
A Review of the Parallelization Strategies for
Iterative Algorithms
Xingxing Zhou

Southeast University
Ming Ling (trio@seu.edu.cn)

Southeast University
Shidi Tang

Southeast University
Yanxiang Zhu

VeriMake Innovation Lab

Research Article

Keywords: iterative algorithms, parallel computing, convergence, parallelization strategy

Posted Date: November 20th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3573900/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3573900/v1
mailto:trio@seu.edu.cn
https://doi.org/10.21203/rs.3.rs-3573900/v1
https://creativecommons.org/licenses/by/4.0/

A Review of the Parallelization Strategies for

Iterative Algorithms

Xingxing Zhou1, Ming Ling1*, Shidi Tang1, YanXiang Zhu2

1*National ASIC System Engineering Technology Research Center,
Southeast University, Nanjing, 210096, China.

2VeriMake Innovation Lab, Nanjing, 210088, China.

*Corresponding author(s). E-mail(s): trio@seu.edu.cn;
Contributing authors: 220216193@seu.edu.cn; 230239320@seu.edu.cn;

zhuyanxiang@verimake.com;

Abstract

Iteration-based algorithms have been widely used and achieved excellent results in
many fields. However, in the big data era, data that needs to be processed is enor-
mous in terms of both depth (the dimensionality of data) and breadth (the volume
of data). Due to the slowdown of Moore’s Law, the computing power of single-core
CPUs is becoming saturated. The increase in the computational complexity and
the bottleneck of the single-core processors speed exacerbate the time-consuming
problem of iterative algorithms. With the rise of multi-core computers and dis-
tributed computing systems, parallelizing and deploying iterative algorithms on
such systems can make full use of computing resources and accelerate itera-
tive computation, providing a new idea for solving the aforementioned problems.
However, due to the logical dependency between two consecutive iterations in an
iterative algorithm, it is difficult to directly implement the concurrent computa-
tion of such algorithms. To this end, many studies have been conducted on the
parallelization of iterative algorithms in both academia and industry. This paper
aims to conduct an in-depth research and analysis of these parallelization strate-
gies. Firstly, the abstract description and classification of iterative algorithms
are given. Then four concurrency strategies for iterative algorithms are summa-
rized, including logical units that can be intrinsically concurrently computed,
multi-initial state parallel search strategy, data parallelism, and task parallelism.
Finally, the paper detailed the convergence of parallel iterative algorithms, focus-
ing on building the mathematical model of asynchronous iterative algorithms, and
summarizing the convergence conditions of asynchronous iterative algorithms.

1

Keywords: iterative algorithms, parallel computing, convergence, parallelization
strategy

1 Introduction

With the proliferation of multi-core computers, distributed computing systems, and
cloud services, parallel computing has become a burgeoning area of research. The fun-
damental premise of parallel computing is to maximize the utilization of computational
resources across all nodes, while minimizing node idle time. Nevertheless, iteration-
based algorithms (hereinafter referred to as ”iterative algorithms”) are extensively
utilized in the fields of machine learning, data analysis, and bioinformatics, including
the backpropagation algorithm for neural network training, support vector machines
in machine learning [1], the Quasi-Newton algorithm for numerical optimization [2],
the simulated annealing algorithm for optimization problems [3], and cluster analysis
in data statistics [4], among others. By implementing specific iterative strategies, inter-
mediate solutions for these iterative algorithms may be progressively updated until the
convergence termination criteria are met, yielding the optimal approximate solution
that is both accurate and readily searchable. Although direct algorithms can yield an
exact solution to a problem in a finite number of computations, iterative algorithms,
on the other hand, offer only an approximate value that approaches the exact solution
with each successive iteration [5]. When dealing with large or high-dimensional data
sets, direct algorithms may be unable to produce an exact solution, whereas iterative
algorithms can generate a close approximation with a finite number of iterations.

Many areas that use iterative algorithms today are witnessing two notable trends.
First, in the era of big data, iterative algorithms must process increasingly larger and
more complex data sets [6]. The breadth of data refers to its dimensionality, while the
depth of data pertains to its quantity. For example, in bioinformatics virtual screening
for potential drug molecules, the structural characterization of candidate drugs can
span tens of dimensions or more, with numbers reaching up to 106-107 or higher [7].
The second trend is that algorithms used in many fields, such as face detection in edge
computing [8], CT (Computed Tomography) in medical and healthcare [9], are increas-
ingly demanding real-time performance. Both of these trends place greater emphasis
on the speed of iterative solutions. In the past, the speed of iterative algorithms could
be increased through performance improvements in single-core processors. However,
as the dominant frequency improvement rate of single-core processors slows down, the
speed enhancement of iterative algorithms has also reached a bottleneck.

The parallelization of iterative algorithms constitutes an efficient approach to expe-
dite their execution. However, given the logical interdependence among consecutive
iterations of such algorithms, deploying them directly on devices such as FPGA (Field
Programmable Gate Array) and GPU (Graphics Processing Unit) that can be easily
accelerated in parallel presents a challenge. If implemented on FPGA or GPU with-
out modification, the algorithms typically fail to leverage a significant amount of the
device’s computing resources simultaneously, resulting in suboptimal acceleration ben-
efits. Consequently, various parallelization strategies for iterative algorithms have been

2

proposed. In this paper, we categorize these strategies into four types. The first strat-
egy entails employing arithmetic units that can be intrinsically computed in parallel
within the iterative algorithm. These computing units (operators) encompass oper-
ations involving vectors and matrices. For example, Fang Yu-ling [10] implemented
the parallel acceleration of the K-means algorithm by leveraging the idea of matrix
multiplication. This approach involved computing matrix transposes, calculating the
distances between each data point and each cluster center, and updating the sam-
ple points in parallel. The second strategy is the multi-initial state parallel search
strategy. It involves generating multiple initial solutions randomly in the search space
and reducing the maximum number of iteration loops (search depth) of each thread.
Then, iterative computations are performed independently on different threads until
all threads meet the convergence termination criteria. Finally, the optimal solution
obtained by each thread is sorted based on the size of its corresponding objective
function. As an illustration, Tang Shi-di et al. [11] initialized multiple molecular con-
formations, employed AutoDock Vina on the GPU, and achieved a speed-up ratio
of 21-fold. Strategy 3 pertains to data partitioning. This approach involves dividing
the search space (input data), with each thread executing iterative calculations based
on the assigned subspace. Upon convergence and termination of all threads, the final
solutions are computed by combining the outputs of all threads. For instance, the
MapReduce framework [12] proposed by Google for processing and analyzing large
datasets adopts this concurrent computing model. Strategy 4 entails task parallelism,
where the iterative algorithm is partitioned into several tasks via a judicious par-
titioning strategy, and each thread is responsible for executing a task. Due to the
possibility of data dependencies among different tasks, communication mechanisms
such as shared storage are utilized to synchronize or asynchronously update local data.
For instance, Dan Alistarh et al. [13] proposed a flexible task scheduler to parallelize
iterative algorithms.

The convergence of iterative algorithms and the detection of convergence after
parallelization are significant issues. Depending on whether the communication of iter-
ative algorithms deployed on distributed computing devices is synchronized, iterative
algorithms can be further categorized into synchronous iterations and asynchronous
iterations [14]. Synchronous iteration accomplishes simultaneous updates of each com-
puting node after each iteration with the help of global communication, while each
computing node in asynchronous iteration performs its own iterative calculation inde-
pendently, using possibly outdated data to update itself [6]. This significantly reduces
the time overhead brought by synchronous communication. Therefore, the conver-
gence of the synchronous iterative algorithms is consistent with that of the original
iterative algorithms, while the convergence of the asynchronous iterative algorithms is
uncertain. To avoid algorithm divergence, BertSekas established a general convergence
theorem for the asynchronous iterative formats by constraining the iterative function
and the data staleness during the iterative process [15]. Additionally, in a distributed
environment, it is essential to avoid blocking communication requests to efficiently run
asynchronous iterative calculations, which increases the difficulty of isolating and pro-
cessing global vectors. As a result, as the number of communication loads increases,
it becomes challenging to determine the convergence of the asynchronous iterative

3

algorithms from the residuals of the global solution components. Therefore, it is nec-
essary to explore the convergence detection mechanism of the asynchronous iterative
algorithms [16].

The paper is organized as follows: Section 2 introduces the definition of iter-
ative algorithms and the challenges they face, along with some typical iterative
algorithms; Section 3 elaborates on the four parallelization strategies for iterative algo-
rithms; Section 4 discusses the convergence of parallel iterative algorithms; Section 5
summarizes the entire paper and provides insights into future research.

2 Iterative Algorithm

2.1 Overview of Iterative Algorithms

For an input vector S, the loop iterative calculation is performed according to the iter-
ative strategy of the specific problem. Assume that the iterative strategy is denoted as
f , which can be a function or some specific operations. After one iterative computation,
a new iteration vector can be obtained, as shown in formula 1:

Sn+1 = f(Sn) (1)

The vector Sn corresponds to the vector obtained in the nth iteration, whereas Sn+1

represents the vector obtained in the (n + 1)th iteration. The iterative process con-
tinues in accordance with the iterative formula 1 until the convergence termination
criterion is met.The commonly employed criteria for convergence termination encom-
pass two types: the first being the attainment of a predetermined value for the number
of iterations, and the second being the diminishment of the error between vectors gen-
erated in two successive iterations (which may be quantified by either the Euclidean
or Manhattan distance) to a specified small quantity, as depicted in formula 2 and
formula 3:

n ≥ presetloop (2)

|Sn − Sn−1| ≤ ε (3)

The constant presetloop in formula (2) represents the maximum number of iterations
that have been pre-determined, and ε in formula (3) is the minimum allowed value
that has been set. Additionally, iterative algorithms usually have convergence, which
is to say that there exists a value S∗ that satisfies:

S∗ = f(S∗) (4)

S∗ is known as the fixed point of the function f , and this is why formula 3 serves as
the convergence criterion. In other words, as the iterative algorithm approaches the
convergence point, the difference between two consecutive iterative solutions should
become increasingly negligible.

4

2.2 Common Iterative Algorithms

Iterative algorithms are ubiquitous and utilized in various fields, such as deep learning,
big data analysis, numerical analysis, and medical and healthcare. While direct algo-
rithms can provide an exact solution to a problem in a finite number of operations[5],
for instance, producing an expression for a partial differential equation solution, itera-
tive algorithms usually only furnish an approximate value that converges towards the
exact solution. For instance, finding the exact solution to a nonlinear partial differ-
ential equation [17] can be challenging, and it is often more effective to use iterative
methods to derive its numerical solution. Specifically, iterative algorithms are advan-
tageous when processing high-dimensional data since they generally necessitate fewer
iterations to obtain a satisfactory approximation compared to the considerable amount
of computing time needed to obtain the analytical solution. Furthermore, the devel-
opment of iterative algorithms is inextricable from the progression of contemporary
semiconductor technology and computer architecture. As the number of pipeline stages
in processor architecture increases and the dominant frequency of the processor rises
[18], the execution efficiency of the processor (indicated as Instructions Per-Cycle,
IPC) becomes even more efficient under the same frequency, due to the continuous
innovation of processor micro-architecture. Given space constraints, this paper only
covers a few of the most common iterative algorithms.

2.2.1 Back Propagation Algorithm

The study of neural networks has gained significant traction in recent years, finding its
application in various fields such as facial recognition [19], smart cities[20], economic
forecasting [21], and biomedicine[22]. A neural network comprises an input layer, mul-
tiple hidden layers, and an output layer. Modern neural networks can have numerous
hidden layers, with millions of parameters. The accuracy of the neural network model
for data classification or regression hinges on the quality of the weights and bias param-
eters of each layer in the neural network, which makes model training a crucial step
in constructing the neural network model. The Back Propagation algorithm (BP algo-
rithm) is generally used to iteratively adjust and optimize the parameters of each layer
of the neural network based on the training set, making it an iterative optimization
algorithm.

The BP algorithm utilizes gradient descent to iteratively adjust the weights and
biases of each layer in the neural network to minimize the loss function. The loss
function, denoted as C, and the activation function, denoted as σ, are used in the
algorithm with L layers. BP algorithm is based on the concept of recursion and problem
partitioning, and it is derived in batches. In the formula 5, δlj represents the partial

derivative of the loss function with respect to the weighted input of the jth neuron in
the lth layer.

δlj =
∂C

∂zlj
(5)

zlj in formula 5 denotes the weighted input of the jth neuron in the lth layer. zlj can

5

Fig. 1 Symbol diagram of back-propagation algorithm for neural network

be expressed as:

zlj =

nl−1

∑

k=1

wl
jka

l−1
k + blj (6)

The symbols relevant to formula 6 are displayed in Fig.1. In this figure, wl
jk repre-

sents the weight coefficient that links the jth neuron in the lth layer to the kth neuron
in the (l− 1)th layer. Furthermore, al−1

k denotes the activation function output of the
kth neuron in the (l− 1)th layer, nl signifies the count of neurons in the lth layer, and
blj stands for the bias of the jth neuron in the lth layer. The δLj for the Lth layer (i.e.,
the final layer) can be derived as:

δLj =
∂C

∂zLj
=

∂C

∂aLj
×

∂σ(zLj)

∂zLj
=

∂C

∂aLj
σ

′

(zLj) (7)

Then the σL
j for the lth layer is:

δlj =
∂C

∂zlj
=

nl+1

∑

k=1

δl+1
k wl+1

kj σ
′

(zlj) (8)

Henceforth, the partial derivative of the loss function with respect to the bias of
each neuron is:

∂C

∂blj
=

∂C

∂zlj

∂zlj
∂blj

= δlj
∂zlj
∂blj

= δlj (9)

The partial derivative of the loss function with respect to each weight is:

∂C

∂wl
jk

=
∂C

∂zlj

∂zlj
∂wl

jk

= δlja
l−1
k (10)

In summary, as presented in Algorithm 1, the backpropagation algorithm for the
neural network comprises two layers of nested iterations. The outer iteration selects

6

Algorithm 1 Back Propagation

Require: C(LossFunction), σ(Active Function), Zl
j(Weighted Input),

α(IterationStep Size), batchnum(Number of Batch)
Ensure: wl

jk, akl − 1
1: for i = 1, i ≤ batchnum, i = i+ 1 do
2: δLj = ∂C

∂aL
j

σ
′

(zLj)

3: for l = L− 1, l ≥ 1, l = l − 1 do

4: δlj =
∑nl+1

k=1 δl+1
k wl+1

kj σ
′

(zlj)

5:
∂C
∂bl

j

= δlj

6:
∂C

∂wl
jk

= δlja
l−1
k

7: blj = blj − αδlj
8: wl

jk = wl
jk − αδlja

l−1
k

9: end for
10: end for

distinct batches (subsets of the training set) for batch gradient descent, while the inner
iteration updates all parameters of the neural network layers based on the partial
derivative of the loss function with respect to each parameter, as per the gradient
descent method.

2.2.2 BFGS Algorithm

The BFGS algorithm, as described in [2, 23], is a derivative of the conventional Newton
iterative algorithm. Assuming that the objective function is denoted as f(X), and the
aim of optimization is to minimize f(X) in a given solution space, the iteration format
of the Newton iterative algorithm can be expressed as follows:

Xk+1 = Xk −M−1
k Gk (11)

In formula 11, Xk represents the solution derived after the kth iteration, Mk denotes
the Hessian matrix of f(X), and Gk represents ∇f(Xk), which is the gradient vector
of f(X) at Xk. However, when the dimension of X is considerably large, comput-
ing the second-order partial derivatives of the objective function and the Hessian
matrix can become immensely complex. To circumvent this, an approximate Hessian
matrix is introduced in the BFGS algorithm, thus avoiding the need to calculate the
second-order partial derivatives and the inverse of the matrix. The iteration format is
presented in formula 12:

Xk+1 = Xk − αHkGk (12)

In formula 12, Hk represents the approximate Hessian matrix, while α denotes the
update step. Moreover, Sk = Xk+1 −Xk, and Yk = Gk+1 −Gk. The updated formula
for the approximate Hessian matrix[24] is displayed in formula 13:

Hk+1 = (I −
SkY

T
k

Y T
k Sk

)Hk(I −
YkS

T
k

Y T
k Sk

) +
SkS

T
k

Y T
k Yk

(13)

7

Algorithm 2 BFGS

Require: X(GeneratedRandomly), H0 = I(UnitMatrix), ε(Iteration TerminationCriterion)
Ensure: X∗(Minimize f(X))
1: X0 = X
2: for k = 0, k ≤ pre set param, k ++ do
3: gk = ∇f(Xk)
4: Dk = −HkGk

5: Xk+1 = Xk + α×Dk

6: Gk+1 = ∇f(Xk+1)
7: Sk = α×Dk

8: Yk = Gk+1 −Gk

9: Hk+1 = H update(Hk)
10: if |yk| < ε then
11: Break
12: end if
13: end for
14: X∗ = Xk

Algorithm 2 illustrates the flow of the BFGS algorithm.

2.2.3 NIPALS PCA Algorithm

Principal Component Analysis (PCA) is a statistical method that transforms high-
dimensional data sets into low-dimensional representations for the purposes of data
analysis, visualization, and feature extraction [25]. Typically, the eigenvalues and
eigenvectors of the data matrix in the PCA algorithm are computed using the method
of Singular Value Decomposition (SVD). However, for large datasets, computing all
the eigenvectors of XTX, can be unnecessary and time-consuming [26]. Therefore, it
is sufficient to calculate only the eigenvectors that correspond to the eigenvalues with
the largest absolute values. To address this, the NIPALS-PCA algorithm was pro-
posed [27], where NIPALS stands for Non-linear Iterative Partial Least-Squares. The
NIPALS-PCA algorithm is a variant of the power method that involves computing
a principal component, performing matrix contraction, and then computing the sub-
sequent principal component. Assuming that the data matrix is denoted as X, with
dimensions m × n, and the element at row i and column j is xj

i , with each column
corresponding to a feature. Suppose A is an N ×N matrix, and γ1 is the eigenvalue
with the largest modulus among its Neigenvalues, satisfying formula 14:

|γ1| > |γi| i = 2, 3, . . . (14)

The eigenvector corresponding to γ1 is referred to as the principal eigenvector of
A. Let it be assumed that the N eigenvectors of A, denoted as εi for i = 1, 2, . . . , N,
are all linearly independent and satisfy Aεi = γiεi, where γi is the ith eigenvalue.
Then, for any non-zero vector v0 ∈ RN , formula 15 holds:

lim
k→∞

Akv0 = α1γ
k
1ε1 (15)

8

Algorithm 3 NIPALS-PCA

Require: X(DataMatrix), ε(Iteration TerminationCriterion),
num(Number of Eigenvectors)

Ensure: t1, t2, . . . , tnum(Feature V ectors)
1: for k = 1, k ≤ num, k = k + 1 do
2: t

′

k = generate random not zero vector()

3: while |tk − t
′

k| ≥ ε do
4: tk = generate random not zero vector()

5: p = XT tk
tT
k
tk

6: p = p

(pT p)

(1

2
)

7: t
′

k = Xp

pT p

8: end while
9: tk = t

′

k

10: X = X − tpT

11: end for

From formula 15, we can conclude that the vector Akv0 corresponds to the eigen-
vector of the largest eigenvalue γ1. To obtain the corresponding eigenvector, it is
necessary to normalize the vector Akv0 to prevent overflow. The eigenvectors can be
obtained as follows:

vk =
Akv0

|Akv0|
(16)

The main steps of the NIPALS-PCA algorithm are shown in Algorithm 3. First, a non-
zero vector tk is generated, and the vector t

′

k is obtained through one power iteration.
Then, whether the vector tk is stable is judged by step 9 in Algorithm 3. If so, tk
is considered to be the principal eigenvector (the eigenvector corresponding to the
largest absolute value), and then the secondary eigenvector is calculated through the
matrix deflation in step 10. Otherwise, the power iteration continues until the vector
tk converges.

2.2.4 Simulated Annealing Algorithm

Simulated Annealing Algorithm is a global optimization technique that is widely
employed in diverse fields, such as biomedicine and numerical computation, due to
its ease of implementation [3]. Its inception can be traced to the natural cooling pro-
cess of matter, where the loss function is treated as the energy of matter. As depicted
in Algorithm 4, in each iteration, a new state with fresh energy (Enew) is generated
from the current state with old energy (Eold). If Enew is less than Eold, the new state
is accepted. However, if Enew is greater than Eold, the new state is accepted with a
probability of exp(−(Eold −Enew)/T) [28]. The state sequence at a constant temper-
ature is solely dependent on the prior state sequence at a higher temperature, hence
the numerical iterative solution sequence of the simulated annealing algorithm can be
viewed as a Markov chain. The Metropolis criterion in the simulated annealing algo-
rithm makes it possible to circumvent local optimal solutions and efficiently search

9

Algorithm 4 Simulated Annealing

Require: T = T0(Initial Temperature), x = x0(Initial Solution), Ebest =
f(x0), f(x) = f(x0), d(SearchDepth), ρ(Cooling Rate)

Ensure: Ebest, xbest(miniminze f(x))
1: while T > Tfinal do
2: for searchdepth = 1 : d do
3: x′ = random neighbour(x)
4: δ = f(x′)− f(x)
5: Random r uniformly in the range (0, 1)
6: if (δ < 0)or(r < exp(−δ/T)) then
7: x = x′

8: end if
9: end for

10: T = ρT (0 < ρ ≤ 1)
11: end while

for global optimal solutions. However, a large number of iterative calculations are fre-
quently required to ensure the quality of the optimal solution, which leads to a lengthy
computation time. As a result, the time-consuming calculation has become the bottle-
neck for implementing the simulated annealing algorithm to large-scale optimization
problems.

2.2.5 K-means Algorithm

In the era of big data, data clustering analysis has emerged as an indispensable com-
ponent of data statistical analysis. The K-means clustering algorithm [4] is widely
favored by the academic community due to its simplicity and ease of design. Given a
dataset S = {xi|i = 1, . . . , n, xi ∈ Rd}, the objective is to divide the n elements in the
dataset into k clusters in such a way that the sum of squared distances of all elements
to their respective centers is minimized. The centers of K clusters are represented by
C = {Ci|i = 1, . . . ,K,Ci ∈ Rd}, the number of elements included in the ith class
is denoted by ni, and the Euclidean distance is employed. The minimized objective
function f can be mathematically expressed as formula 17:

f = min(

k
∑

j=1

nj

∑

i=1

||xi − Cj ||
2) (17)

The algorithm’s flow is presented in Algorithm 5. As can be observed, each iterative
update of the cluster center is dependent on the data of the center in the preced-
ing calculation, which includes the data clusters of each data point and the specific
locations of each center.

10

Algorithm 5 K-means

Require: S = xi|i = 1, . . . , n, xi ∈ Rd(Dataset), pre set param(MaximumNumber
of Iterations), ε(Iteration TerminationCriterion)

Ensure: C = Ci|i = 1, . . . ,K,Ci ∈ Rd

1: C0 (random generated or based other strategies)
2: for i = 0, ipre set param, i = i+ 1 do
3: for j = 1, j ≤ n, j = j + 1 do
4: for k = 1, k ≤ K − 1, k = k + 1 do
5: if dist(xj , C

i
k) ≤ dist(xj , C

i
k+1) then

6: xj ∈ Classik
7: else
8: xj ∈ Classik+1

9: end if
10: end for
11: end for
12: for k = 1, k <≤ K, k = k + 1 do
13: Ci+1

k = (
∑

xq∈Classi
k
x1)/size(Classik)

14: end for
15: objfunc1 = f(S,Ci)
16: objfunc2 = f(S,Ci+1)
17: if abs(objfunc1 − objfunc2) < ε then
18: Break
19: end if
20: end for

2.3 Problems with Iterative Algorithms

Presently, the development of iterative algorithms faces two major challenges. The
first challenge is that it is difficult to further enhance the principal frequency of the
CPU, and as a result, the calculation speed of the iterative algorithms has become a
bottleneck. This is primarily due to two factors: firstly, the semiconductor process has
reached its physical limits, and secondly, the heat density of the processor chip is too
high. As the clock frequency increases, the number of transistors within the processor,
numbering in the billions, undergoes a greater number of flips within a unit of time.
However, the elevation of the processor’s clock frequency gives rise to a substantial
amount of heat (referred to as the power consumption barrier), exerting a profound
influence on the performance of the processor. The constraint on the increase in the
main frequency of the processor implies that there is a bottleneck in the computing
power of the single-core processor. This limits the advantage of iterative algorithms
relying on the high principal frequency of the CPU for fast iterative calculations.
Currently, many commercial processors, such as AMD’s Ryzen CPU, have entered
the multi-core era, increasing the number of cores to enhance the computing power of
computers. However, due to the inherent logical dependence of iterative algorithms,
it is difficult to deploy them directly on a multi-core processor, making it challenging
to fully utilize the parallel computing capability of a multi-core processor.

11

The magnitude of scientific computing problems is progressively expanding, and
the iterative algorithms are becoming more intricate. ”The augmentation of compu-
tational scale encompasses not only the proliferation of data quantity but also the
augmentation of data dimensions. Ultimately, both will expand the solution space of
the problem. The complexity of iterative algorithms lies in the abundance of operators
within the algorithm, as well as the computational intensity, thereby manifesting an
augmented temporal expenditure for each individual iteration calculation. For iterative
algorithms, this implies the necessity for a greater number of iterative computations
to ensure the ultimate convergence and, consequently, the expenditure of a substantial
amount of computational time. This kind of delay is insufferable for real-time appli-
cations, such as edge computing-based face detection[8], which commonly employs
convolutional neural networks as its detection algorithm. During forward inference
and backpropagation, two adjacent layers have data dependency. Furthermore, as the
number of layers and parameters of the neural network increases, the time required for
forward inference and backpropagation also intensifies, prompting the launch of the
Neural Processing Unit (NPU). Another instance is the field of biology’s Molecular
Docking, where the aim is to ascertain the best docking posture between a receptor
(a large molecule, typically a protein) and a ligand (a small molecule, usually a drug
candidate). Nonetheless, discovering a drug candidate often necessitates docking mil-
lions of small molecules, and the computational scale is quite extensive. AutoDock
Vina [29] is a commonly employed molecular docking tool, whose search algorithm is
a global optimizer with quasi-Newton method (BFGS algorithm in Vina) as the local
search algorithm. Its fundamental essence is an irregular long iterative algorithm. Due
to the irregular and long iteration characteristics of the Vina searching algorithm, the
calculation time is quite prolonged, making it challenging to apply to the large-scale
virtual screening of drug molecules [7].

2.4 Synchronous Iteration and Asynchronous Iteration

Fig. 2 Synchronous Iteration and Asynchronous Iteration. Synchronous iteration requires j1 =
j2 = j3, while in asynchronous iteration, there is no strict equality relationship between j1, j2, and
j3. Only certain constraints exist, such as max67{|j1 − j2|, |j1 − j3|, |j2 − j3|} ≤ bound[30]

12

The iterative algorithm deployed on distributed devices can be classified
into synchronous iteration and asynchronous iteration based on the need for
synchronization[14]. For example, deploying an iterative algorithm across three
threads, denoted as Thread1, Thread2, and Thread3, with distinct inter-thread data
dependencies, necessitates the establishment of communication mechanisms between
the threads. The data generated during the jth iteration in the ith thread is denoted
as data(i, j). A synchronous iterative algorithm implies that all threads commence
iterative calculations concurrently. Without altering the execution sequence of the
algorithm, each thread must update local variables via global communication following
each iteration. As illustrated in Fig.2., in the communication phase, different threads
perform the data update of local threads based on mechanisms like shared storage.
j1 = j2 = j3 ensures that all threads data(i, j) are updated before starting a new
round of iteration. The primary factor constraining the performance of synchronous
iterative algorithms is the communication between processors. As a result of varying
computing capabilities of different processors, the processor with higher performance
might have to wait for the processors with lower performance to complete calcula-
tions, resulting in some processors being idle. Furthermore, as communication load
increases, communication bandwidth becomes a critical bottleneck [31]. A viable solu-
tion to this problem is implementing load balancing [32] to ensure that the execution
time of each iteration for every computing node is comparable, thereby eradicating
the penalty resulting from synchronization between nodes in each iteration.

The asynchronous iteration algorithm [33] entails the independent execution of
iterations by all processors. Prior to the initiation of each iteration, if the required data
has not been updated from other threads, and assuming Thread 1 requires data from
Thread 2, but if Thread 2, due to a high computational load or weak computational
capability, results in j2 < j1, then the thread will resort to using outdated (data(2, j2))
data to proceed with the computation.Asynchronous algorithms are generally uti-
lized for parallel computing in distributed systems, encompassing the optimization of
large-scale linear algebra to the distributed coordination of small embedded devices
[34]. The asynchronous algorithm allows computing nodes to operate asynchronously,
facilitating the implementation of distributed algorithms and eliminating the commu-
nication waiting overhead associated with synchronization. Hence, the time taken for
the asynchronous version of the iterative algorithm to complete calculation is 1/2 to
2/3 of that taken by the synchronous version [35]. If a node in the asynchronous iter-
ative algorithm fails, it is not necessary to reinitialize all nodes; instead, resetting the
node is sufficient[35]. The convergence of asynchronous iterative algorithms is difficult
to guarantee, but theoretical analysis shows that many asynchronous iterative algo-
rithms are convergent as long as the communication between asynchronous iterations
is reasonably constrained [36]. Tritsiklis J N [37] has proven that the convergence rate
is optimized when all components are updated in each iteration. Nevertheless, since
asynchronous iterative algorithms may use outdated data, the convergence rate may
decelerate, necessitating more iterations than synchronous versions, thereby offsetting
the advantages of asynchronous iteration to a certain extent. Mikael Johansson’s team
[30] has concluded that the convergence rate will deteriorate with an increase in delay
by modeling the communication delay and update rate.

13

3 Parallelization Strategies for Iterative Algorithms

search

spaceinitial

point

Iterative loops

optimal

solution

search

space

Iterative loops

optimal

solution

concurrency

units

...

search space

Thread1 loops

optimal

solution1

Thread2 loops

optimal

solution2

...

...

Threadn loops

optimal

solutionn

sort & output

...

split

search

space1

Iterative loops

solution1

search

space2

Iterative loops

solution2

...

...

...

search

spacen

Iterative loops

solutionn

1 2 n

combine &

output

search space
search space

task1 loops

partial

solution1

task2 loops ... taskn loops

communication

partial

solution2
...

partial

solutionn

combine &

output

（a） （b） （c）

（d） （e）

Fig. 3 Schematic diagram of parallelization strategies for iterative algorithms. a) Iterative algo-
rithm. b) Iterative algorithm with logical units that can be intrinsically concurrently calculated. c)
Multi-initial state parallel search strategy which generates multiple initial states in the solution space,
and is driven by different threads for parallel independent computation. d) Data partitioning which
divides the solution space (input data), with different threads executing in different sub-solution
spaces. e) Task partitioning which divides the whole iterative algorithm into several tasks, with dif-
ferent threads performing iterative calculations.

A visual representation of a generic iterative algorithm is depicted in Fig.3(a),
where an initial point is generated in the search space, followed by a series of iterative
loops that eventually satisfy the convergence termination criterion and deliver the
optimal solution. Based on our literature review, parallelization strategies for iterative
algorithms can be classified into four categories. The first category employs logical
units that can be inherently computed concurrently within the iterative algorithm. The
second approach is the multi-initial state parallel search strategy. The third category
is data parallelism, while the fourth is task parallelism.

Table 3 illustrates the iterative algorithms and implementation methods that are
suitable for various iterative algorithm parallelization strategies. The first paralleliza-
tion strategy involves logical units that can be intrinsically computed concurrently.

14

Table 1 Iterative algorithms and implementation methods (synchronous iteration, asynchronous iteration) applicable
to different parallelization strategies for iterative algorithms

Parallelization Strategy Applicable Iterative Algorithms References Implementation methods

logical unit that can be
intrinsically concurrently
computed

Algorithms with logical
units that can be
concurrently computed

[37,38,39]
Synchronous iteration
asynchronous iteration

Multi-initial state parallel
search strategy

Optimization iterative algorithms
(such as BFGS, SA, etc. for finding
the optimal solution)

[11,40,41,42,43,44,45,
46,47,48,49,50,51,52]

Mostly adopt
asynchronous iteration

Data parallelism
Big data analysis and
exploration of the whole
solution space

[53,12,54,55,56,
57,58,59,60,61,62,63]

Asynchronous iteration

Task parallelism
All, the algorithm needs
to be properly divided into tasks

[13,64,66,6,
67,68,69,70]

Mostly adopt
asynchronous iteration

Fig.3(b) demonstrates that specific logical units of the iterative algorithm can be com-
puted concurrently, such as operations involving matrices and vectors. It is crucial
to comprehend the computational details of the iterative algorithm and identify the
logical part that can be computed concurrently. While both synchronous iteration
and asynchronous iterations are feasible, synchronous iteration is predominantly used
to guarantee the convergence of the parallelized iterative algorithm.The second par-
allelization strategy is the multi-initial state parallel search strategy. As depicted in
Fig.3(c), this approach first randomly generates multiple initial solutions in the search
space, reduces the maximum number of iteration loops (search depth) of each thread,
independently performs iterative calculations in different threads until all threads
meet the convergence termination criteria, sorts the optimal solutions obtained by
each thread based on the size of their corresponding objective functions, and then
outputs the solutions. This strategy is primarily applicable to optimization iterative
algorithms that involve finding the optimal solution for a specific problem, such as the
simulated annealing algorithm, quasi-Newton algorithm, genetic algorithm, and oth-
ers. To decrease the communication overhead between threads, Strategy 2 primarily
employs the implementation method of asynchronous iteration.The third paralleliza-
tion strategy is data parallelism. As displayed in Fig.3(d), this approach first divides
the search space (input data), and each thread performs iterative calculation based
on the assigned sub-search space. Once all threads reach the convergence termination
criteria, the final solutions of each thread are combined and calculated to produce
the output. Strategy 3 is appropriate for big data analysis or algorithms that need
to explore the entire solution space (input data), such as updating the parameters
of training neural network models or counting the number of occurrences of a par-
ticular word in an article. As data parallelism uses the same algorithm operation for
different input data, it mostly adopts the implementation method of asynchronous
iteration.The fourth parallelization strategy is task parallelism. As demonstrated in
Fig.3(e), this approach first divides the iterative algorithm into several tasks, and each
thread is responsible for one task. Since there may be data dependencies between dif-
ferent tasks, it is necessary to implement synchronous or asynchronous communication

15

through communication mechanisms such as shared storage. Strategy 4 is appropriate
for general iterative algorithms. The crucial factor is how to divide tasks to minimize
the logical dependencies between tasks and how to design an efficient task scheduler.
Strategy 4 mainly employs asynchronous iteration to break the data dependencies
between different tasks.

3.1 Intrinsically Concurrently Computable Logical Unit

Amdahl’s Law, which specifically describes the impact of enhancing the performance
of a portion of a system on the overall operating rate of the entire system [38], can
be applied to iterative algorithms. In the context of these algorithms, logical units
that can be computed concurrently are suitable for performance improvement. These
logical units refer to algorithmic details that are easily parallelizable, such as matrix
and vector operations. Let Torigin be the total execution time of an iterative algorithm,
and let t be the time for the logical units. If concurrent computing is performed on
these logical units and the acceleration ratio is n, the computation time for these units
becomes t

n
. The time after parallel acceleration is then given by Formula 18:

Tinter parallel = Torigin +
t

n
− t (18)

Let the proportion of the computation time of the concurrent logical units to the total
time be denoted by α. That is:

t

Torigin

= α (19)

Then the overall speed-up ratio of the iterative algorithm can be calculated as:

Torigin

Tinter parallel

=
Torigin

Torigin + t
n
− t

=
1

(1− α) + α
n

(20)

From formula 20, the maximum speed-up ratio can be obtained as:

lim
n→∞

1

(1− α) + α
n

=
1

1− α
(21)

The upper bound of the speed-up ratio for an iterative algorithm utilizing its inher-
ent concurrently computable logical units is contingent on the percentage of these
units relative to the entire computational time. The built-in concurrent computing
units referred to herein are not confined to matrix and vector operations. As long
as a particular portion of the arithmetic logic in the iterative algorithm can be seg-
mented into multiple autonomous computing modules, it can be deemed as inherent
and concurrent.

For example, formula 22 is a system of linear equations:

a11 · · · a1n
...

. . .
...

an1 · · · ann

x1

...
xn

=

b1
...
bn

(22)

16

If matrix A and vector X are known, and vector B is unknown, matrix A can be
divided into n row vectors [A1, A2, . . . , An], and n parallel threads are used to
calculate A1X, A2X, . . . , A3X respectively to obtain the result vector B. In this
way, each thread undertakes 1/n of the original calculation amount, and the theoretical
speed-up ratio reaches n.

When presented with a system of linear equations where the matrix A and vector
B are known and the vector X is unknown, the goal is to solve for X. If the size of
matrix A is relatively small and there is a unique solution, the inverse matrix A−1 can
be derived, which would allow for the vector X to be obtained using formula 23.

X = A−1B (23)

Nevertheless, when the dimension of matrix A is very large, it requires a significant
amount of memory storage to compute the inverse matrix operation of matrix A. In
such cases, a common approach is to obtain an approximate value of X by using the
Jacobi iteration method or other numerical iterative techniques. The Jacobi iterative
method is expressed in the format of formula 24:

x
(k+1)
i =

1

aii
(bi −

n
∑

i=1,j 6=i

aijx
(k)
j) (24)

where X(0) = (x
(0)
1 , x

(0)
2 , x

(0)
3 , . . . , x

(0)
n) is an initialized non-zero Vector, X(k)

represents the solution vector after the kth iteration.
The Jacobi algorithm is known for its feature of low computational requirements,

and its ability to solve multiple components of the solution independently. Kai Song et
al. [39] have applied the Jacobi iterative algorithm to a ternary optical computer with
reconfigurable processor bits and many data bits, and developed a new parallel design
scheme to address the issue of low efficiency for large linear equations. M.ANDRECUT
[40] proposed a GPU-parallel implementation of NIPALS PCA, which is convenient
to deploy and accelerate on GPU due to the large-scale matrix that needs to be pro-
cessed in the NIPALS PCA algorithm. However, the error accumulated by the NIPALS
PCA algorithm in each iteration results in a loss of orthogonality, and thus it is only
utilized for estimating the first few components in practice [40]. To address this prob-
lem, the GS PCA (Gram-Schmidt PCA) algorithm has been proposed, which can
be conveniently represented by matrix-vector operations, and orthogonality correc-
tion is performed for both the scores and loads in each iterative step. According to
numerical results, the GPU parallel optimized version based on CUBLAS (NVIDIA)
is approximately 12 times faster than the CPU version based on CBLAS (GNU Sci-
entific Library). The K-means algorithm is an iterative computation process without
inherent parallelism. Fang Yu-ling et al. [10] employed the concept of matrix multi-
plication to parallelize the primary steps of the K-means algorithm, including matrix
transposition, computation of the distance from each data point to multiple cluster
centers, clustering of sample points to the nearest cluster, and updating the cluster
center. Molecular docking is a crucial step in drug design, which is basically an opti-
mization problem based on a scoring function. Although AutoDock Vina has good

17

docking accuracy and speed, the long iterations and irregular nature of the algorithm
make it difficult to deploy on hardware acceleration devices. However, Ming L et al.
[41] have proactively explored the available logical units for concurrent computation
in the AutoDock Vina algorithm, such as parallel computation of intramolecular and
intermolecular energy, updating of Hessian matrix involved in the BFGS algorithm,
and a novel BRAM access strategy based on data rearrangement. When ensuring rela-
tive docking accuracy, the Vina-FPGA [41] version implemented by Ming L et al. only
consumes 2.5% of the energy consumed by the CPU version, and achieves an average
speed-up ratio of 3.7 times.

3.2 Multi-Initial State Parallel Search Strategy

3.2.1 Multi-Initial State Parallel Search Strategy

The traditional iterative algorithm continuously performs iterative calculations in a
specific format on the input initial solution, and updates the solution in each itera-
tion until the iteration termination criterion is met to exit the iteration and to give
the searched optimal solution. Therefore, the traditional iterative algorithms can be
regarded as iterative sequences with a single initial state. The choice of the initial
point plays a decisive role in the speed of convergence. A good initial point often
means less computation time and higher computational efficiency. Therefore, the iter-
ative calculation can be accelerated by increasing the number of initial states, which
is to increase the number of iteration threads, and reducing the maximum number of
iterations in the iteration termination criterion. This parallelization strategy for itera-
tive algorithms is called multi-initial states parallel search, and its algorithm steps are
shown in the pseudocode Algorithm 6. First, multiple initial solutions are generated,
and then each iterative thread performs mutually independent iterative calculations.
When all threads exit the iterative calculation, the best result among all the threads
is selected as the final result. Fig.4 shows the multi-initial states parallel search strat-
egy for the iterative algorithms. Tang Shi-di et al. [11] adopted the multi-initial state
parallel search strategy, used OpenCL to transplant AutoDock Vina on the GPU for
acceleration. The Vina-GPU architecture diagram is shown in Fig.5. The Host end is
mainly responsible for the preparation of docking molecular data, and the sorting and
output of final docking result. The Device end randomly initializes multiple molecu-
lar conformations and executes the main steps of the AutoVina docking algorithm.
The number of threads in Vina-GPU is 8000, and the search depth of each thread is
determined by the heuristic formula 25:

V ina GPU search depth = max {1,
f loor (0.24×Natom + 0.29×Nrot − 3.41)}

(25)

The default search depth of AutoDock Vina is determined by formula 26:

V inasearchdepth
= 105×Natom+

1050× (Ntorsion + 6) + 5250
(26)

18

Algorithm 6 Multi-initial state parallel search strategy in iterative algorithms

Require: n Initial Solutions {x1, x2, . . . , xn}
Ensure: fbest = min {f (x1) , f (x2) , . . . , f (xn)} , xbest = xb (f (xb) = fbest)
1: x1

1 = x1, x
1
2 = x2, x

1
3 = x3, . . . , x

1
n = xn

2: for each threadi = 1 : n concurrently do
3: for k = 1 : d do
4: xk+1

i = iterative func(xk
i)

5: if abs
(

f
(

xk+1
i

)

− f
(

xk
i

))

< ε then
6: break
7: end if
8: end for
9: end for

10: fbest = min
{

f
(

xk+1
1

)

, f
(

xk+1
2

)

, . . . , f
(

xk+1
n

)}

11: xbest = xb (f (xb) = fbest)

Fig. 4 multi-initial state parallel search strategy in iterative algorithms

In formula 25, Natom and Nrot denote the number of atoms and rotatable bonds in
the ligand molecule, respectively. The default number of search threads in AutoDock
Vina running on the CPU is 8, but the number of physical processors available on
the computing platform determines whether all 8 threads can execute concurrently.
Table 3.2.1 displays the search depths of different compounds on AutoDock Vina and
Vina-GPU, illustrating that the default search depth of each thread in AutoDock Vina
is much higher than that in Vina-GPU. Vina-GPU achieves a substantial speed-up
ratio of up to 50 times with an average speed-up ratio of 21 times, while ensuring
relative docking accuracy. However, Tang Shi-di et al.’s Vina-GPU lacks theoretical
justification. To address this, Zhou X et al. [42] provided a rigorous mathematical
proof for the convergence of the multi-initial state parallel search strategy and the
practicality of reducing the number of iterations of each thread. By increasing the
number of iterative search threads and reducing the number of iterations of a single
thread, the accuracy of the search solution remains the same or even improves while the
total workload remains constant. This proves the feasibility of the multi-initial state
parallel search strategy for iterative algorithms both theoretically and practically.

19

Table 2 Search Depth of Different Compounds on Vina and Vina-GPU

Complex Natom/Nrot Search Depth of AutoDock Vina Search Depth of Vina-GPU

1jd0 15/2 15225 1
1bm2 33/7 22365 6
1jyq 60/20 38850 16

Fig. 5 Architecture Diagram of Vina-GPU [11]

Fig. 6 Timeline of MMC PSA [43]

Furthermore, it is worth noting that the different threads involved in parallel com-
puting may not be entirely independent, and therefore, they can interact with each
other. For instance, after a certain number of loop iterations, threads can initiate an
interaction, whereby the starting state of the subsequent iteration for all threads is
set as the current best state. This technique is commonly known as the Multi-Start
algorithm [44, 45] and represents a special type of multi-initial state parallel strategy.
Multi-Start combines the local information of individual thread ends with the global
information of all other thread ends to expedite convergence. However, it entails a cost
in terms of inter-thread communication time.

Computational and modeling complexities represent major challenges in 3D engi-
neering design. In order to address these complexities, Li N et al. [43] utilized MMC

20

PSA (Multiple Markov Chains Parallel Simulated Annealing). As depicted in Fig.6,
MMC PSA employs the main thread for data broadcasting and synchronization, while
the auxiliary thread performs the specific calculation process. By deploying only four
PEs (Processing Elements, roughly equivalent to four threads), MMC PSA can achieve
a time savings of about 70% compared to the sequential version.

The Weapon-Target Assignment (WTA) problem is a combinatorial optimization
problem of NP-style, with the aim of optimally assigning weapons to targets in order
to minimize the expected value of surviving targets. In order to reduce computation
time and improve solution quality, Emrullah SONUC et al. [46] have implemented a
parallel Simulated Annealing (pSA) algorithm based on the multi-initial point search
strategy and deployed it on the GPU platform, achieving a 250-fold speed-up ratio
with 1024 blocks on the GPU, compared to a single-core CPU. Diffdock[47] is the
first molecular docking algorithm based on diffusion generative models recently intro-
duced by Corso G and others. It initializes multiple molecular conformations deployed
in different inference threads. Each molecular conformation undergoes several steps
of generation, resulting in multiple final conformations. These conformations are then
sorted and outputted based on a confidence model score for each molecular confor-
mation. While ensuring fast docking speed, Diffdock achieves approximately twice the
docking accuracy compared to traditional molecular docking algorithms. MICHAEL
T. FELDMANN et al. [48] have proposed a manager-worker-based parallelization
algorithm for Quantum Monte Carlo (QMC). The fundamental idea is to execute inde-
pendent QMC computations and combine statistical information of results from all
processors to obtain the global result. The paper dynamically adjusts the workload
of each processor based on the Manager-Worker model, so the entire parallel QMC
computation is load-balanced.

3.2.2 Concurrent Strategy for Iterative Algorithm with Stochastic
Properties

If an iterative algorithm incorporates a stochastic process, a concurrent strategy can
be established based on this random process, which refers to the algorithmic module
with stochastic properties, such as the random perturbation in the simulated annealing
algorithm used to generate a new neighbor. In Fig.7, an iterative calculation consists
of three parts: Module 1, the random module, and Module 2. At this point, n parallel
random modules can be created after Module 1. Once all the random modules have
finished their computation, a randomized result is selected using a predetermined
evaluation strategy in the selection module and inputted into Module 2. Selecting a
good random result can help accelerate the convergence of the algorithm.

Chazan D et al. [49] have presented a highly parallelized approach for solving
unconstrained optimization problems, as illustrated in Fig.8. The proposed method
employs the direction of the steepest descent (represented by the purple arrow in
the negative gradient direction) as the primary search direction and generates several
directions by applying random rotations as auxiliary search directions (indicated by
the bright blue arrows). Next, a one-dimensional search is carried out in both the
primary and auxiliary search directions concurrently, and the minimum value point is
estimated by comparing the size of the objective function. This approach overcomes

21

Fig. 7 Concurrency Strategy for Iterative Algorithms with Stochastic Properties

the issue of the lace phenomenon that arises near the minimum value point of the
objective function, which is characterized by ridges on the contour lines, and avoids
the undesired zigzag search routes.

Fig. 8 (One-Dimensional) Main and Auxiliary Collaborative Search

Ana M. Ferreiro-Ferreiro and her colleagues (Ferreiro-Ferreiro et al., [50]) imple-
mented the basin-hopping algorithm, which employs the global simulated annealing
technique along with the L-BFGS local optimizer. Fig.9 depicts the specific itera-
tions numbered accordingly. The fundamental concept of the basin-hopping algorithm
involves initiating from an initial estimate and then generating several random neigh-
boring solutions at each step of the Metropolis process. Subsequently, a local minimum
optimizer, such as L-BFGS, is executed from the latter, and the optimal value obtained
is employed as the starting point for the next random perturbation. By intensifying
the number of local searches and exploring the neighboring solutions surrounding the
current state, the iterative algorithm’s convergence can be improved.

22

Fig. 9 Schematic Diagram of Basin-Hopping Algorithm (Two-Dimensional) [50]

Fig. 10 Reducing the Number of Local Searches in Iterative Algorithms

3.2.3 Reducing the Number of Local Searches in Iterative
Algorithms with Randomness

The computational time of the iterative algorithm is primarily influenced by the choice
of the initial point and the artificially predetermined number of iterations. Sections
3.2.1 and 3.2.2 center predominantly on selecting a favorable initial point. Further-
more, the convergence of the iterative algorithm can be expedited by avoiding some
needless iterative searches based on certain information gleaned from the iterative
process. The strategy to curtail the number of local searches in random iterative
algorithms lies in diminishing the time of a single iteration. As depicted in Fig.10.,
assuming that Module 2 is a time-consuming computational module, like a local search
algorithm, a selection logic may be added before Module 2 to ascertain whether it is
worthwhile to proceed with Module 2’s calculation based on a specific strategy. Oth-
erwise, the iteration program returns to the outset, Module 1. As the number of local
iterative searches directly determines the computation time of the iterative algorithm,
abridging any unnecessary iterative searches during the local search process could
quicken the iterative algorithm’s convergence.

In 2012, Stephanus Daniel Handoko and his colleagues introduced QuickVina as a
means to accelerate AutoDock Vina (Handoko et al., [51]). Given that AutoDock Vina
employs a simulated annealing algorithm based on BFGS local optimization, and the
BFGS local search represents the most time-consuming part of the AutoDock Vina
algorithm, they adopted a novel mathematical strategy to assess the importance of
the initial value of each local iteration and avoided superfluous local searches using

23

Fig. 11 Schematic Diagram of Reducing the Number of iterations in QuickVina

heuristic methods. The underlying concept is based on Fermat’s theorem, which posits
that the local minimum constitutes a stationary point in the continuous function. The
locally searched point is denoted as the set S, and for the midpoint P of the currently
executed searched points, if there exists a neighboring point Q that satisfies formula
27 in two dimensions:

f
′

(P)f
′

(Q) ≤ 0, Q ∈ S (27)

If point P satisfies the test, local search can be conducted; otherwise, it will be skipped.
For instance, in Fig.11., point A and point C satisfy formula 27 and therefore pass
the test, whereas point A and point B do not. QuickVina, which employs a heuristic
algorithm, achieves a maximum speedup of approximately 25 times and an average
speedup of 8.34 times compared to AutoDock Vina. Nonetheless, QuickVina’s accu-
racy is compromised when the initial molecular conformations (exhaustiveness) in the
AutoDock Vina algorithm are limited. To address this issue, Stephanus Daniel Han-
doko et al. [52] developed QuickVina2 with the same idea of avoiding unnecessary local
searches using heuristic methods but introduced a new consistency check heuristic
method to improve significance testing. Assuming that the solution space’s dimension
is N and that P is the intermediate point of the current local searches, if there exists
a point Q among the 2Nneighbors of point P that satisfies:

sign
{

∂f(x)
∂xi

|x=P

}

.sign {[f(P)− f(Q)]

[Pi −Qi]} ≤ 0
(28)

If point P passes the test, local search may proceed; otherwise, it will be skipped.
Essentially, formula 28 can be converted to formula 27. According to Lagrange’s Mean
Value Theorem, for sign {[f (P)− f (Q)] [Pi −Qi]} in formula 27, we can infer that
there exists a point M that satisfies:

∂f(x)

∂xi

|x=M = sign {[f(P)− f(Q)] [Pi −Qi]} (29)

Then:

sign

{

∂f(x)

∂xi

|x=P

}

.sign

{

∂f(x)

∂xi

|x=M

}

≤ 0 (30)

24

Fig. 12 (a) Path Fusion (b)High-Order Prediction [53]

Stephanus Daniel Handoko et al. [52] achieved a maximum speedup of approxi-
mately 20.49x with an exhaustiveness of 8, and an average speedup of about 2.3x.
In 2017, Yuguang Mu et al. [54] introduced QuickVina-W, which enables researchers
to efficiently and accurately screen large ligand libraries without prior definition of
target pockets. Given the vast sampling space of molecular blind docking, QuickV-
ina2 only extends historical point information from local to global threads, whereas
QuickVina-W offers high efficiency and precision within a short period of time.

Qiu Jun-qiao et al. [53] have accomplished the parallelization of an extensible Finite
States Machine using path fusion and high-order prediction. The concepts of path
fusion and higher-order prediction are based on state enumeration and vector fusion,
and speculative execution, respectively. In Fig12(a),Si represents various states of the
Finite State Machine, and Si represents state vectors in the fusion state. The state
of ”basic” represents the enumeration state, and the state of ”fused” represents the
fusion state. When the fusion state does not have transition information for the current
condition, it jumps to the ”basic” state and records the transition information at that
time. It then returns to the fusion state to achieve parallelization of the Finite State
Machine. To speed up the process of reaching the final state, the entire state sequence is
divided into four different chunks, and these chunks are calculated in parallel as shown
in Fig.12(b). Finally, starting from the second chunk, the starting state of the chunk
and the ending state of the previous chunk are sequentially verified to ensure they are
the same. If not, the chunk is re-executed. Path fusion merges multiple initial-state
search paths into one vector path, thereby conserving running memory space. High-
order prediction optimizes space for time to forecast the subsequent iterations and
break internal dependencies. This method can be considered as reducing the number
of iterations in the dimension of time.

A Finite State Machine that determines the transition condition can be viewed as
an iterative sequence with interdependent adjacent states. Suppose the search space
is S and there are 3 search threads, and the space is divided into N subspaces based
on certain division strategy, represented as sub1, sub2, . . . , subN . Let S1, S2, . . . , SN

denote N different states. As depicted in Fig.13, Thread 1 acts as the main thread.

25

Fig. 13 State Partition and Speculative Execution Based on the Finite State Machine

Initially, perform a parallel search with multiple initial states, such as S2 as the initial
state of Thread 2, andS3 as the initial state of Thread 3. After several iterations,
utilizing speculative execution mechanism, it is discovered that Thread 2 has also
reached S4, and Thread 3 has reached S3, and the final state achieved is S20. Eliminate
the explored state from the solution space to reduce the solution space. Then, Thread 1
takes S20 as the initial state, and the initial state of the other two threads is generated
by specific strategies, such as randomly selecting the unexplored state or selecting the
neighbor of the initial state of the main thread.

3.3 Data Parallelism

The concept of data parallelism is illustrated in Fig.14. The execution procedure of
data parallelization for iterative algorithms [55] is as follows: the large input data is
partitioned into smaller data inputs and distributed to multiple computing nodes to
perform the same task, or the original task is split into several smaller tasks that
can be executed independently and assigned to different nodes for parallel processing.
Once all processors have completed their calculations, the results are collected and
combined to obtain the final solution of the problem.

In 2014, Google introduced MapReduce technology in [12], which is a parallel com-
puting model for big data analysis and processing. MapReduce is dedicated to parallel
processing of large-scale data using large clusters of low-cost servers, taking into full
account the scalability and system availability [56]. MapReduce adopts the ”divide
and conquer” programming paradigm, breaking down large-scale tasks into smaller
tasks, each of which is executed separately by sub-nodes in the cluster, and finally,
the intermediate results of each node are integrated to obtain the final result [57]. The
flowchart of MapReduce execution is illustrated in Fig.15. Firstly, the MapReduce
function library divides the input file or data into several data segments. In the Map
phase, the input data is processed in parallel through the user-defined Map() function,
generating corresponding intermediate key-value pairs. In the Shuffle phase, the out-
put of each node’s Map is divided and reorganized to reduce bandwidth consumption.
In the Reduce phase, the custom Reduce() function is called to categorize and merge
the results after Shuffle. Finally, the result is output. Amin Mohebi [58] highlights that

26

Fig. 14 Schematic Diagram of Data Division

the flexibility, programming simplicity, and fault tolerance of the MapReduce frame-
work have made it a renowned parallel programming model that has gained a lot of
attention.

Zinkevich M [59] has executed the parallel implementation of gradient descent algo-
rithms utilizing the MapReduce framework. Algorithm 7 exhibits the single-machine
stochastic gradient descent which involves selecting a random data sample for gra-
dient descent calculation within each iteration, given the array samples, the number
of iterations, learning factors, and the initial gradient. The parallelized adaptation
of LocalSGD is SimuParallelSGD, presented in algorithm 8. This technique random-
izes the training set samples, dispatches subsets of data to each machine, executes a
random gradient descent in parallel, and subsequently aggregates and averages the
corresponding weights on each machine to derive the final outcome.

Algorithm 7 LocalSGD

Require: S = {ci}
m
i=1 (DataSample), T (number of loops), η(learning rate), w0(initial gradient)

Ensure: w(gradient)
1: for t = 1, t ≤ T, t++ do
2: j = random generate(1,m)
3: wt = wt−1 − η∇fj(wt−1)
4: end for
5: w = wT

Algorithm 8 SimuParallelSGD

Require: P (Number of Machines), η(Learning Rate), w0(Initial Gradient), T =
ceil(m/P), S = ci

m
i=1(Data Sample)

Ensure: w(gradient)
1: for i = 1, i ≤ p, i++, concurrently do
2: wi,0 = w0

3: localSGD(S = {ci}
m
i=1 , T, η, wi,0)

4: end for
5: w = 1

P

∑P

i=1 wi,T

27

Fig. 15 MapReduce Execution Flow Chart

Leonid proposed the BSF (Bulk Synchronous Farm)-skeleton [60] to facilitate the
parallelization of iterative numerical algorithms on cluster systems based on data parti-
tioning. The BSF-skeleton template bears resemblance to the MapReduce framework,
but with a master-slave paradigm, where the master thread governs the overall con-
trol, and the slave threads are chiefly responsible for specific calculations. Martnez J A
et al. [61] delved into the load balancing problem by implementing the iterative algo-
rithm on heterogeneous multiprocessors through data partitioning. They proposed the
ADITH algorithm to achieve dynamic load balancing by redistributing the workload
in the remaining iterations based on the computing speed of each node in the first
iteration. Pelle Jakovis et al. [62] evaluated the MapReduce framework for iterative
scientific computing applications, focusing mainly on analyzing the performance and
adaptability of three iterative algorithms: Spark, Twister, and HaLoop, while execut-
ing iterative algorithms based on the MapReduce framework. The iterative algorithms
are categorized into four groups: 1) requiring a single execution of MapReduce, 2)
requiring a constant number of sequential MapReduce executions, 3) requiring a sep-
arate MapReduce execution in each iteration, and 4) requiring multiple MapReduce
executions in each iteration.

Calvin A. Johnson [63] proposed a Tomographic Image Reconstruction technique
that involves reconstructing images from a set of measured projections. Building on
the computationally intensive iterative reconstruction algorithm by Fourier, the author
suggests a parallelization scheme for data division in the projection space and then
assigns the data to different processors for computation. Meanwhile, Boglaev I P
et al. [64] apply a combination of time discretization and domain decomposition to
solve singular perturbed semilinear parabolic problems, decompose the solution space
region, and construct a parallelized iterative algorithm.

Fig. 16 (a) Task Partitioning Graph (b) Directed Loop Graph in an Ideal Situation

28

Fig. 17 (a) Task Partitioning Graph and (b) Directed Loop Graph when Task 3 and Task 4 depend
on Task 1 and Task 2 respectively

The Iterative Closest Point (ICP) is a distance data processing method commonly
used in temperature inspection and range data processing fields. In each ICP iteration
[65], the correspondence between two datasets is determined, and the transformation
that minimizes the mean square error (MSE) of the correspondence is calculated. The
iteration terminates when the MSE is less than a certain threshold or the maximum
number of iterations is exceeded. Christian Langis et al. have successfully parallelized
ICP for image processing [65]. To compute the distance between the input image and
the reference image, the input image is divided into N parts and sent to N sub-threads.
Each thread calculates the correspondence between the current image subset and the
reference image, sends it to the main thread after each iteration, and collects the
increment calculated by the main thread for a new round of iteration.

3.4 Task Parallelism

The concept of task parallelism involves breaking down an iterative algorithm into
a directed sequence of multiple tasks, where task interdependence is determined by
both the algorithm itself and the task partitioning strategy [13]. Ideally, these tasks
are independent of one another and can be executed concurrently. However, in the
worst case scenario, any two consecutive tasks in the task sequence may have inter-
dependencies. For instance, an iterative algorithm may be divided into four tasks,
namely Task1, Task2, Task3, and Task4, with the ideal scenario illustrated in Fig.16.
On the other hand, if there are task interdependencies, such as Task3 being depen-
dent on Task1 and Task2, and Task4 being dependent on Task1 and Task2, this can
be represented by Fig.17.

Dan Alistarh et al. [13] put forward a methodology for effectively parallelizing
iterative algorithms via a flexible scheduler. The scheduler can relax the rigid order
stipulated by sequential algorithms and allow speculative processing of tasks before
their dependencies, although this may lead to some loss of correctness. The crux of the
matter is the balance between the performance gain brought by the scheduler and the
trade-off between the resulting deterministic loss and the wasted workload. The tradi-
tional algorithm for structural optimization consists of alternating phases of analysis
and optimization. In each iteration, the structural analysis is completed by solving the
finite element global matrix, while simultaneously minimizing the objective function.
Wang Xi-cheng et al. [66] proposed a parallel method of structural optimization, which
breaks down the entire structural optimization task into obtaining potential energy by
summing the energy of each element , thereby avoiding the time-consuming work asso-
ciated with the stiffness matrix. Jacques M. Bahi et al. [67] proposed a methodology

29

Algorithm 9 asynchronous parallel iterative algorithm of Jacobi iterative scheme

Require: X(0) =
(

x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
n

)

(initial solution)

Ensure: X∗ = (x1, x2, x3 , xn) (optimal solution)
1: while k ≤ pre set value do
2: for each threadi = 1 : p concurrently do

3: Y k
i = Jacobi

(

Y k1

1 , Y k2

2 , . . . , Y
kp
p

)

4: if ||Y k
i − Y k−1

i || ≤ ε then
5: break
6: end if
7: end for
8: end while
9: X∗ = (Y1, Y2, . . . , Yp)

for decomposing the solution vectors, and the framework of the iterative algorithm is
outlined as follows:

Xk+1 = g
(

Xk
)

(31)

where Xk is an n-dimensional vector and g is a function of Rn space. Divide Xk into
m blocks, i.e. Xk

i , i ∈ 1, . . . ,m. The function g can also be consistently divided into
m constituent blocks Gi. Then formula 31 can be rewritten as:

Xk+1
i = Gi

(

Xk
1 , , X

K
m

)

, i = 1, . . . ,m (32)

This approach enables the concurrent updating of these m constituent blocks using m
processors in parallel.

Li Wen-jing et al. [68] proposed a strategy to reduce the communication time of
Jacobi iterative computation by introducing a relaxed asynchronous parallel algorithm.
The fundamental idea is that in iterative parallel processing, multiple processes can
continue iterating for a solution directly using the old iteration values of the previous
one or few iterations, without waiting for the results of this iteration carried out by
other processors. The Jacobi asynchronous parallel iteration algorithm is presented
as follows: Assuming p threads and vector X has n components, Y k

i represents the
solution component produced after the kth iteration in the ith thread. The algorithmic
steps are demonstrated in algorithm 9:

Henggang Cui and colleagues [6] actively investigated the staleness of asynchronous
updates and established three different models: the Bulk Synchronous Parallel (BSP)
model, the Arbitrarily-sized BSP (A-BSP) model, and the Stale Synchronous Parallel
(SSP) model. They assumed that each iteration can be divided into six tasks, and
denoted the jth task in the ith iteration as task(i, j), with three threads allocated. In
the BSP model, updates are not made until the end of a clock cycle (barrier), where one
clock cycle is equivalent to one iteration. For example, for task(4, 6) circled in Fig.18,
BSP can only guarantee updates for tasks of previous clocks (clock 3 and lower, with no
shadows). The A-BSP model introduces work− per− clock(WPC), which represents
the amount of work (the number of iterations) completed in each cycle. As shown in

30

Fig. 18 BSPA-BSP and SSP models [13]

Fig.18(b), WPC = 2. Although the A-BSP model reduces communication work per
clock through more computation, it still suffers from the main problem of the BSP
model: a single slow thread will cause all threads to wait, a problem that deteriorates
with increased parallelization. Consequently, the SSP model [69] was proposed, which
defines slack as an explicitly introduced relaxation parameter that specifies how many
obsolete clocks the current thread has for the view of shared state. Assuming that a
thread is at clock t and slack is s, the thread can view all updates from clock 1 to
t− s− 1, as shown in the subgraph (c) in Fig.18 with slack = 1.

When solving parabolic equations numerically, the explicit differencing scheme can
be deployed on parallel computers, albeit with stringent constraints on the time step.
Conversely, the fully implicit differencing scheme, lacking conditional stability and
strict constraints, necessitates the solution of a global linear system at each time layer,
rendering it unsuitable for direct implementation on parallel computers. To overcome
this obstacle, Wenrui Hao et al. [70] proposed a parallel iterative method in the fully
implicit schemes for the one-dimensional and two-dimensional problem of parabolic
equations. This method is based on the idea of domain decomposition, which divides
the linear equation system into numerous non-overlapping subsystems. Additionally,
the authors demonstrated that this method enables the difference scheme solution to
converge to the implicit differencing scheme.

Beam tracking is a computationally intensive endeavor, comprising primarily of
three algorithms: 1) beam tracing, 2) the generation of beam octrees, and 3) grid
generation. The first and third stages are iterative algorithms, while the second stage
is a recursive algorithm. Beam tracking is a method that initiates twenty beams using
a dodecahedron (centered at the source position). These beams are then partitioned
based on the geometric shape of the surfaces they impinge upon, giving rise to reflected
and refracted beams from the separated incident light. In the second stage, all beams

31

Fig. 19 Schematic Diagram of Master Thread - Worker Threads

generated by beam tracing are placed in an octree, which accelerates the spatial search
of the beam. In the third stage, the spatial distribution of sound intensity levels is
delineated in the form of a point grating. For each point in the grating, a process
involving the filtration of an octree is undertaken to obtain the bundle encompassing
said point. Subsequently, the summation of each beam originating from the point’s
position is performed to ascertain the level of sound intensity at that point. Sikora M et
al. [71] implemented the parallelization of the first and third stages using the master-
worker strategy. In Fig.19, the master thread serves as the control thread responsible
for task distribution, while the worker thread is responsible for specific processing.
The control process commences with the creation of a task queue. Then, the master
thread simultaneously launches all worker threads by assigning each of them a task
from the shared task queue. The calculation is deemed complete when all tasks are
assigned, and all worker threads have finished processing.

The iterative reconstruction algorithm for computer tomography can yield highly
precise sectional images. However, its substantial computational expense renders it
impractical for clinical application. To address this issue, Daniel B. Keesing et al.
[72] presented a parallel implementation of the iterative algorithm for full 3D image
reconstruction. The approach involves updating image slices concurrently without the
need for intercommunication or public projection passing. Specifically, for a volume
of 16 slices and four available processors, with a minimum slice interval of 4, the first
update will be for 0, 4, 8, 12, followed by the second update for 1, 5, 9, 13, enabling
independent parallel computations by the processors.

4 Convergence of Parallel Iterative Algorithms

4.1 Symbols And Preliminary Knowledge

Before delving into the convergence of iterative algorithms, let us first define and
introduce relevant symbols. Let R denote the set of real numbers, N+ denote the set
of positive integers, andRn denote the n-dimensional real space. Suppose that the
n-dimensional vector X = (X1, . . . , Xm) ∈ Rn, where Xi ∈ Rni ,m ∈ N

+, and

32

ni ∈ N
+ satisfy:

m
∑

i=1

ni = n (33)

Define the block infinity norm as follows:

||X||
w
b = max

1≤i≤m

||Xi||i
wi

(34)

Where each wi is a positive scaling factor, and ||.||i represents the norm defined on
Rni . Notably, if i = 1, . . . ,m, then ni = 1, and the above formula simplifies to the
commonly known infinity norm ??:

||X||
w
∞ = max

1≤i≤n

||Xi||

wi

(35)

For an iterative sequence X(k) ∈ Rn, if there are X∗ and µ ∈ (0, 1) satisfy the
following formula, the iterative sequence is considered to be linearly convergent toX∗.

lim
k→∞

||X (k + 1)−X∗||

||X(k) − X∗||
= µ (36)

||.|| is the norm defined on Rn.

4.2 Convergence of Iterative Algorithms

Considering the iterative algorithm in the following format:

Xi (k + 1) = fi (X1(k), . . . , Xm(k)) (37)

where i = 1, 2, . . . ,m, and Xi ∈ Rni , fi is a mapping function of Rn → Rni , and
n1 + n2 + . . .+ nm = n. If X∗ = (X∗

1 , X
∗

2 , . . . , X
∗

m) exists and satisfies the formula
36:

X∗

i = fi
(

X∗

1 , X
∗

2 , . . . , X
∗

m

)

∀i = 1, . . . ,m (38)

then X∗ is considered as the fixed point of function f (X) = (f1 (X) , . . . , fm (X)).
If function fi(X) is continuous at X∗, and the iterative sequence Xi(t) excited by
formula 37 converges to X∗

i , then X∗ is considered as the fixed point of function f .
Formula 38 can be regarded as a network of m nodes, with each node responsible for
calculating a sub-vector of vector X and finally finding a global stable point.

4.3 Convergence of the Synchronous Iterative Algorithm

As the synchronous iterative algorithm retains the original iterative algorithm’s execu-
tion order and distributes the single-iteration algorithm’s computational load among
various computing nodes, it updates each node’s data via communication after all
nodes complete their calculations in each iteration. This process repeats until the

33

termination condition is met. Consequently, the synchronous iterative algorithm’s
convergence is in line with the original iterative algorithm’s convergence[73].

The multi-initial state search strategy is a specific instance of the synchronous iter-
ative algorithm. It has two distinctive features: firstly, it duplicates multiple complete
iterative algorithm computation threads, and secondly, the initial state of each itera-
tion thread is randomly generated from the solution space. Without diminishing the
search depth of each thread, the convergence of the multi-initial state search strat-
egy can be readily inferred from the convergence of the original iterative algorithm.
Let p(d) denote the probability that the iteration sequence X(k) converges to the
fixed point from the initial point after d iterations. It can be inferred that convergent
iterative algorithms converge at the fixed point with probability 1, as follows:

lim
d→∞

p(d) = 1 (39)

Assuming that the number of initial states is denoted by N , and let P (d) represent
the probability of convergence to the fixed point of the multi-initial state iterative
sequence after d iterations, then:

P (d) = 1− (1− p(d))
N

(40)

From the above formula, it is known that:

lim
d→∞

P (d) = 1 (41)

Therefore, the multi-initial state parallel search strategy guarantees convergence to
the global fixed points with probability 1. However, in order to achieve acceleration
benefits, it is necessary to reduce the search depth of each thread. Zhou X et al. [42]
analyzed the effectiveness of the multi-initial state simulated annealing algorithm from
two perspectives: the convergence of the algorithm and the probability of finding the
optimal solution. They proved that, given a fixed total workload (the number of search
steps), increasing the search width (the number of initial states) and reducing the
search depth (the number of iterations) of each worker thread would not compromise
the quality of the searched solution.

4.4 convergence of Asynchronous Iterative Algorithm

The asynchronous implementation of formula 37 represents an iterative algorithm
where each node updates its own state at its own pace, utilizing data that may be
outdated and obtained from other nodes. This type of iteration is mathematically
represented as follows:

xi (k + 1) =

{

fi
(

x1

(

πi
1(k)

)

, . . . , xm

(

πi
m(k)

))

, k ∈ Ki

xi(k), k /∈ Ki (42)

where Ki represents the set of times that node i needs to perform updates, and
πi
j (k) represents the latest effective data that node j can provide to node i at the

34

kth iteration, so (k − πi
j (k)) can be regarded as the delay from node j to node i.

For ∀k ∈ N
+, 0 ≤ πi

j (k) ≤ k. If for all i and j, πi
j (k) = k, and Ki ∈ N

+, then
the asynchronous iterative algorithm at this point is the synchronous version of the
iterative algorithm.

Based on the assumption of communication delay and update rate, asynchronous
algorithms can be divided into fully asynchronous and partially asynchronous [35].
Definition 1 (Fully Asynchronous).

a) ∀ i, set Ki is an infinite subset of N+.
b) If the set {kq} is a sequence of elements in the set Ki which tends to be infinite,

and for ∀ i, j, limq→∞ πi
j (kq) = ∞.

Assuming 1a) Ensuring that all nodes will continue to update without interruption,
assuming 1b) signifies that outdated information will eventually be eradicated. In the
case of complete asynchrony, (k − πi

j (k)) may become infinite, which is also a key
point that differs from partial asynchrony.
Definition 2 (Partially Asynchronous. There is a positive integer B).

a) For each i andk ∈ N
+, at least one element in the set k, k + 1, . . . , k +B − 1 belongs

to Ki.
b) For ∀ i, j ∀ k ∈ Ki, and the following inequality is satisfied:

0 ≤ k − πi
j(k) ≤ B − 1 (43)

c) For all i, if k ∈ Ki, πi
i (k) = k.

Assuming 2a) imposes a requirement that there must be an update within B steps,
assuming 2b) constrains the staleness of information to not exceed 3535 steps, and
assuming 2c) ensures that each node iterates its calculations using its most current
data. If B = 1, then the model degenerates into a synchronous iterative algorithm.

The excessive utilization of outdated information can lead to a deceleration or even
divergence in the convergence rate of asynchronous iterative algorithms. Bert Sekas
[15] established a general convergence theorem for asynchronous iterative scheme 42.
Note Ei = Rni , and the whole solution space can be expressed as E = E1 × . . .×Em.
The mathematical model established by BertSekas is as follows:
Theorem 1. Assume the set Ek ⊑ E, and it satisfies:

1) Ek = Ek
1 × Ek

2 × . . .× Ek
m, k ∈ N

+

2) f
(

Ek
)

⊆ Ek+1 ⊆ Ek

3) x∗ satisfies:
yk ∈ Ek, k ∈ N

+ → lim
k→∞

yk = x∗ (44)

Based on theorem 1, the more widely used inference is formula 45; if µ ∈ [0, 1],
and it satisfies [72]:

||f(x)− x∗||
w
b ≤ µ ||x− x∗||

w
b , ∀x ∈ Rn (45)

35

the function f is regarded as the pseudo-compression under the maximum block norm
[74]. It is shown that [75] if the function f satisfies the pseudo-compression under the
maximum block norm, the asynchronous algorithm can converge to the fixed point
and can tolerate communication and calculation delay at any size. In particular, for
partial asynchrony, as long as the asynchronous factor B is reasonably set, the iterative
algorithm is convergent in most cases [34].

4.5 Convergence Detection of Asynchronous Iterative

Algorithm

At present, asynchronous parallel algorithms are studied in order to take full advan-
tage of large-scale parallel structures and distributed platforms. In a distributed
environment, much of the efficiency of parallel algorithms relies on inter-process com-
munication. The distributed environment also raises concerns regarding the efficiency
and precision of the convergence process during asynchronous parallel iteration in such
distributed settings. Furthermore, with the escalation of communication load, there
exists no straightforward and efficient method to compute consistent residuals from
the potential global solution components. [16].

In this paper, a distributed convergence detection method for parallel iterative
algorithms is proposed for two main reasons [5]. Firstly, the most common parallel
iterative algorithm fundamentally corresponds to a decentralized asynchronous iter-
ative algorithm. Secondly, centralization is not feasible when using these algorithms,
as asynchronous iteration does not obstruct communication between threads, and the
residuals of global vectors are challenging to use as a convergence criterion for global
convergence detection. In most cases, when the global solution approaches a global
fixed point, the solution may exhibit oscillations in the vicinity of the prescribed
threshold, potentially leading to premature detection of local convergence. Therefore,
devising a robust asynchronous iterative algorithm for convergence detection is of
paramount importance in cases of locally convergent detection.

There are two primary techniques for detecting convergence in asynchronous iter-
ative algorithms. The first approach is a leader election protocol that employs a tree
topology and includes message-cancellation mechanisms to handle false convergence.
Jacques M. Bahi addresses convergence detection of asynchronous iterative algorithms
from two perspectives in [5]: local convergence detection and global convergence detec-
tion. To avoid premature detection of local convergence, a common heuristic method
assumes that local convergence is achieved when the current node executes a set num-
ber of consecutive iterations below a specified accuracy threshold. The concept of
global convergence detection relies on a leader election protocol that begins on a single
leader node and is then propagated to all its neighboring nodes. Other worker nodes
send information regarding the completion of local convergence to the leader node. If
all nodes are determined to have reached local convergence, the asynchronous iterative
algorithm is deemed to have achieved global convergence.

The second approach involves modifying the asynchronous iterative algorithm to
ensure that it terminates in a finite time, and then using traditional termination detec-
tion protocols for distributed systems (such as [76, 77]). These protocols are designed
for parallel applications that can be executed in a finite number of steps. In this

36

method, if any node reaches a local condition (i.e., local convergence), it will stop
sending new data to its neighbors in the communication graph. The termination con-
dition can then be expressed as all nodes being in a local condition and no messages
being in transit. Evans D J [78] has proposed restoring asynchronous iterations to syn-
chronous iterations at a certain node during computation execution, thereby ensuring
that local convergence persists throughout the process.

5 conclution

In summary, this paper provides an overview of the parallelization strategies for itera-
tive algorithms. It begins by introducing the mathematical description of the iterative
algorithm and categorizes it into synchronous and asynchronous iterations. The paper
then presents five classical iterative algorithms and their respective application fields,
including the backpropagation algorithm in neural networks, the BFGS algorithm,
the NIPALS-PCA algorithm, the simulated annealing algorithm, and the K-means
clustering algorithm.

Four parallelization strategies for iterative algorithms are then discussed. The first
strategy is to use intrinsically concurrently computable logical units in iterative algo-
rithms. The second is the multi-initial state parallel search strategy, which includes
detailed discussions on the parallelization method of iterative algorithms with random
modules and how to reduce the number of iterations in the iterative algorithm. The
third is the data parallelism strategy, elaborated upon using the MapReduce frame-
work. The fourth is the task parallelism strategy, which discusses how to divide the
iterative algorithm into different tasks from the perspective of task scheduling.

Furthermore, the paper addresses the convergence problem of parallel iteration
algorithms. It not only analyzes the convergence of the multi-initial state parallel
search strategy but also demonstrates the convergence of synchronous iteration and
asynchronous iteration through mathematical models. The paper also discusses the
research on convergence detection of asynchronous iterative algorithms.

Currently, there is a lack of literature reviews on the parallelization strategies for
iterative algorithms in Chinese. It is hoped that this paper can serve as a strong
reference for future research in this area.

References

[1] Suthaharan, S.: Machine learning models and algorithms for big data classifica-
tion. Integr. Ser. Inf. Syst 36, 1–12 (2016)

[2] Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, inc. (2000)

[3] Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P.: Optimization by simulated
annealing. science 220(4598), 671–680 (1983)

[4] Lloyd, S.: Least squares quantization in pcm. IEEE transactions on information
theory 28(2), 129–137 (1982)

37

[5] Bahi, J.M., Contassot-Vivier, S., Couturier, R., Vernier, F.: A decentralized con-
vergence detection algorithm for asynchronous parallel iterative algorithms. IEEE
Transactions on Parallel and Distributed Systems 16(1), 4–13 (2005)

[6] Cui, H., Cipar, J., Ho, Q., Kim, J.K., Lee, S., Kumar, A., Wei, J., Dai, W.,
Ganger, G.R., Gibbons, P.B., et al.: Exploiting bounded staleness to speed up big
data analytics. In: 2014 USENIX Annual Technical Conference (USENIX ATC
14), pp. 37–48 (2014)

[7] Gorgulla, C., Boeszoermenyi, A., Wang, Z.-F., Fischer, P.D., Coote, P.W., Pad-
manabha Das, K.M., Malets, Y.S., Radchenko, D.S., Moroz, Y.S., Scott, D.A., et
al.: An open-source drug discovery platform enables ultra-large virtual screens.
Nature 580(7805), 663–668 (2020)

[8] Xie, Y., Ding, L., Zhou, A., Chen, G.: An optimized face recognition for edge
computing. In: 2019 IEEE 13th International Conference on ASIC (ASICON),
pp. 1–4 (2019). IEEE

[9] Keesing, D.B., O’Sullivan, J.A., Politte, D.G., Whiting, B.R.: Parallelization of
a fully 3d ct iterative reconstruction. In: 3rd IEEE International Symposium on
Biomedical Imaging: Nano to Macro, 2006., pp. 1240–1243 (2006). IEEE

[10] Farivar, R., Rebolledo, D., Chan, E., Campbell, R.H.: A parallel implementation
of k-means clustering on gpus. In: Pdpta, vol. 13, pp. 212–312 (2008)

[11] Tang, S., Chen, R., Lin, M., Lin, Q., Zhu, Y., Ding, J., Hu, H., Ling, M., Wu, J.:
Accelerating autodock vina with gpus. Molecules 27(9), 3041 (2022)

[12] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

[13] Alistarh, D., Brown, T., Kopinsky, J., Nadiradze, G.: Relaxed schedulers can
efficiently parallelize iterative algorithms. In: Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, pp. 377–386 (2018)

[14] Blathras, K., Szyld, D.B., Shi, Y.: Timing models and local stopping criteria for
asynchronous iterative algorithms. Journal of Parallel and Distributed Computing
58(3), 446–465 (1999)

[15] Bertsekas, D.P.: Distributed asynchronous computation of fixed points. Mathe-
matical Programming 27(1), 107–120 (1983)

[16] Magoules, F., Gbikpi-Benissan, G.: Distributed convergence detection based on
global residual error under asynchronous iterations. IEEE transactions on parallel
and distributed systems 29(4), 819–829 (2017)

[17] Xu, Q., Wang, W.: A new parallel iterative algorithm for solving 2d poisson

38

equation. Numerical Methods for Partial Differential Equations 27(4), 829–853
(2011)

[18] Danowitz, A., Kelley, K., Mao, J., Stevenson, J., Horowitz, M., DB, C.: Recording
microprocessor history. ACM Queue Magazine 10(4) (2002)

[19] Coşkun, M., Uçar, A., Yildirim, Ö., Demir, Y.: Face recognition based on convo-
lutional neural network. In: 2017 International Conference on Modern Electrical
and Energy Systems (MEES), pp. 376–379 (2017). IEEE

[20] Batool, T., Abbas, S., Alhwaiti, Y., Saleem, M., Ahmad, M., Asif, M., Elmit-
wal, N.S.: Intelligent model of ecosystem for smart cities using artificial neural
networks. Intelligent Automation & Soft Computing 30(2) (2021)

[21] Dixon, M., Klabjan, D., Bang, J.H.: Classification-based financial markets
prediction using deep neural networks. Algorithmic Finance 6(3-4), 67–77 (2017)

[22] McNutt, A.T., Francoeur, P., Aggarwal, R., Masuda, T., Meli, R., Ragoza, M.,
Sunseri, J., Koes, D.R.: Gnina 1.0: molecular docking with deep learning. Journal
of cheminformatics 13(1), 1–20 (2021)

[23] Andrei, N.: An adaptive scaled bfgs method for unconstrained optimization.
Numerical Algorithms 77(2), 413–432 (2018)

[24] Dai, Y.-H.: A perfect example for the bfgs method. Mathematical Programming
138, 501–530 (2013)

[25] Bro, R., Smilde, A.K.: Principal component analysis. Analytical methods 6(9),
2812–2831 (2014)

[26] Bro, R., Smilde, A.K.: Principal component analysis. Analytical methods 6(9),
2812–2831 (2014)

[27] Lazcano, R., Madroñal, D., Fabelo, H., Ortega, S., Salvador, R., Callicó, G.M.,
Juárez, E., Sanz, C.: Parallel implementation of an iterative pca algorithm for
hyperspectral images on a manycore platform. In: 2017 Conference on Design and
Architectures for Signal and Image Processing (DASIP), pp. 1–6 (2017). IEEE

[28] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.:
Equation of state calculations by fast computing machines. The journal of
chemical physics 21(6), 1087–1092 (1953)

[29] Trott, O., Olson, A.J.: Autodock vina: improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and multithreading.
Journal of computational chemistry 31(2), 455–461 (2010)

[30] Feyzmahdavian, H.R., Johansson, M.: On the convergence rates of asynchronous
iterations. In: 53rd IEEE Conference on Decision and Control, pp. 153–159 (2014).

39

IEEE

[31] Magoules, F., Gbikpi-Benissan, G.: Distributed convergence detection based on
global residual error under asynchronous iterations. IEEE transactions on parallel
and distributed systems 29(4), 819–829 (2017)

[32] Mart́ınez, J.A., Garzón, E.M., Plaza, A., Garćıa, I.: Automatic tuning of itera-
tive computation on heterogeneous multiprocessors with adithe. The Journal of
Supercomputing 58, 151–159 (2011)

[33] Bertsekas, D.P., Tsitsiklis, J.N.: Convergence rate and termination of asyn-
chronous iterative algorithms. In: Proceedings of the 3rd International Conference
on Supercomputing, pp. 461–470 (1989)

[34] Guyeux, C.: Convergence versus divergence behaviors of asynchronous iterations,
and their applications in concrete situations. Mathematical and Computational
Applications 25(4), 69 (2020)

[35] Bertsekas, D.P., Tsitsiklis, J.N.: Some aspects of parallel and distributed iterative
algorithmsa survey. Automatica 27(1), 3–21 (1991)

[36] Langford, J., Smola, A., Zinkevich, M.: Slow learners are fast. arXiv preprint
arXiv:0911.0491 (2009)

[37] Tritsiklis, J.N.: A comparison of jacobi and gauss-seidel parallel iterations.
Applied Mathematics Letters 2(2), 167–170 (1989)

[38] Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. Computer 41(7),
33–38 (2008)

[39] Song, K., Li, W., Zhang, B., Yan, L., Wang, X.: Parallel design and implementa-
tion of jacobi iterative algorithm based on ternary optical computer. The Journal
of Supercomputing 78(13), 14965–14990 (2022)

[40] Andrecut, M.: Parallel gpu implementation of iterative pca algorithms. Journal
of Computational Biology 16(11), 1593–1599 (2009)

[41] Ling, M., Lin, Q., Chen, R., Qi, H., Lin, M., Zhu, Y., Wu, J.: Vina-fpga: A
hardware-accelerated molecular docking tool with fixed-point quantization and
low-level parallelism. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 31(4), 484–497 (2022)

[42] Zhou, X., Ling, M., Lin, Q., Tang, S., Wu, J., Hu, H.: Effectiveness analysis of
multiple initial states simulated annealing algorithm, a case study on the molec-
ular docking tool autodock vina. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (2023)

[43] Li, N., Cha, J., Lu, Y.: A parallel simulated annealing algorithm based on

40

functional feature tree modeling for 3d engineering layout design. Applied Soft
Computing 10(2), 592–601 (2010)

[44] Vincent, F.Y., Lin, S.-W.: Multi-start simulated annealing heuristic for the
location routing problem with simultaneous pickup and delivery. Applied soft
computing 24, 284–290 (2014)

[45] Lin, S.-W.: Solving the team orienteering problem using effective multi-start
simulated annealing. Applied Soft Computing 13(2), 1064–1073 (2013)

[46] Sonuc, E., Baha, S., Bayir, S.: A parallel simulated annealing algorithm for
weapon-target assignment problem. International Journal of Advanced Computer
Science and Applications 8(4) (2017)

[47] Corso, G., Jing, B., Barzilay, R., Jaakkola, T., et al.: Diffdock: Diffusion steps,
twists, and turns for molecular docking. In: International Conference on Learning
Representations (ICLR 2023) (2023)

[48] Feldmann, M.T., Cummings, J.C., Kent IV, D.R., Muller, R.P., Goddard III,
W.A.: Manager–worker-based model for the parallelization of quantum monte
carlo on heterogeneous and homogeneous networks. Journal of computational
chemistry 29(1), 8–16 (2008)

[49] Chazan, D., Miranker, W.: A nongradient and parallel algorithm for uncon-
strained minimization. SIAM Journal on control 8(2), 207–217 (1970)

[50] Ferreiro-Ferreiro, A.M., Garćıa-Rodŕıguez, J.A., Souto, L., Vázquez, C.: Basin
hopping with synched multi l-bfgs local searches. parallel implementation in multi-
cpu and gpus. Applied Mathematics and Computation 356, 282–298 (2019)

[51] Handoko, S.D., Ouyang, X., Su, C.T.T., Kwoh, C.K., Ong, Y.S.: Quickvina:
accelerating autodock vina using gradient-based heuristics for global optimiza-
tion. IEEE/ACM transactions on computational biology and bioinformatics 9(5),
1266–1272 (2012)

[52] Alhossary, A., Handoko, S.D., Mu, Y., Kwoh, C.-K.: Fast, accurate, and reliable
molecular docking with quickvina 2. Bioinformatics 31(13), 2214–2216 (2015)

[53] Qiu, J., Sun, X., Sabet, A.H.N., Zhao, Z.: Scalable fsm parallelization via path
fusion and higher-order speculation. In: Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 887–901 (2021)

[54] Hassan, N.M., Alhossary, A.A., Mu, Y., Kwoh, C.-K.: Protein-ligand blind dock-
ing using quickvina-w with inter-process spatio-temporal integration. Scientific
reports 7(1), 15451 (2017)

41

[55] Ekanayake, J., Pallickara, S., Fox, G.: Mapreduce for data intensive scientific
analyses. In: 2008 IEEE Fourth International Conference on eScience, pp. 277–284
(2008). IEEE

[56] Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce.
In: Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 938–948 (2010). SIAM

[57] Liao, Q., Yang, F., Zhao, J.: An improved parallel k-means clustering algorithm
with mapreduce. In: 2013 15th IEEE International Conference on Communication
Technology, pp. 764–768 (2013). IEEE

[58] Mohebi, A., Aghabozorgi, S., Ying Wah, T., Herawan, T., Yahyapour, R.: Itera-
tive big data clustering algorithms: a review. Software: Practice and Experience
46(1), 107–129 (2016)

[59] Zinkevich, M., Weimer, M., Li, L., Smola, A.: Parallelized stochastic gradient
descent. Advances in neural information processing systems 23 (2010)

[60] Sokolinsky, L.B.: Bsf-skeleton: A template for parallelization of iterative numerical
algorithms on cluster computing systems. MethodsX 8, 101437 (2021)

[61] Mart́ınez, J.A., Garzón, E.M., Plaza, A., Garćıa, I.: Automatic tuning of itera-
tive computation on heterogeneous multiprocessors with adithe. The Journal of
Supercomputing 58, 151–159 (2011)

[62] Jakovits, P., Srirama, S.N.: Evaluating mapreduce frameworks for iterative
scientific computing applications. In: 2014 International Conference on High
Performance Computing & Simulation (HPCS), pp. 226–233 (2014). IEEE

[63] Johnson, C.A., Sofer, A.: A data-parallel algorithm for iterative tomographic
image reconstruction. In: Proceedings. Frontiers’ 99. Seventh Symposium on the
Frontiers of Massively Parallel Computation, pp. 126–137 (1999). IEEE

[64] Boglaev, I., Sirotkin, V.: Iterative domain decomposition algorithms for the solu-
tion of singularly perturbed parabolic problems. Computers & Mathematics with
Applications 31(10), 83–100 (1996)

[65] Langis, C., Greenspan, M., Godin, G.: The parallel iterative closest point algo-
rithm. In: Proceedings Third International Conference on 3-D Digital Imaging
and Modeling, pp. 195–202 (2001). IEEE

[66] Xicheng, W., Guixu, M.: A parallel iterative algorithm for structural optimization.
Computer Methods in Applied Mechanics and Engineering 96(1), 25–32 (1992)

[67] Bahi, J.M., Contassot-Vivier, S., Couturier, R.: Coupling dynamic load balancing

42

with asynchronism in iterative algorithms on the computational grid. In: Proceed-
ings International Parallel and Distributed Processing Symposium, p. 9 (2003).
IEEE

[68] Li, W., Liu, Z., Lan, Z.: Bfgs relaxation asynchronous parallel algorithm of uncon-
strained optimization problems. Jisuanji Gongcheng yu Yingyong(Computer
Engineering and Applications) 48(17), 44–47 (2012)

[69] Cipar, J., Ho, Q., Kim, J.K., Lee, S., Ganger, G.R., Gibson, G., Keeton, K., Xing,
E.: Solving the straggler problem with bounded staleness. In: 14th Workshop on
Hot Topics in Operating Systems (HotOS XIV) (2013)

[70] Hao, W., Zhu, S.: Parallel iterative methods for parabolic equations. International
Journal of Computer Mathematics 86(3), 431–440 (2009)

[71] Sikora, M., Mateljan, I.: A method for speeding up beam-tracing simulation using
thread-level parallelization. Engineering with Computers 30, 679–688 (2014)

[72] Keesing, D.B., O’Sullivan, J.A., Politte, D.G., Whiting, B.R.: Parallelization of
a fully 3d ct iterative reconstruction. In: 3rd IEEE International Symposium on
Biomedical Imaging: Nano to Macro, 2006., pp. 1240–1243 (2006). IEEE

[73] Reisizadeh, A., Taheri, H., Mokhtari, A., Hassani, H., Pedarsani, R.: Robust and
communication-efficient collaborative learning. Advances in Neural Information
Processing Systems 32 (2019)

[74] Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, inc. (2015)

[75] Frommer, A., Szyld, D.B.: On asynchronous iterations. Journal of computational
and applied mathematics 123(1-2), 201–216 (2000)

[76] Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations.
Information Processing Letters 11(1), 1–4 (1980)

[77] Francez, N., Rodeh, M.: Achieving distributed termination without freezing. IEEE
Transactions on Software Engineering (3), 287–292 (1982)

[78] Evans, D.J., Chikohora, S.: Convergence testing on a distributed network of
processors. International journal of computer mathematics 70(2), 357–378 (1998)

43

	Introduction
	Iterative Algorithm
	Overview of Iterative Algorithms
	Common Iterative Algorithms
	Back Propagation Algorithm
	BFGS Algorithm
	NIPALS PCA Algorithm
	Simulated Annealing Algorithm
	K-means Algorithm

	Problems with Iterative Algorithms
	Synchronous Iteration and Asynchronous Iteration

	Parallelization Strategies for Iterative Algorithms
	Intrinsically Concurrently Computable Logical Unit
	Multi-Initial State Parallel Search Strategy
	Multi-Initial State Parallel Search Strategy
	Concurrent Strategy for Iterative Algorithm with Stochastic Properties
	Reducing the Number of Local Searches in Iterative Algorithms with Randomness

	Data Parallelism
	Task Parallelism

	Convergence of Parallel Iterative Algorithms
	Symbols And Preliminary Knowledge
	Convergence of Iterative Algorithms
	Convergence of the Synchronous Iterative Algorithm
	convergence of Asynchronous Iterative Algorithm
	Convergence Detection of Asynchronous Iterative Algorithm

	conclution

