
SYCL in the Edge: Performance Evaluation for
Heterogeneous Acceleration
Youssef Faqir-Rhazoui (yelfaqir@ucm.es)

Universidad Complutense de Madrid
Carlos García

Universidad Complutense de Madrid

Research Article

Keywords: SYCL, CUDA, Edge Computing, Polybench, Jetson, Optic Flow

Posted Date: October 16th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3439288/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3439288/v1
mailto:yelfaqir@ucm.es
https://doi.org/10.21203/rs.3.rs-3439288/v1
https://creativecommons.org/licenses/by/4.0/

SYCL in the Edge: Performance Evaluation for

Heterogeneous Acceleration

Youssef Faqir-Rhazoui1* and Carlos Garćıa1

1*Department of Computer Architecture and Automatics, Universidad
Complutense de Madrid, Madrid, Spain.

*Corresponding author(s). E-mail(s): yelfaqir@ucm.es;
Contributing authors: garsanca@ucm.es;

Abstract

Edge computing is essential to handle increasing data volumes and processing
capacities. It provides real-time, secure data processing near data sources, like
smart devices, alleviating cloud computing energy use and saving network band-
width. Specialized accelerators, like GPUs and FPGAs, are vital for low-latency
edge computing but the requirements to customized code for different hardware
and vendors supposes important compatibility issues.
This paper evaluates the potential of SYCL in addressing code portability issues
encountered in edge computing. We employed the Polybench suite to compare
various SYCL implementations, specifically DPC++ and AdaptiveCpp, with
the native solution, CUDA. The disparity between SYCL implementations was
negligible, at just 5%.
Furthermore, we evaluated SYCL in the context of specific edge computing appli-
cations such as video processing using three different optical flow algorithms. The
results exposed a potential performance gap of 19% between CUDA and SYCL.
This performance differential is the price one may need to pay when achieving
the ability to successfully run the same code on two distinct edge boards with
four different architectures, including x86/64 CPU, ARM CPU, NVIDIA GPU,
and Intel GPU. These findings underscore SYCL’s capacity to increase produc-
tivity in term of development costs and facilitate the IoT deployment without
being locked into a particular platform or manufacturer.

Keywords: SYCL, CUDA, Edge Computing, Polybench, Jetson, Optic Flow.

1

1 Introduction

Edge computing has emerged as a crucial technology due to the growing volume of
data and processing demands. Edge computing operates in close proximity to data
sources [1, 2], like smart devices, storing and processing data at the network’s edge.
It offers fast, real-time, and secure data processing [3], addressing issues like energy
consumption in cloud computing, cost reduction, and network bandwidth relief. The
increasing prominence of IoT [4] has transformed edge computing into a highly dis-
cussed subject, presenting ongoing challenges [5–7] such as selecting the most suitable
platform to achieve among others real-time data processing near the data source and
ensuring robust data privacy. Nevertheless, one of the foremost challenges persisting
in the deployment of IoT systems is the imperative of achieving reduced energy con-
sumption [8] while concurrently upholding robust computational capabilities essential
for supporting real-time AI or ML applications.

To address these handicaps, there is a growing trend towards the adoption of accel-
erators, collectively referred to as xPU (including GPUs, FPGAs, SoCs, and more),
which substantially reduce power footprint [9] when compared to general-purpose
CPUs. However, employing accelerator languages designed for specific hardware archi-
tectures introduces compatibility obstacles meanwhile a custom code for each device
(e.g., CUDA, VHDL, etc.) is an imperative. The industry’s motivation to progress in
this direction is compounded by two significant challenges: firstly, to select the most
suitable system from a huge plethora of devices with notably architectural differences,
and secondly, the absence of a universally accepted programming standard. Under this
premise we can highlight recent advances with the creation of the Unified Accelera-
tion (UXL) Foundation1, announced by the Linux Foundation last September, which
proposes oneAPI [10] and SYCL [11] programming as an open-source specification to
support a common code base capable of running across multiple architectures.

Until now, native accelerator languages have empowered programmers to deploy
code tailored for specialized hardware devices like GPUs, FPGAs, or ASICs. These
languages mostly proprietary APIs are engineered to enhance the performance and
efficiency of compute-intensive applications. Nevertheless, a common challenge faced
by most accelerator languages is their propensity to disrupt compatibility among dif-
ferent hardware architectures. For instance, CUDA [12] is tailored for NVIDIA GPUs,
HIP [13] for AMD GPUs, or VHDL for FPGAs.

In contrast, SYCL [11], is a versatile programming model and standard that
empowers developers to create heterogeneous parallel code based on ISO C++. SYCL
streamlines the process by allowing programmers to write code once, which can then
seamlessly execute across multiple vendor CPUs, GPUs, and FPGAs via OpenCL.
What sets SYCL apart is its compatibility with modern C++ features like tem-
plates, lambdas, and exceptions, which facilitate the expression of parallelism and
data movement. SYCL’s remarkable versatility not only facilitates the development of
portable applications for diverse heterogeneous edge computing systems [14], includ-
ing CPUs, GPUs, and FPGAs but also serves as a foundational tool for implementing

1Unified Acceleration (UXL) Foundation: https://uxlfoundation.org/

2

https://uxlfoundation.org/

cost-effective exploration methodologies aimed at reducing development complex-
ity. By employing a unified development approach across multiple edge computing
platforms, it becomes possible to discern the architecture that best suits specific
problem domains, especially those reliant on critical factors such as power efficiency,
cost-effectiveness, and real-time performance requirements.

Moreover, SYCL has been extensively tested on HPC environments and compared
with other programming languages such as CUDA, OpenMP or OpenCL [15–17].
While the utilization of SYCL in the realm of edge computing remains relatively
unexplored [18] apart from preliminary experiments of porting CUDA codes [19]. We
believe that its adoption holds significant potential for achieving performance portabil-
ity. In this paper, we assess the effectiveness of SYCL on two edge computing boards.
We employ a suite of benchmarks to verify SYCL’s compatibility across different archi-
tectures. Furthermore, we explore the portability of various motion estimation-based
vision algorithms, incorporating accelerators from different vendors.

The following paper is organised as follows. Section 2 introduces the SYCL lan-
guage and program architecture. In Section 3, the benchmarks use in this study are we
discussed. Section 4 focuses on the environment configuration and experiment method-
ology used. In Section 5, the experiments and results achieved are presented. In section
6 an experiment discussion is performed. And finally, the Section 7 concludes with the
main remarks.

2 The SYCL Paradigm in a Nutshell

SYCL is a standard (SYCL 2020) developed and maintained by the Khronos Group,
similar to other standards such as OpenMP (e.g. 4.5, 5.1, etc) or OpenCL (e.g. 2.1, 3.0,
etc) [20–22]. Its main purpose is to enable developers to use any ISO C++ compiler
(e.g. GCC, Clang, NVCC, ICC, etc), at least C++ 17, and utilize C++ lambdas
to encapsulate device kernels execution. SYCL doesn’t aim to replace other parallel
models or backends (e.g. CUDA, HIP, OpenCL, etc.) but rather to complement them.
Since all these models are C++-compatible, SYCL uses C++ lambdas to extend the
native API of different backends. For instance, when allocating memory on an NVIDIA
GPU, a SYCL memory allocation automatically triggers a native CUDA allocation at
background. Then, you can consider SYCL as the facade design pattern, which serves
as a front-facing interface to other backends [23].

Up to this point, we have solely addressed the SYCL standard, however, it is
crucial to recognize that SYCL does not have a singular implementation. The most
feature-rich implementation is Intel Data Parallel C++ (DPC++) [14], which not
only conforms to the SYCL 2020 standard but also includes other custom features2.
The Intel oneAPI DPC++/C++ compiler known as DPC++ is a compiler-based
implementation, meaning that it is integrated with the new Intel compiler, which is
based on and forked from the Clang/LLVM project3. It is important to remark that
DPC++ compiler is open source, although Intel also offers a commercial alternative
available on the oneAPI toolkits. The oneAPI includes additional tools such as profiler

2These features are typically incorporated into new SYCL releases. However, we did not use them in this
paper.

3https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md

3

https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md

and optimized libraries. While custom features are present in DPC++, we opted not to
employ them in our study, with the aim of ensuring the portability of our developments.

The other noteworthy implementation is AdaptiveCpp previously known as
hipSYCL, which is a library-based implementation. This means that they have devel-
oped a C++ library and rely on third-party compilers. It is generally recommended to
use it with the regular Clang/LLVM compiler, which was designed to support CUDA,
HIP, OpenMP, and OpenCL source codes [24, 25].

The Clang/LLVM compiler is responsible for compiling SYCL code, and it performs
different steps such as front-end, middle-end, and back-end. In the front-end phase,
the compiler separates the host code from the device code, while in the middle-end
phase, it transforms the device code into an intermediate representation known as
LLVM IR. The back-end stage then compiles the LLVM IR representation into the
device’s native code and combines everything into a final file called as “fat binary”.
This compiler can generate a final binary that can run on multiple devices, including
multi-vendor GPUs or even FPGAs, as described in [10, 26].

Figure 1 illustrates a basic SYCL program that sums two vectors into a third one.
The usual SYCL scheme begins by creating a queue associated with the target device.
The queue receives the following kernels and is responsible for placing them on the
device based on a policy. Additionally, we can allocate the program memory, which in
this particular example is shared between the host and the device. This feature allows
to the host to be able to initialize the memory data on its side without any other
restrictions, and later being used by the device without any explicit data movement.

The next step is to invoke the kernel execution on the device. SYCL supports
multiple parallel patterns, but in this code example, the parallel for scheme is per-
formed, specifying the problem size (length) so the kernel is launched length instances
or threads. In SYCL by default, the kernel launch is asynchronous so it is mandatory
to add the wait() clause to maintain the execution coherence. Finally, the memory is
freed with the corresponding call because it is tied to the queue.

3 Benchmarking SYCL in Edge Platforms

SYCL was tested on both conventional and HPC systems, as the next subsection
highlights. However, there is a dearth of literature regarding the potential use of SYCL
on the edge. We considered the use of benchmark suites developed for or adapted
to SYCL, as they would favor direct comparisons with other programming models
like CUDA, and also permit the compilation with various SYCL implementations,
including DPC++ and AdaptiveCpp.

3.1 SYCL Benchmark Suits

When it comes to benchmarks, there are several suites available for SYCL. The
Rodinia4 benchmarks are implemented in multiple languages, including SYCL, and
encompass a wide range of field benchmarks, such as medical imaging or image
compression [15, 27].

4Rodinia code migrated to SYCL through oneAPI: https://github.com/artecs-group/rodinia-dpct-dpcpp

4

https://github.com/artecs-group/rodinia-dpct-dpcpp

sycl::queue q(sycl::gpu_selector_v{});

auto X = sycl::malloc_shared<float>(length, q);
auto Y = sycl::malloc_shared<float>(length, q);
auto Z = sycl::malloc_shared<float>(length, q);

for (size_t i{0}; i < length; i++) {
 X[i] = i;
 Y[i] = i+1;
}

q.parallel_for<class vec_sum>(
sycl::range<1>{length}, [=] (sycl::id<1> i) {
 Z[i] = X[i] + Y[i];
}).wait();

sycl::free(X, q);
sycl::free(Y, q);
sycl::free(Z, q);

1

2

3

4

5

Queue creation and device
selection.

Memory reservation shared
between host and device.

Memory initialization on the host
side.

The kernel is sent to the device
via C++ lambda and parallel_for
scheme.

Synchronous call via wait clause.

Memory liberation.

Fig. 1 SYCL piece of code performing a vector addition.

XSBench5 is a benchmark suite designed to evaluate the performance of Monte
Carlo neutron transport codes used in the field of nuclear engineering and reactor
physics. The benchmark suite provides a set of representative problems that simulate
the behavior of neutrons in a nuclear reactor. These problems cover a range of materi-
als, geometries, and physics phenomena to assess the performance of different Monte
Carlo codes accurately [28].

On its side, HeCBench6 is a large collection of heterogeneous programming models
such as (SYCL, OpenCL, CUDA, etc.). Since HeCBench includes many self-made
benchmarks, many others were integrated from Rodinia or XSBench [29].

Polybench7 consists of a set of computationally intensive kernels that represent
common algorithmic patterns found in scientific and engineering applications, such as
linear algebra computations, image processing, stencil computations, and more. These
kernels are implemented in C, CUDA, OpenMP among other programming languages,
and are designed to be representative of real-world HPC workloads [30].

SYCL-Bench8 provides a set of benchmark kernels and applications that cover
a range of common parallel computing patterns and algorithms. These benchmarks
are implemented using SYCL and are designed to evaluate the performance of SYCL
compilers, runtime systems, and underlying hardware architectures. SYCL-Bench also
integrates fifteen kernels/applications from Polybench. This suite also has the possi-
bility to execute on different SYCL implementations, such as DPC++, ComputeCpp,
triSYCL, and AdaptiveCpp [31].

5https://github.com/ANL-CESAR/XSBench
6https://github.com/zjin-lcf/HeCBench/tree/master
7https://github.com/sgrauerg/polybenchGpu
8https://github.com/unisa-hpc/sycl-bench

5

https://github.com/ANL-CESAR/XSBench
https://github.com/zjin-lcf/HeCBench/tree/master
https://github.com/sgrauerg/polybenchGpu
https://github.com/unisa-hpc/sycl-bench

3.2 Image Processing for Optic Flow

Optical flow, a crucial component in machine vision systems, calculates a dense field
of displacement vector which represents the pixel motion [32] of adjacent frames in
consecutive image frames. It holds a pivotal significance in applications of image pro-
cessing such as video coding, tracking, autonomous driving, or biomedical imaging.
It is based on finding the apparent motion of objects in a sequence of images from a
camera, extracting a two-dimensional vector related to the object’s motion.

In recent decades, significant advancements in optical flow estimation have been
fueled by two main factors. First, the emergence of advanced-level datasets [33–35]
has led to continuous improvements in optical flow algorithms. Second, the growing
computational resources available in modern microchips such as GPUs accelerators
have pushed the development of novel strategies rooted in deep learning approaches.

Horn and Schunck (HS)[36] pioneered the initial optical flow estimation proposal,
employing a variational method that leveraged both brightness constancy and spatial
smoothness assumptions. It is based on applying spatial and temporal derivatives [37]
to the intensity of the image to extract the optical flow vector by solving a multi-
dimensional system of equations. To speedup the convergence, hierarchy processing
techniques can also be applied [37, 38]. An implementation of the CUDA Horn-Schunck
method can be found in the CUDA Toolkit examples9, and it has recently been ported
to SYCL using an automatic compatibility tool available on the Intel’s oneAPI suite10.

Subsequently, the Lucas and Kanade (LK) method [39], proposed by Bruce D.
Lucas and Takeo Kanade, is based on the premise that optical flow remains largely
consistent within the immediate vicinity of the analyzed pixel. This technique involves
solving the core optical flow equations for all pixels within this local neighbourhood
through the application of the least squares criterion. It is important to mention
that the well-known computer vision library OpenCV implements the Optical Flow
functionality based on the LK algorithm11.

While HS and LK represent the current state-of-the-art in optical flow tech-
niques and have been used as benchmarks to evaluate ad-hoc implementations in
several platforms based on GPUs, FPGAs or DSPs [40–42], they still are pertinent
in the embedded system scope. However, it is worth noting that numerous research
endeavours have since addressed issues such as high-speed object detection, occlusion
handling, illumination changes, and noise reduction. This underscores the commu-
nity’s commitment to enhancing these techniques [43]. A recent notable proposal that
has garnered significant attention from researchers is the TV-L1 method by Zach et
al. [44–46], which employs a variational approach to tackle challenges such as illumi-
nation changes, outliers, and flow discontinuities. Other studies, such as those cited
in references [47, 48], provide evidence of its advantageous trade-offs on embedded
hardware.

9HSOpticalFlow - Optical Flow: https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5
Domain Specific/HSOpticalFlow

10Migrating the HSOpticalFlow Estimation from CUDA to SYCL: https://www.intel.com/content/www/
us/en/developer/articles/technical/migrating-hsopticalflow-from-cuda-to-sycl.html

11OpenCV Optical Flow: https://docs.opencv.org/3.4/d4/dee/tutorial optical flow.html

6

https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/HSOpticalFlow
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/HSOpticalFlow
https://www.intel.com/content/www/us/en/developer/articles/technical/migrating-hsopticalflow-from-cuda-to-sycl.html
https://www.intel.com/content/www/us/en/developer/articles/technical/migrating-hsopticalflow-from-cuda-to-sycl.html
https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html

4 Methods

This section briefly describes the configuration and methodology used for the
experimentation.

4.1 Environment Configuration

Table 1 summarizes the main characteristics of the boards used in this research: the
Nvidia Jetson Orin Nano12 and the UP Squared Pro 7000 Edge.13 While the first
system is based on a SoC equipped with an ARM CPU (Cortex-A78AE) and an
NVIDIA Ampere GPU, the second one is based on a SoC equipped with an Intel Atom
X7425E and a UHD Graphics Gen 12 GPU.

Despite the Nvidia Jetson Orin Nano can be configured to operate at either seven
or fifteen watts, it has been set to fifteen watts. In contrast, the power consumption
is not configurable at the UP Squared Pro 7000 Edge board, and it works at twelve
watts.

Regarding the software configuration, we utilized two SYCL flavours: DPC++ and
AdaptiveCpp. DPC++ can be built from scratch following the instructions from the
Intel public repository14. As oneAPI is primarily designed for x86/64 architecture,
we underwent the process of compiling the DPC++ compiler for ARM architecture,
which was then applied to the Orin Nano board. From using AdaptiveCpp15, it is
necessary to build from the sources on both boards.

Two more aspects worth to mention regarding SYCL implementations. Meanwhile
SYCL implementations prioritize the portability of the developed codes for running
on various devices, SYCL implementation accomplishes this task in different manners.
For instance, DPC++ utilizes OpenCL to run on multicore CPUs, while AdaptiveCpp
exploits parallel facilities by means of OpenMP. It is noteworthy to remark that
although OpenMP enhances compatibility with non-x86 architectures, it may lead to
reduced performance compared to OpenCL [49, 50]. In contrast, DPC++ restricts exe-
cution on ARM-based CPUs due to the lack of official OpenCL support. Lastly, the
regardless of OpenCL or Intel Level0 backends in the current state of AdaptiveCpp
makes impossible its support on Intel GPUs,

4.2 Benchmarking Methodology

To assess the performance portability of SYCL, we evaluate both CPU and GPU
performance, as the same code can run on both devices. Additionally, we compare the
performance of SYCL against the native CUDA code in the Jetson Orin GPU.

Since SYCL-Bench has a specific SYCL benchmarks suite, we have just selected a
subset known as the Polybench benchmarks to perform the comparison between SYCL
and CUDA. In particular, we choose the Polybench suite available on16 for CUDA
evaluation.

12Orin Nano specs: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-orin/

13UP Pro 7000 specs: https://www.mouser.es/new/aaeon-up/aaeon-up-pro-7000-boards
14DPC++ compiler: https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
15https://github.com/AdaptiveCpp/AdaptiveCpp/blob/develop/doc/installing.md
16https://github.com/sgrauerg/polybenchGpu

7

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.mouser.es/new/aaeon-up/aaeon-up-pro-7000-boards
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/AdaptiveCpp/AdaptiveCpp/blob/develop/doc/installing.md
https://github.com/sgrauerg/polybenchGpu

NVIDIA Jetson Orin Nano UP Squared Pro 7000 Edge

CPU

Name ARM Cortex-A78AE Intel Atom X7425E

Frecuency up to 1.5 GHz
1.50 GHz (Base)

3.40 GHz (Boost)

Cores 6 4

GPU

Name NVIDIA Ampere GPU Intel UHD Graphics Gen 12

Frecuency 625MHz 1 GHz

Cores 1,024 CUDA cores 24 execution units

Performance (FP32) 1,280 GFLOPS 460.8 GFLOPS

Driver JetPack 5.1.2 23.22.26516.18 (OpenCL)

Memory 8 GB 8 GB

Storage

SD Card Slot &

external NVMe

via M.2 Key M

(not included)

64 GB eMMC

Power Consumption (TDP) 7W / 15W 12W

Price 499$ 399$

Table 1 Technical specifications of the Jetson Orin Nano and Up Squared Pro 7000 Edge.

In order to make as fair a comparison as possible, we kept all the default param-
eter configurations for the tests. Table 2 provides an overview of the benchmark
descriptions and the parameters established for the benchmarking.

With the purpose of evaluating modern embedded systems in a more realistic
scenario, we choose a workload associated with computer vision as a case study. This
experimentation is based on the evaluation of the performance of relevant motion
estimation algorithms such as Luka-Kanade (LK), Horn-Schunck (Hs), and TV-L1.

The LK algorithm was developed from scratch. Although HS CUDA and SYCL
implementations were inspired from the previously mentioned sources, it was necessary
to update them to comply with the SYCL 2020 standard. In the case of the TV-
L1 algorithm, no sources were found except for the OpenMP implementation17 in
this work [46]. Both the LK and TV-L1 algorithms were ported to SYCL using the
SYCLomatic tool and later fine-tuned to enhance performance and readability.

To assess this study, we selected a recognized suite of benchmarks widely used in
the field of optical flow. The key characteristics of the datasets used are outlined below:

• Schoolgirls with an image resolution of 432× 240 pixels found at18.
• Middlebury dataset [33] includes a twelve scenes with images of 640× 480.
• MPI-Sintel [34] is a synthetic dataset based on an animation film which contains
frames of 1024× 436 size.

17https://www.ipol.im/pub/art/2013/26/
18https://github.com/hitachinsk/FGT

8

https://www.ipol.im/pub/art/2013/26/
https://github.com/hitachinsk/FGT

Area Benchmark Size Description

Convolution
2DConv 4,096 2D convolution

3DConv 512 3D convolution

Linear Algebra

2mm 1,024 2 Matrix Multiplications (D=A.B; E=C.D)

3mm 512 3 Matrix Multiplications (E=A.B; F=C.D; G=E.F)

atax 4,096 Matrix Transpose and Vector Multiplication

bicg 16,384 BiCG Sub Kernel of BiCGStab Linear Solver

gemm 1,024 Matrix-multiply C=alpha.A.B+beta.C

gesummv 16,384 Scalar, Vector and Matrix Multiplication

gramschmidt 1,024 Gram-Schmidt decomposition

mvt 16,384 Matrix Vector Product and Transpose

syr2k 1,024 Symmetric rank-2k operations

syrk 1,024 Symmetric rank-k operations

Datamining
correlation 1,024 Correlation Computation

covariance 1,024 Covariance Computation

Stencil fdtd-2d 1,024 2-D Finite Different Time Domain Kernel

Table 2 Polybench suite description and the input parameter size used.

5 Experimental Results

This section presents the results achieved from the Polybench suite and optical flow
methods. We have divided this section into two parts, each dedicated to one of the
experiments.

5.1 Polybench Experiments

The Figure 2 illustrates the execution times obtained from Polybench on the Jetson
Orin Nano board. It includes the execution on GPU devices using CUDA programming
model, AdaptiveCpp and DPC++ for SYCL as well as on the ARM A78AE CPU
through AdaptiveCpp. It is worth noting that the DPC++ cannot be used on the
CPU due to the absence support of OpenCL on ARM processors. In more detail,
as expected benchmarks such as 2DConvolution, 3DConvolution, Atax, Fdtd2d, and
Mvt get better performance rates using the CUDA implementation, while Covariance,
Syr2k, and Syrk for the SYCL version. Furthermore, other benchmarks such as 2mm,
3mm, Bicg, Correlation, Gemm, Gesummv or Gramschmidt achieved almost equivalent
execution time using different programming models.

The Table 3 displays the overall performance improvement achieved by each com-
piler, i.e. the benchmarks based on CUDA are on average ×1.17 faster in comparison
to their AdaptiveCpp counterpart. In line with expectations, the CUDA version out-
performs the SYCL versions in all cases, achieving an overall speedup of ×1.17 and
×1.22 compared to AdaptiveCpp and DPC++. Shifting our focus to the SYCL imple-
mentations, AdaptiveCpp and DPC++ exhibit similar performance metrics. Even in

9

cases where they diverge, differences are small enough to be encompassed by the stan-
dard deviation. Consequently, the disparities between the versions are not relevant.
Although, we have also include the execution on ARM A78AE CPU by means of Adap-
tiveCpp implementation, it is worth noting that the performance is not particularly
favorable when compared to GPU times.

10 2 10 1 100 101

Time (s)

Syrk

Syr2k

Mvt

Gramschmidt

Gesummv

Gemm

Fdtd2d

Covariance

Correlation

Bicg

Atax

3mm

3DConvolution

2mm

2DConvolution
Ampere GPU (CUDA)
Ampere GPU (AdaptiveCpp)
Ampere GPU (DPC++)
Arm A78AE (AdaptiveCpp)

Fig. 2 Execution time recorded for Polybench suite tests on the Jetson Orin Nano using CUDA and
SYCL.

Focusing on the UP Squared Pro 7000 Edge board, the Figure 3 depicts the execu-
tion times. It is noteworthy to mention that the Intel UHD GPU couldn’t be utilized
in conjunction with AdaptiveCpp due to the absence of OpenCL or native baremetal

10

Speedup CUDA AdaptiveCpp DPC++ AdaptiveCpp (ARM)

CUDA 1 1.17 1.22 5.75

AdaptiveCpp - 1 1.07 5.46

DPC++ - - 1 4.99

AdaptiveCpp (ARM) - - - 1

Table 3 Average speedup obtained from Polybench suit in the Jetson Orin Nano.

support. Moreover, the Correlation and Fdtd2d couldn’t run on the DPC++ imple-
mentation due to the requirement for double-precision computations. This issue is
motivated from the lack of hardware support of double precision on Intel UHD GPU,
and for the Atom CPU the reason is associated to the current OpenCL driver which
does not provide support for double-precision.

10 2 10 1 100 101

Time (s)

Syrk
Syr2k

Mvt
Gramschmidt

Gesummv
Gemm
Fdtd2d

Covariance
Correlation

Bicg
Atax

3mm
3DConvolution

2mm
2DConvolution

Atom x7425E (AdaptiveCpp) Atom x7425E (DPC++) UHD Graphics (DPC++)

Fig. 3 Execution time recorded for Polybench suite tests on the UP Squared Pro 7000 Edge.

Table 4 summarizes the speedups obtained by each device and SYCL implementa-
tion. The Atom CPU with the AdaptiveCpp compiler obtains the worst performance
because SYCL code is translated to OpenMP, while DPC++ is conducted by the
OpenCL backend. This point makes the difference between both implementations

11

[31, 50]. When comparing DPC++ performance on both CPU and GPU (UHD Graph-
ics), it’s noteworthy that the Atom processor even outperforms the GPU. Given the
utilization of default-sized problem parameters, it doesn’t appear to be worthwhile to
use the GPU.

Speedup AdaptiveCpp (Atom) DPC++(Atom) DPC++(UHD)

AdaptiveCpp (Atom) 1 0.55 0.79

DPC++ (Atom) - 1 1.35

DPC++ (UHD) - - 1

Table 4 Average speedup obtained from Polybench suit in the UP Squared Pro 7000 Edge.

5.2 Optic Flow Experiments

The Table 5 collects the performance (measured in Frame Per Second-FPS) achieved
varying video resolution, GPU device, accelerator implementation, and algorithm.
We have also highlighted in bold type the best result fulfilled in each dataset and
algorithm. In order to avoid execution variability test have run 10 times, so the table
show the average and standard deviation. We would like to clarify that we decided
to omit the results on CPU devices since either the ARM Cortex-A78E or the Intel
Atom X7425E are far away from the GPU counterpart execution times. Furthermore,
for the sake of clarity, we have also removed from the final results from AdaptiveCpp
compiler due to the similar times achieved with DPC++.

Regarding the LK algorithm, it is noteworthy that the Intel UHD Graphics is the
most suitable device when resolution increases. For the HS algorithm, the Ampere
GPU is prominent, but distinguishing between CUDA and DPC++ implementations
in terms of performance is challenging, as in most instances, both implementations
yield nearly identical fps. Using the TV-L1 algorithm as benchmark, once again, we
observe that the Ampere GPU reports the best performance rates. Diving deeper
into the comparison of implementations on the Ampere GPU, an overall difference of
approximately 2.9% is observed between CUDA and DPC++. When examining each
algorithm individually, we find that LK exhibits a 5.4% improvement with DPC++,
HS favours DPC++ by 5%, and the TV-L1 implementation performs 19% better with
CUDA.

On the UHD Graphics side, a direct comparison is made with the Ampere GPU
along DPC++. The overall difference is 60.9% in favour of the Orin GPU. When
looking at each algorithm individually, we observe a 20.2% improvement for the UHD
Graphics in the LK algorithm, an 80.4% advantage for the Ampere GPU in the HS
algorithm, and 122% for the Ampere GPU in the TV-L¹ algorithm.

6 Discussion

SYCL showed the benefits of using as programming model in the edge market seg-
ment. In fact, we could successfully run the same code on different devices without

12

Dataset Device Lukas-Kanade Horn-Schunck TV-L¹

Schoolgirls

(432x240)

Ampere GPU

(CUDA)

x ∼ = 458 FPS

σX = 119.4

x ∼ = 19.8 FPS

σX = 0.13

x ∼ = 36.5 FPS

σX = 0.44

Ampere GPU

(DPC++)

x ∼ = 583 FPS

σX = 49.1

x ∼ = 21.8 FPS

σX = 0.11

x ∼ = 31.2 FPS

σX = 0.37

UHD Graphics

(DPC++)

x ∼ = 528 FPS

σX = 46.9

x ∼ = 16.24 FPS

σX = 0.19

x ∼ = 12.1 FPS

σX = 0.15

Middlebury

(640×480)

Ampere GPU

(CUDA)

x ∼ = 168 FPS

σX = 2.42

x ∼ = 8.92 FPS

σX = 0.10

x ∼ = 19.2 FPS

σX = 0.47

Ampere GPU

(DPC++)

x ∼ = 147 FPS

σX = 9.44

x ∼ = 8.66 FPS

σX = 0.10

x ∼ = 15.17 FPS

σX = 0.37

UHD Graphics

(DPC++)

x ∼ = 250 FPS

σX = 2.79

x ∼ = 5.01 FPS

σX = 0.08

x ∼ = 7.61 FPS

σX = 0.32

MPI-Sintel

(1024×436)

Ampere GPU

(CUDA)

x ∼ = 136 FPS

σX = 1.27

x ∼ = 6.36 FPS

σX = 0.03

x ∼ = 14.6 FPS

σX = 0.12

Ampere GPU

(DPC++)

x ∼ = 150 FPS

σX = 6.61

x ∼ = 6.98 FPS

σX = 0.07

x ∼ = 12.8 FPS

σX = 0.1

UHD Graphics

(DPC++)

x ∼ = 214 FPS

σX = 2.42

x ∼ = 2.98 FPS

σX = 0.03

x ∼ = 6.09 FPS

σX = 0.17

Table 5 Frames Per Second (FPS) achieved during the execution of optic flow algorithms on
various datasets and devices. The table shows the median and the standard deviation of each
measure.

an important performance degradation: two edge boards from different vendors were
employed for the same task.

In the initial phase, we tested SYCL along with the aforementioned boards using
the Polybench suite. This part of the experiment aimed to demonstrate the ability
to run the same SYCL code on various architectures, the differences between the
most commonly used SYCL implementations, and the minimal performance differences
when compared to native implementations, such as CUDA. Polybench results help
shed light on these objectives. First and foremost, thanks to SYCL, the Polybench
suite was able to run on x86/64 CPU, ARM CPU, NVIDIA GPU, and Intel GPU.
This is the primary advantage of SYCL when compared to native implementations, as
it simplifies development across various architectures. It is evident that employing the
SYCL language to articulate an application’s parallelism not only ensures portability
across various architectures and vendors but also enhances productivity.

On one hand, it is also important to mention that regarding to DPC++ and
AdaptiveCpp, both encountered difficulties in running on all the architectures tested.
DPC++ failed to operate on ARM CPUs, while AdaptiveCpp encountered issues with
Intel GPUs. Nonetheless, these problems could be addressed through improved docu-
mentation on how to compile AdaptiveCpp for Intel GPUs using OpenCL or Level0

13

backends, or by employing open-source OpenCL implementations for ARM CPUs such
as pocl19. Regarding their performance, the CUDA GPU architectures exhibited min-
imal variation, approximately 7%, which depended on the specific benchmark being
observed. Conversely, on x86/64 CPUs, AdaptiveCpp failed to achieve comparable
results to DPC++ with a notable 45% drop in performance based on the under-
lying OpenMP conversion for CPU architectures. However, it’s important to note
that OpenMP compatibility can be advantageous for emerging architectures like the
promising RISC-V.

On the other hand, it is important to consider the comparison between SYCL
implementations and CUDA. The overall metric indicates that CUDA outperforms
SYCL by approximately 17-22%, depending on the specific implementation. Neverthe-
less, when examined on a benchmark-by-benchmark basis, the superiority of CUDA
is not consistently clear-cut. Out of the five tests performed better with CUDA, while
SYCL excelled in the other three, and the remaining eight showed similar performance.
In light of these results, it can be inferred that utilizing SYCL does not significantly
degrade performance at all.

The second phase of the experiment aimed to test SYCL in real-world scenar-
ios. One common application in the edge computing sphere is computer vision,
with a specific focus on optical flow in this case. We evaluated three different
datasets—Schoolgirls, Middlebury, and MPI-Sintel—using three optical flow algo-
rithms: LK, HS, and TV-L1. There are two points that need to be addressed: the
performance difference between CUDA-SYCL and the SYCL comparison between
boards.

The primary distinction among the implementations is evident in the TV-L1 algo-
rithm. HS demonstrates similar processing times in both versions, while LK stands
out as an exceptionally lightweight algorithm worth considering. The variances in
TV-L1 processing times—16% for Schoolgirls, 26% for Middlebury, and 14% for MPI-
Sintel—should be viewed as the price for achieving code portability. Maintaining
different versions of the same algorithm, even if it outperforms, inevitably raises devel-
opment costs. Therefore, SYCL for edge computing, like in other platforms such as
HPC, is no exception and also incurs a ”minor” cost of 19% to ensure portability.

Lastly, employing SYCL could also be a sensible choice when comparing across
various boards. This is because it helps narrow the gap between the software and the
algorithm’s implementation, which can vary depending on the programming language
used. To demonstrate this premise, the theoretical performance of the Jetson Orin
Nano GPU is 1,280 GFLOPS, meanwhile the UP Squared Pro 7000 Edge GPU offers
460 GFLOPS (a 178% difference). The respective board prices are $499 and $399 (a
25% variance). Therefore, given the performance results and the actual performance
achieved in optical flow, a comparison based on cost is warranted. Table 6 presents an
assessment of the monetary cost (in dollars) per performance unit (FPS).

When analyzing the algorithms, we observed the following cost differences: for LK,
the UHD GPU is 4.5% less expensive, while for HS is 27% more cost-effective than the
Orin GPU. In the case of TV-L1, the Orin board’s cost is 43% lower. In conclusion,
these comparative analyses allow us to select the most suitable board based on specific

19https://github.com/pocl/pocl

14

https://github.com/pocl/pocl

priorities like cost, power consumption, performance, or real-time demands. The ability
to use a single, portable code greatly enhances decision-making efficiency and promotes
the widespread deployment of IoT applications on various architectures and vendors,
eliminating the need for maintaining multiple development efforts or dependency on
the commercial policies of a specific manufacturer.

Lukas-Kanade Horn-Schunck TV-L¹

Shoolgirls

(432x240)

Ampere GPU $0.01 per frame $0.38 per frame $0.27 per frame

UHD Graphics $0.01 per frame $0.41 per frame $0.55 per frame

Basketball

(640x480)

Ampere GPU $0.06 per frame $0.96 per frame $0.55 per frame

UHD Graphics $0.03 per frame $1.33 per frame $0.87 per frame

MPI-Sintel

(1024x436)

Ampere GPU $0.06 per frame $1.19 per frame $0.64 per frame

UHD Graphics $0.03 per frame $2.23 per frame $1.09 per frame

Table 6 USD per minute and frame computed by the GPUs and datasets.

7 Conclusion

The rapid growth of edge computing has introduced various solutions, many of which
incorporate low-power accelerators to enhance performance. Accelerators are typically
designed to work with specific custom languages such as CUDA, HIP, VHDL, and oth-
ers. However, this approach creates compatibility issues, as it necessitates customizing
the code for each architecture.

This work demonstrated the ability of edge computing to execute and leverage
SYCL code on different boards and custom accelerators. We employed the Poly-
bench suite to evaluate various SYCL implementations on the same hardware, and
the performance gap was found to be negligible.

Additionally, we utilized a realistic computer vision application based on optical
flow algorithms to assess the practical application of SYCL in edge computing sce-
narios. The experiments revealed a performance disparity between native solutions
like CUDA and SYCL. Nevertheless, we deliberated on the significance of SYCL’s
portability in development tasks and the trade-off in performance that developers may
encounter. Utilizing a single, portable code streamlines decision-making and enables
broad IoT deployment across different architectures and vendors, reducing the reliance
on multiple development efforts and specific manufacturer policies. To the best of the
author’s knowledge, this work represents one of the earliest efforts focused on edge
computing and code portability utilizing SYCL.

Future work should focus on incorporating performance portability metrics to facil-
itate a comparison with the native version. Given the prevalent use of edge computing
in image processing and real-time applications, further investigations could explore
the advantages of employing SYCL in image processing frameworks such as OpenCV.

15

Moreover, extending the research to encompass other edge devices and evaluating their
performance and power consumption would provide valuable insights.

Declarations

Ethical Approval

Not applicable for this item.

Conflict of interest/Competing interests

Do not have any conflicts of interest with your journal and no mutual conflicts of
interest among the authors.

Authors’ contributions

All authors contributed to the research in the main concepts and design. The software
was developed by Y. FR. Y. FR also performed experiments. C. G. analyzed the
results and proposed methodology in the experimentation phase. All authors write
and approve the final manuscript.

Funding

This paper has been supported by the EU (FEDER), the Spanish MINECO
under grants PID2021-126576NB-I00 and TED2021-130123B-I00 funded by
MCIN/AEI/10.13039/501100011033 and by European Union “ERDF A way of making
Europe” and the NextGenerationEU/PRT.

Availability of data and materials

Some datasets employed for the current study are available in the artecs-group/sycl-
optic-flow repository, https://github.com/artecs-group/sycl-optic-flow/tree/main/
dataset. The full datasets can be found in [43].

Code availability

The code supporting the results of this article is available in the artecs-group/sycl-
optic-flow repository, https://github.com/artecs-group/sycl-optic-flow.

References

[1] Cao, K., Liu, Y., Meng, G., Sun, Q.: An overview on edge computing research.
IEEE Access 8, 85714–85728 (2020). https://doi.org/10.1109/ACCESS.2020.
2991734

[2] Mansouri, Y., Babar, M.A.: A review of edge computing: Features and resource
virtualization. Journal of Parallel and Distributed Computing 150, 155–183
(2021). https://doi.org/10.1016/j.jpdc.2020.12.015

16

https://github.com/artecs-group/sycl-optic-flow/tree/main/dataset
https://github.com/artecs-group/sycl-optic-flow/tree/main/dataset
https://github.com/artecs-group/sycl-optic-flow
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1016/j.jpdc.2020.12.015

[3] Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017). https://doi.org/10.1109/MC.2017.9

[4] Kong, X., Wu, Y., Wang, H., Xia, F.: Edge computing for internet of everything:
A survey. IEEE Internet of Things Journal 9(23), 23472–23485 (2022). https:
//doi.org/10.1109/JIOT.2022.3200431

[5] Tripathy, B., Anuradha, J.: Internet of Things (IoT):
Technologies, Applications, Challenges and Solutions, p.
358. CRC press, USA (2018). https://www.routledge.com/
Internet-of-Things-IoT-Technologies-Applications-Challenges-and-Solutions/
Tripathy-Anuradha/p/book/9780367572921

[6] Afzal, B., Umair, M., Shah, G.A., Ahmed, E.: Enabling iot platforms for social
iot applications: Vision, feature mapping, and challenges. Future Generation
Computer Systems 92, 718–731 (2019)

[7] Tavana, M., Hajipour, V., Oveisi, S.: Iot-based enterprise resource planning: Chal-
lenges, open issues, applications, architecture, and future research directions.
Internet of Things 11, 100262 (2020)

[8] Himeur, Y., Alsalemi, A., Al-Kababji, A., Bensaali, F., Amira, A., Sardianos, C.,
Dimitrakopoulos, G., Varlamis, I.: A survey of recommender systems for energy
efficiency in buildings: Principles, challenges and prospects. Information Fusion
72, 1–21 (2021). https://doi.org/10.1016/j.inffus.2021.02.002

[9] Ramachandran, P., Ranganath, S., Bhandaru, M.K., Tibrewala, S.: A survey of
ai enabled edge computing for future networks. 2021 IEEE 4th 5G World Forum
(5GWF), 459–463 (2021)

[10] Intel: oneAPI DPC++ Compiler and Runtime architecture design. https://intel.
github.io/llvm-docs/design/CompilerAndRuntimeDesign.html (2023)

[11] Keryell, R., Reyes, R., Howes, L.: Khronos sycl for opencl: a tutorial. In:
Proceedings of the 3rd International Workshop on OpenCL, pp. 1–1 (2015)

[12] Buck, I.: Gpu computing with nvidia cuda. In: ACM SIGGRAPH 2007 Courses,
p. 6 (2007)

[13] Bauman, P., Chalmers, N., Curtis, N., Freitag, C., Greathouse, J., Malaya, N.,
McDougall, D., Moe, S., van Oostrum, R., Wolfe, N., et al.: Introduction to amd
gpu programming with hip. Presentation at Oak Ridge National Laboratory.
Online at: https://www. olcf. ornl. gov/calendar/intro-to-amd-gpu-programming-
with-hip (2019)

[14] Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J., Tian, X.:

17

https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/JIOT.2022.3200431
https://doi.org/10.1109/JIOT.2022.3200431
https://www.routledge.com/Internet-of-Things-IoT-Technologies-Applications-Challenges-and-Solutions/Tripathy-Anuradha/p/book/9780367572921
https://www.routledge.com/Internet-of-Things-IoT-Technologies-Applications-Challenges-and-Solutions/Tripathy-Anuradha/p/book/9780367572921
https://www.routledge.com/Internet-of-Things-IoT-Technologies-Applications-Challenges-and-Solutions/Tripathy-Anuradha/p/book/9780367572921
https://doi.org/10.1016/j.inffus.2021.02.002
https://intel.github.io/llvm-docs/design/CompilerAndRuntimeDesign.html
https://intel.github.io/llvm-docs/design/CompilerAndRuntimeDesign.html

Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Sys-
tems Using C++ and SYCL. Second Edition, p. 558. Springer, USA (2023).
https://doi.org/10.1007/978-1-4842-9691-2

[15] Castaño, G., Faqir-Rhazoui, Y., Garćıa, C., Prieto-Mat́ıas, M.: Evaluation of
intel’s dpc++ compatibility tool in heterogeneous computing. Journal of Parallel
and Distributed Computing 165, 120–129 (2022). https://doi.org/10.1016/j.jpdc.
2022.03.017

[16] Deakin, T., McIntosh-Smith, S.: Evaluating the performance of hpc-style sycl
applications. In: Proceedings of the International Workshop on OpenCL. IWOCL
’20. Association for Computing Machinery, New York, NY, USA (2020). https:
//doi.org/10.1145/3388333.3388643. https://doi.org/10.1145/3388333.3388643

[17] Breyer, M., Van Craen, A., Pflüger, D.: A comparison of sycl, opencl, cuda,
and openmp for massively parallel support vector machine classification on
multi-vendor hardware. In: International Workshop on OpenCL. IWOCL’22.
Association for Computing Machinery, New York, NY, USA (2022). https://doi.
org/10.1145/3529538.3529980. https://doi.org/10.1145/3529538.3529980

[18] Kang, P.: Programming for high-performance computing on edge accelerators.
Mathematics 11(4) (2023). https://doi.org/10.3390/math11041055

[19] Angus, D., Georgiev, S., Arroyo Gonzalez, H., Riordan, J., Keir, P., Goli, M.:
Porting sycl accelerated neural network frameworks to edge devices. In: Proceed-
ings of the 2023 International Workshop on OpenCL. IWOCL ’23. Association
for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/
3585341.3585346. https://doi.org/10.1145/3585341.3585346

[20] Khronos SYCL working group: SYCL Specification. https://registry.khronos.org/
SYCL/ (2023)

[21] OpenMP: The OpenMP Specification. https://www.openmp.org/ (2023)

[22] Khronos SYCL working group: The OpenCL Specification. https://registry.
khronos.org/OpenCL/ (2023)

[23] Ludwig, K.: Performance portability and evaluation of heterogeneous components
of seissol targeted to upcoming intel hpc gpus (2021)

[24] LLVM-Project: User Guide for AMDGPU Backend. https://www.llvm.org/docs/
AMDGPUUsage.html (2023)

[25] Marangoni, M., Wischgoll, T.: Togpu: Automatic source transformation from c++
to cuda using clang/llvm. Electronic Imaging 2016(1), 1–9 (2016)

[26] illuhad: AdaptiveCpp design and architecture. https://github.com/OpenSYCL/

18

https://doi.org/10.1007/978-1-4842-9691-2
https://doi.org/10.1016/j.jpdc.2022.03.017
https://doi.org/10.1016/j.jpdc.2022.03.017
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1145/3529538.3529980
https://doi.org/10.1145/3529538.3529980
https://doi.org/10.1145/3529538.3529980
https://doi.org/10.3390/math11041055
https://doi.org/10.1145/3585341.3585346
https://doi.org/10.1145/3585341.3585346
https://doi.org/10.1145/3585341.3585346
https://registry.khronos.org/SYCL/
https://registry.khronos.org/SYCL/
https://www.openmp.org/
https://registry.khronos.org/OpenCL/
https://registry.khronos.org/OpenCL/
https://www.llvm.org/docs/AMDGPUUsage.html
https://www.llvm.org/docs/AMDGPUUsage.html
https://github.com/OpenSYCL/OpenSYCL/blob/develop/doc/architecture.md
https://github.com/OpenSYCL/OpenSYCL/blob/develop/doc/architecture.md

OpenSYCL/blob/develop/doc/architecture.md (2021)

[27] Jin, Z.: The rodinia benchmark suite in sycl. Technical report, Argonne National
Lab.(ANL), Argonne, IL (United States). Argonne Leadership . . . (2020)

[28] Tramm, J.R., Siegel, A.R., Islam, T., Schulz, M.: Xsbench-the development and
verification of a performance abstraction for monte carlo reactor analysis. The
Role of Reactor Physics toward a Sustainable Future (PHYSOR) (2014)

[29] Alpay, A., Soproni, B., Wünsche, H., Heuveline, V.: Exploring the possibil-
ity of a hipsycl-based implementation of oneapi. In: International Workshop on
OpenCL. IWOCL’22. Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3529538.3530005. https://doi.org/10.1145/
3529538.3530005

[30] Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-
tuning a high-level language targeted to gpu codes. In: 2012 Innovative Par-
allel Computing (InPar), pp. 1–10 (2012). https://doi.org/10.1109/InPar.2012.
6339595

[31] Lal, S., Alpay, A., Salzmann, P., Cosenza, B., Hirsch, A., Stawinoga, N., Thoman,
P., Fahringer, T., Heuveline, V.: Sycl-bench: a versatile cross-platform bench-
mark suite for heterogeneous computing. In: Euro-Par 2020: Parallel Processing:
26th International Conference on Parallel and Distributed Computing, War-
saw, Poland, August 24–28, 2020, Proceedings 26, pp. 629–644 (2020). https:
//doi.org/10.1007/978-3-030-57675-2 39. Springer

[32] Stiller, C., Konrad, J.: Estimating motion in image sequences. IEEE Signal
Processing Magazine 16(4), 70–91 (1999). https://doi.org/10.1109/79.774934

[33] Baker, S., Roth, S., Scharstein, D., Black, M.J., Lewis, J.P., Szeliski, R.: A
database and evaluation methodology for optical flow. In: 2007 IEEE 11th Inter-
national Conference on Computer Vision, pp. 1–8 (2007). https://doi.org/10.
1109/ICCV.2007.4408903

[34] Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source
movie for optical flow evaluation. In: Computer Vision–ECCV 2012: 12th Euro-
pean Conference on Computer Vision, Florence, Italy, October 7-13, 2012,
Proceedings, Part VI 12, pp. 611–625 (2012). Springer

[35] Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI
dataset. The International Journal of Robotics Research 32(11), 1231–1237
(2013). https://doi.org/10.1177/0278364913491297

[36] Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence
17(1), 185–203 (1981). https://doi.org/10.1016/0004-3702(81)90024-2

19

https://github.com/OpenSYCL/OpenSYCL/blob/develop/doc/architecture.md
https://github.com/OpenSYCL/OpenSYCL/blob/develop/doc/architecture.md
https://doi.org/10.1145/3529538.3530005
https://doi.org/10.1145/3529538.3530005
https://doi.org/10.1145/3529538.3530005
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1109/InPar.2012.6339595
https://doi.org/10.1007/978-3-030-57675-2_39
https://doi.org/10.1007/978-3-030-57675-2_39
https://doi.org/10.1109/79.774934
https://doi.org/10.1109/ICCV.2007.4408903
https://doi.org/10.1109/ICCV.2007.4408903
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1016/0004-3702(81)90024-2

[37] Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their prin-
ciples. In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 2432–2439 (2010). https://doi.org/10.1109/CVPR.2010.
5539939

[38] Borz̀ı, A., Schulz, V.: Multigrid methods for pde optimization. SIAM Review
51(2), 361–395 (2009) https://doi.org/10.1137/060671590. https://doi.org/10.
1137/060671590

[39] Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision. In: Proceedings of the 7th International Joint Conference
on Artificial Intelligence - Volume 2. IJCAI’81, pp. 674–679. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1981)

[40] Botella, G., Garcia, A., Rodriguez-Alvarez, M., Ros, E., Meyer-Baese, U., Molina,
M.C.: Robust bioinspired architecture for optical-flow computation. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 18(4), 616–629 (2010).
https://doi.org/10.1109/TVLSI.2009.2013957

[41] Gong, Y., Zhang, J., Liu, X., Li, J., Lei, Y., Zhang, Z., Yang, C., Geng, L.: A
real-time and efficient optical flow tracking accelerator on fpga platform. IEEE
Transactions on Circuits and Systems I: Regular Papers, 1–14 (2023). https://
doi.org/10.1109/TCSI.2023.3298969

[42] Jaiswal, D., Kumar, P.: A survey on parallel computing for traditional com-
puter vision. Concurrency and Computation: Practice and Experience 34(4), 6638
(2022)

[43] Zhai, M., Xiang, X., Lv, N., Kong, X.: Optical flow and scene flow estimation:
A survey. Pattern Recognition 114, 107861 (2021). https://doi.org/10.1016/j.
patcog.2021.107861

[44] Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime tv-l1 optical
flow. In: Proceedings of the 29th DAGM Conference on Pattern Recognition, pp.
214–223. Springer, Berlin, Heidelberg (2007)

[45] Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm
for tv-l1 optical flow. In: Statistical and Geometrical Approaches to Visual Motion
Analysis: International Dagstuhl Seminar, Dagstuhl Castle, Germany, July 13-
18, 2008. Revised Papers, pp. 23–45. Springer, Berlin, Heidelberg (2009). https:
//doi.org/10.1007/978-3-642-03061-1 2

[46] Sánchez Pérez, J., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 Optical Flow Esti-
mation. Image Processing On Line 3, 137–150 (2013). https://doi.org/10.5201/
ipol.2013.26

[47] Romera, T., Petreto, A., Lemaitre, F., Bouyer, M., Meunier, Q., Lacassagne, L.,

20

https://doi.org/10.1109/CVPR.2010.5539939
https://doi.org/10.1109/CVPR.2010.5539939
https://arxiv.org/abs/https://doi.org/10.1137/060671590
https://doi.org/10.1137/060671590
https://doi.org/10.1137/060671590
https://doi.org/10.1109/TVLSI.2009.2013957
https://doi.org/10.1109/TCSI.2023.3298969
https://doi.org/10.1109/TCSI.2023.3298969
https://doi.org/10.1016/j.patcog.2021.107861
https://doi.org/10.1016/j.patcog.2021.107861
https://doi.org/10.1007/978-3-642-03061-1_2
https://doi.org/10.1007/978-3-642-03061-1_2
https://doi.org/10.5201/ipol.2013.26
https://doi.org/10.5201/ipol.2013.26

Etiemble, D.: Optical flow algorithms optimized for speed, energy and accuracy
on embedded gpus. Journal of Real-Time Image Processing 20(2), 32 (2023).
https://doi.org/10.1007/s11554-023-01288-6

[48] Romera, T., Petreto, A., Lemaitre, F., Bouyer, M., Meunier, Q., Lacassagne, L.:
Implementations impact on iterative image processing for embedded gpu. In: 2021
29th European Signal Processing Conference (EUSIPCO), pp. 736–740 (2021).
https://doi.org/10.23919/EUSIPCO54536.2021.9615947

[49] Alpay, A., Heuveline, V.: Sycl beyond opencl: The architecture, current state
and future direction of hipsycl. In: Proceedings of the International Workshop
on OpenCL. IWOCL ’20. Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3388333.3388658

[50] Alpay, A.: hipSYCL 0.9.2 - compiler-accelerated CPU backend, nvc++ support
and more. https://adaptivecpp.github.io/hipsycl/release/cpu/extension/nvc++/
hipsycl-0.9.2/

21

https://doi.org/10.1007/s11554-023-01288-6
https://doi.org/10.23919/EUSIPCO54536.2021.9615947
https://doi.org/10.1145/3388333.3388658
https://adaptivecpp.github.io/hipsycl/release/cpu/extension/nvc++/hipsycl-0.9.2/
https://adaptivecpp.github.io/hipsycl/release/cpu/extension/nvc++/hipsycl-0.9.2/

	Introduction
	The SYCL Paradigm in a Nutshell
	Benchmarking SYCL in Edge Platforms
	SYCL Benchmark Suits
	Image Processing for Optic Flow

	Methods
	Environment Configuration
	Benchmarking Methodology

	Experimental Results
	Polybench Experiments
	Optic Flow Experiments

	Discussion
	Conclusion

