2021 2021 2022 2022 2023  

Reference 

Pathan 

et al. 

[41] 

Shaik 

et 

al.[42] 

Kundu 

et al. [43] 

Zhou 

et 

al.[26] 

Cruz 

et al. [38] 

Lu 

et 

al.[44] 

Huang 

et 

al.[45] 

Proposed 

DL 

Models 

for 

ensemble 

Five Pre-

trained 

model 

Eight 

pre-

trained 

model 

Five Pre-

trained 

model 

Three 

Pre-

trained 

model 

Six Pre-

trained 

model 

DL 

model 

with a 

Loss 

function 

Five 

Pre-

trained 

model 

Five Pre-

trained 

model 

Dataset 
COVID-

CT 

COVID-

CT 

SARS-

CoV-2 

COVID-

CT 
COVID-CT 

COVID-

CT 

COVID-

CT 
DC1 

Data Size 746 746 2482 2933 746 746 746 7652 

Accu (%) 97 93.33 98.93 99.05 90.7 94.3 98.84 99.99 

Pre (%) 97 93.6 98.93 - 93.27 0.94 98.87 100 

Re (%) 97 92.97 98.93 - 89.69 0.93 98.93 100 

F1 (%) 97 93.21 98.93 98.59 94.05 0.94 98.92 100 

AUC [0-

1] 
0.97 0.92 0.98  0.95 0.98 0.99 1 

p-value - - - 0 - <0.0001 0 <0.0001 

Cli. Val. 〤 〤 〤 〤 〤 〤 〤 〤 

Sci. Val. 〤 〤 〤 〤 〤 〤 〤 ✓ 
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Table 4. TL comparison to the proposed EDL model. 

Year 2021 2021 2022 2022 2023 2023 

Reference 

Alshazly    

et al. [46] 

Alshazly    

et al. [46] 

Lunagaria      

et al. [47] 

Masud           

et al.[48] 

Xu  

et al. [49] Proposed 

Models 

DenseNet

201  

DenseNet

169 

Efficient

NetB1 

EfficientNe

tB6 

DenseNet 

121 Proposed EDL 

Dataset 

COVID-

CT 

COVID-

CT 

COVID 

X-Ray 

COVID X-

Ray 

COVIDx-

CT 2A DC1* 

Data Size 746 746 4575 6432 3745 5797 1855 

Accu (%) 92.9 91.2 97.6 79.3 99.44 99.99 

Pre (%) 91.3 88.1 96.4 69 99.89 100 

Re (%) - - 96.4 91 〤 100 

F1 (%) 92.5 90.8 96.4 78 〤 100 

AUC [0-1] 0.93 0.91 0.97 0.87 〤 1 

p-value 〤 〤 〤 〤 〤 <0.0001 

                                *CroMED (COVID), NovMED (Control). 

Strengths, Weaknesses, and Extensions 

HDL models are powerful solutions for lung segmentation. The suggested model's usage of TL models 

that have already been pre-trained on substantial datasets is one of its advantages. The model also takes 

advantage of ensemble learning, which increases the precision of predictions. The model's need for a 

sizable dataset for training and validation is one of its limitations that can be fulfilled with a large 

dataset. Characterization of COVID-19 lung tissues can incorporate similar patterns [50].A 

combinationn of feature fusion and votimethodshod can also be adopted using massdatasetsaset [51, 

52]. 

6. Conclusion 

The proposed model uses a cloud-based ensemble learning approach to predict COVID-19 and Control 

patients, which is slightly better than existing models. We have used a feature fusion-based ensemble 

learning approach to improve the performance of previous EDL models. Best values are achieved over 

DC1 with a mean accuracy, precision, recall, F1-score, and p-values of 99.99%, 100%, 100%, F1-score 

100%, and a p-value<0.0001. COVLIAS 3.0XEDL outperformed the benchmark EDL and TL models. 
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Further, the statistical analysis, heatmap, and ROC provided additional validation. The proposed model 

has the potential to be used as a reliable and accurate tool for COVID-19 diagnosis. 
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Appendix A 

CT Dataset imaging techniques 

“Italian cohort: All chest CT scans were performed in a supine position with a single full inspiratory 
breath-hold, utilizing a 128-slice multidetector-row “Philips Ingenuity Core” CT scanner from Philips 
Healthcare (Netherlands). There was no intravenous or oral injection of contrast media. A soft tissue 
kernel with 512 × 512 matrix (mediastinal window) and a lung kernel with 768 × 768 matrix (lung 
window) were utilized to rebuild one-mm thick pictures. The CT tests were carried out with a 120 kV, 
226 mAs/slice (using Philips’ automatic tube current modulation—Z-DOM), 1.08 spiral pitch factor, 
0.5-s gantry rotation time, and 64 × 0.625 detector configuration. The CT data of 72 COVID-positive 
individuals were used in the proposed investigation. CT volumes of patients were selected based on two 
criteria (i) the image quality should be reasonable and should have no artifacts or blurriness due to body 
movement, and (ii) there is no metallic object present in the scan area. Each patient consisted of 
approximately 200 slices from which the radiologist [LS] selected 65–70 slices from the visible lung 
region, yielding a total of 5000 images. 
 

Croatian Cohort: A CROATIAN patient of seven COVID-19 positive patients (500 images) was used 
to validate the AI system (COVLIAS). All chest multidetector CT images (MDCT) were performed in 
a supine position with a single full inspiratory breath-hold utilizing FCT Speedia HD (Fujifilm 
Corporation, Tokyo, Japan, 2017) 64-detector MDCT scanner to acquire images of the thorax in 
craniocaudal direction. Images were acquired with a standard algorithm and viewed with Hitachi, Ltd. 
Whole Body X-ray CT System Supria Software (System Software Version: V2.25, Copyright Hitachi, 
Ltd. 2017). There was no contrast media available for intravenous or oral administration. The used 
scanned parameters were: volume scan, large focus, tube voltage 120 kV, tube current 350 mA with 
automatic tube current modulation mode (IntelliEC mode), and rotation speed 0.75 s. Parameters used 
for reconstruction were: field of view (FOV) 350 mm, slice thickness 5 mm (0.625 × 64), table pitch 
1.3281, picture filter 32 with multi recon option: picture filter 22 (lung standard) with Intelli IP Lv.2 
iterative algorithm (WW1600/WL600), slice thickness 1.25 mm, recon index 1 mm and picture filter 
31 (mediastinal) with Lv.3 Intelli IP iterative algorithm (WW450/WL45), slice thickness 1.25 mm, 
recon index 1 mm. CT volumes of patients were selected based on two criteria (i) the image quality 
should be reasonable and should have no artifacts or blurriness due to body movement and (ii) there is 
no metallic object present in the scan area.” 

 


