
A Modular Approach to Design an Experimental
Framework for Resource Management Research
Lucia Pons ( lupones@disca.upv.es)

Universitat Politècnica de València
Salvador Petit

Universitat Politècnica de València
Julio Pons

Universitat Politècnica de València
María E. Gómez

Universitat Politècnica de València
Julio Sahuquillo

Universitat Politècnica de València

Research Article

Keywords: Cloud computing, high-performance computing, resource management, virtualization,
experimental framework

Posted Date: October 13th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3400308/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3400308/v1
mailto:lupones@disca.upv.es
https://doi.org/10.21203/rs.3.rs-3400308/v1
https://creativecommons.org/licenses/by/4.0/

A Modular Approach to Design an Experimental

Framework for Resource Management Research

Lucia Pons1*, Salvador Petit1, Julio Pons1, Maŕıa E. Gómez1,

Julio Sahuquillo1

1Universitat Politècnica de València, Spain.

*Corresponding author(s). E-mail(s): lupones@disca.upv.es;
Contributing authors: spetit@disca.upv.es; jpons@disca.upv.es;

megomez@disca.upv.es; jsahuqui@disca.upv.es;

Abstract

Research on resource management focuses on optimizing system performance and

energy efficiency by distributing shared resources like processor cores, caches, and

main memory among competing applications. This research spans a wide range of

applications, including those from high-performance computing, machine learn-

ing, and mobile computing. Existing research frameworks often simplify research

by concentrating on specific characteristics, such as the architecture of the com-

puting nodes, resource monitoring, and representative workloads. For instance,

this is typically the case with cloud systems, which introduce additional com-

plexity regarding hardware and software requirements. To avoid this complexity

during research, experimental frameworks are being developed. Nevertheless, pro-

posed frameworks often fail regarding the types of nodes included, virtualization

support, and management of critical shared resources.

This paper presents Stratus, an experimental framework that overcomes these

limitations. Stratus includes different types of nodes, a comprehensive virtualiza-

tion stack, and the ability to partition the major shared resources of the system.

Even though Stratus was originally conceived to perform cloud research, its mod-

ular design allows Stratus to be extended, broadening its research use on different

computing domains and platforms, matching the complexity of modern cloud

environments.

Keywords: Cloud computing, high-performance computing, resource management,
virtualization, experimental framework

1

1 Introduction

Resource management is an active research domain in both academic and industrial
contexts. This area of research concentrates on enhancing system performance and
reducing energy consumption by distributing shared resources, including processor
cores, cache, main memory, and more. These goals are pursued across a broad spectrum
of applications, encompassing high-performance computing (HPC), machine learning,
latency-sensitive tasks, mobile computing, and various others.

With the aim of simplifying research efforts and improving flexibility, existing
research frameworks often incorporate just a subset of characteristics found in real
deployed systems. These characteristics typically involve node types, resource monitor-
ing capabilities, and supported workloads. In fact, a predominant focus in the literature
is on single multicore processor server platforms, emphasizing processor-centric
workloads.

In contemporary computing scenarios, applications demanding substantial compu-
tational and storage resources, such as HPC and machine learning applications, are
typically deployed in cloud environments [1–3]. Cloud platforms include a diverse array
of computing nodes, each composed of a set of shared resources, such as cores, main
memory, and storage. Virtual machines (VMs) [4] are employed to provide isolation
and privacy for tenant applications hosted in public cloud environments, further com-
plicating these systems. This complexity extends beyond hardware considerations such
as software stack requirements related to virtualization, resource efficiency, Service
Level Agreement (SLA) [5] compliance, and multi-tenancy support.

In this context, to conduct resource management research, many public cloud
organizations develop their own controlled experimental frameworks as they cannot
control user workloads. These frameworks offer the advantage of reduced complexity
and enhanced flexibility, as the experimental platform and the workload can be tightly
controlled. For instance, they enable the assessment of SLA compliance when applying
resource management policies, facilitating obtaining conclusions before implementing
such policies on real production systems.

The development of a representative experimental framework is challenging since
such a platform must provide three key attributes: i) it should include the main types
of hardware nodes (server, client, and storage), ii) it should offer VM-based isolation
for tenant applications, and iii) it should support the partitioning of major shared
resources, including main memory, last level cache (LLC), network components, etc.
However, most frameworks in existing research works present shortcomings such as:
i) being composed of a single machine [6–10], ii) lack of virtualization support [6–
8], and iii) neglecting the management of important components such as the network
infrastructure [6–8] and the remote storage [7, 8, 11–13].

This paper introduces Stratus, an experimental framework that overcomes all three
aforementioned shortcomings and currently serves as a valuable resource for conduct-
ing resource management research within realistic environments, such as those found
in cloud computing scenarios [14, 15]. Stratus is based on a hardware infrastructure
implementing three main node types: a server node hosting tenant applications, a
client node generating requests to the server, and a storage node providing remote
storage capabilities to the server. Regarding the system software, Stratus features a

2

full software stack implementation, including technologies such as KVM-QEMU and
Libvirt, to ensure isolation for tenant applications through VMs. Furthermore, the
selection of the hardware technologies managed by Stratus enables the partitioning of
critical shared resources, including the LLC, the memory bandwidth, and so on.

A key component of Stratus is its manager, which incorporates three main func-
tionalities: management and control of the execution of VMs and running applications,
monitoring hardware performance counters and system resource utilization, and par-
titioning the shared system resources through the available technologies in the nodes.
Moreover, Stratus supports the execution of several workloads, including client-server
workloads (e.g., TailBench [16], CloudSuite [17]), as well as best-effort or batch
workloads (e.g., stressor microbenchmarks [18, 19] or SPEC CPU workloads [20]).

This paper extends the previous work [21] in the following ways. It offers rules for
extending Stratus (Section 3) to different computing platforms and details its appli-
cability across diverse computing domains, such as HPC and cloud computing. It
presents new experiments (Section 5) assessing Stratus’ performance on various com-
puting platforms (ARM and Intel), including the results of workloads combining tail
latency applications with background jobs. Finally, the paper discusses the potential
research topics (Section 6) that will be opened by future Stratus platform to match
complex cloud system deployments and the required software extensions.

2 Related Work

HPC experimental frameworks include only a small subset of the features present in
cloud frameworks, including the type of nodes, resource monitoring capabilities, and
the supported workload. In particular, most HPC works focus on a single multicore
processor server platform, and the stress is mainly put on the processor side; thus,
workloads stressing this system component are employed. This means that a relatively
simple ad-hoc framework is used and not made publicly available. On the contrary,
the high complexity of cloud systems has prompted researchers to create new testbeds
to conduct their research. Thus, this section focuses on cloud system experimental
platforms.

At a large scale, testbeds such as Grid’500 [22], Cloudlab [23], and Chamaleon [24]
have been built to allow researchers to carry out experiments on distributed systems
deployed in multiple sites spread geographically. Under these testbeds, users request
the desired resources for a limited amount of time using a reservation system and then
configure such resources for their use (e.g., deploy a custom software stack).

This paper focuses on built-in experimental testbeds for small-scale research that
users deploy in their research facilities without relying on external systems. Table
1 summarizes, for a representative subset of testbeds recently proposed, how they
fulfill four main features: i) if they support virtualization with VMs, ii) the supported
workloads, iii) the type of nodes the platform includes, and iv) the resources that
can be monitored or managed. For comparison purposes, the bottom row of the table
includes our experimental platform, Stratus. The table shows that, to the best of our
knowledge, no existing work proposes a controlled experimental platform that includes
all the features in Stratus.

3

Table 1: Summary of the experimental infrastructure used in resource-oriented works.

Paper Year VMs Workload
Type of Node Resource Monitoring/Partitioning

Server Client Storage CPU LLC Mem.BW Disk Net.

ServerMore [6] 2021 ✓ LC ✓ × ✓ ✓ ✓ ✓ × ×

Skynet [25] 2021 ×, containers LC ✓ ✓ ✓ ✓ × × ✓ ✓

Alita [7] 2020 ✓ LC, TO, micro ✓ × × ✓ ✓ ✓ × ×

CLITE [8] 2020 × LC, TO ✓ × × ✓ ✓ ✓ ✓ ×

PARTIES [11] 2019 ×, containers LC ✓ ✓ × ✓ ✓ ✓ ✓ ✓

Scavenger [12] 2018 ✓ LC, TO, micro ✓ ✓ × ✓ ✓ × × ✓

Vertical Elasticity [13] 2018 ×, containers LC, TO ✓ ✓ × ✓ ✓ × ✓ ✓

Stratus [21] 2023 ✓ LC, TO, micro ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Stratus deploys the three types of nodes, uses VMs to allocate tenant applications,
and provides monitoring and partitioning capabilities of the main system resources.
As it can be seen in the table, only the testbed used to evaluate Skynet [25] includes
the three types of nodes that Stratus deploys. All the approaches support the typical
latency-critical (LC) workloads that run in cloud systems (e.g., Tailbench [16]) and
follow the client-server model. Some approaches [6] run server and clients on the
same machine or use single-node experimental platforms [7, 8], obviating the network
interference.

Regarding virtualization, only three of the listed works use VMs to contain the
tenant applications. Two of these approaches [6, 12] also use Linux KVM to deploy
VMs. Some approaches use containers, which allow better performance at the expense
of worse isolation. Software isolation tools (e.g., cgroups) indeed enable resource isola-
tion in containers. However, containers are forced to use the same kernel as the host;
thus, isolation is not possible at the kernel level.

Concerning the management of the shared resources, only PARTIES [11] considers
all the shared resources similar to Stratus, but notice that this platform lacks a storage
node and uses containers instead of VMs. From the listed resources, the CPU (which
embraces hardware performance counters, CPU utilization monitoring, and allocation
of CPU cores) is the only resource considered in all works. On the other hand, the
network and disk are the shared resources least considered among the studied pro-
posals. To induce interference, some works [7, 8, 12, 13] employ throughput-oriented
(TO) workloads like PARSEC [26] and microbenchmarks (micro).

Apart from the platforms analyzed in Table 1, other research works make use of
experimental platforms that focus on a single specific shared resource. Less Provision-
ing [27] and Twig [10] focus on CPU resource allocation by dynamically adjusting
the CPU resources based on resource utilization and hardware performance counters,
respectively. ReTail [9] also focuses on CPU resources but manages these resources by
adjusting the CPU frequency. QWin [28] was devised to guarantee the tail latency SLO
of distributed storage servers by partitioning cores of storage servers among tenant
applications. Finally, LIBRA [29] proposes a dynamic memory bandwidth management
framework.

4

Server node

Client node

 

System software
Apps

VM . . .
Apps

VM

Apps

VM

Kernel

Hardware
Server WSC processor + main memory Storage node

Remote storage systemClient applications
Network

Resource and Application Manager

Personal computer Hardware
Disks

Perf. Counters

Network

Control
client load

Control
storage

Fig. 1: High-level architecture of Stratus.

3 Implementing a Modular Experimental
Infrastructure

Stratus was initially conceived to perform cloud research, but its modular design allows
the use of Stratus to perform research beyond this scope. This section first presents
the specific features of Stratus used to perform cloud research, and then it focuses on
how the framework implemented in Stratus can be adapted to perform HPC research.
Finally, it discusses how the modular approach allows for the framework to be deployed
in machines with different architectures.

3.1 Cloud Specific Features

To carry out cloud research, four main design issues are considered:

1. The expected workloads to be run,
2. The main system shared resources to be monitored and partitioned among the

tenant applications.
3. The target system (e.g., computing, storage) capabilities from an experimental

perspective.
4. The software stack (e.g., virtualization).

The design of an experimental system is highly dependent on the expected work-
loads to be run and the major shared resources that must be considered. Regarding
the expected workloads, cloud systems run many types of workloads. Among these,
latency-critical applications are of great importance as they are increasingly common
in data centers. These applications typically support online interactive services (e.g.,
web search) and must respond to the client requests within certain latency bounds to
guarantee QoS (e.g., the 95th or 99th percentile latency) to provide a satisfactory user
experience. Therefore, cloud systems must support the client-server (CS) architecture.
Regarding the main system shared resources, cloud systems cannot obviate any sys-
tem resource, but all of them must be considered together. This implies that client
and server applications must be hosted in different nodes to take into consideration
the network. In addition, these systems must provide remote storage capabilities.

5

Table 2: Node hardware specifications (processor and main memory).

Node
Processor Package

Main Memory
Processor #Cores (#Threads)

Main 2x Intel Xeon Silver
4116

48 (96) 12 x DDR4-2666 16GB
DIMMs

Client Intel E5-2658A 12 (24) 1 x 32GB DIMM
Storage Intel i5-9400F 6 (6) 2 x DDR4-2666 16GB

DIMMs

These requirements have guided the design of Stratus. Figure 1 presents a high-
level design of Stratus’ experimental platform. On the hardware side, Stratus deploys
server and client nodes to allow running CS workloads and a storage node to provide
remote storage to the server applications. Notice that the specifications of the server
and storage nodes should be representative of the nodes implemented in real cloud
systems. Table 2 shows the specifications (processor package and main memory) for
each of the nodes. The specifications of the server and storage nodes can be considered
representative of the nodes implemented in real cloud systems. For example, Google
Cloud CPU platforms [30], Amazon EC2 C6 and C5 instances [31] and Huawei Elastic
Cloud servers [32] use Intel Xeon Scalable Processors including from tens to hundreds
of gigabytes for main memory capacity.

An important feature of cloud systems is that they must support virtualization of
the real hardware as tenant applications are hosted by virtual machines (VMs) [4] in
the public cloud. Therefore, on the software side, Stratus includes the main compo-
nents of current cloud software stacks [33]. Three main levels can be distinguished:
the hypervisor, the virtual resource manager, and the guest OS and applications. The
hypervisor refers to the OS installed in the host physical machine (PM). A wide set of
both open-source and proprietary hypervisors are currently being used in the indus-
try. Examples of open-source hypervisors are Linux with KVM [34] and Xen [35]. The
former is one of the current industry trends, and it is being used by Amazon [36] and
Google [37]. The latter is also supported by Amazon. The virtualization manager is
the software platform that manages and distributes the PM hardware resources among
VMs. One example of a virtualization manager is Libvirt [38]. Some virtualizers, like
QEMU [39], also support both KVM and Xen. Finally, the guest OS and tenant appli-
cations run in the different VMs. Guest OS and applications can be either proprietary
or open source (e.g., a Linux server distribution executing several Internet services).
In addition, a virtual switch is used to interconnect the VMs with the physical net-
work interface cards (NICs) of the server node. The virtual switch is set up with Open
vSwitch (OvS) [40]. Emulated NICs at the VMs (i.e., virtio [41] NICs) and each phys-
ical NIC (both ports) in the server node are accessed from the virtual switch through
the Data Plane Development Kit (DPDK) [42]. DPDK enables the direct transfer of
packets between virtio NICs and physical NICs, bypassing the host OS kernel net-
work stack. This setup boosts network performance compared to the default packet
forwarding mechanism implemented in the Linux kernel. To provide remote storage,
Ceph [43] is used, commonly installed in cloud environments.

On the highest level, we find the resource and application manager, which is the
central axis of Stratus. It is in charge of controlling the operation of all the nodes,

6

Server node

 

System software

App. . . . App.App.

Kernel

Hardware

Resource and Application Manager

Fig. 2: High-level architecture of Stratus when tailored to HPC research.

which simplifies the administration. Firstly, it supports monitoring and partitioning
the following main system shared resources: CPUs, last level cache (LLC) space, main
memory, network, and disk bandwidth. In addition, it allows researchers to automate
their daily work –launching experiments and taking results – by i) launching the
workload: VM instances and guest applications in the client node, ii) measuring per-
formance counters, iii) assigning partitions of shared resources to each VM instance,
and iv) scheduling (stop and relaunch) VM instances and controlling physical machine
(PM) cores. A detailed description of the specific tasks carried out is provided in
Section 4.

3.2 Using Stratus for HPC

Notice that the modular design of Stratus allows the experimental environment to be
greatly simplified for HPC evaluation since, in these studies, only the server machine is
typically evaluated, and there is no need to include virtualization capabilities. Figure
2 shows the design of Stratus adapted for this purpose. Below, the main modifications
performed over Stratus’ global architecture are discussed:

• Hardware. HPC systems focus on running compute- and memory-intensive work-
loads in one or multiple server nodes. Typical HPC experimental platforms used for
resource management research comprise a single server machine based on a multi-
core processor with a high core count. In addition, some research works started
recently to use multi-socket platforms.

• Software. HPC tasks that run on privately owned experimental platforms are exe-
cuted natively on the machines without using virtualization. Thus, the complex
software stack deployed in cloud systems is not required.

• Resource and application manager. Not using VMs to launch applications
greatly simplifies the execution of experiments. However, HPC workloads may
require additional features concerning the monitoring and managing of the processes
or threads created at runtime by applications.

7

...

Resource and Application Manager

Kernel
Space

Hardware

Server WSC processor + main memory

Performance
Counters

User
Space

Standard
libraries / APIs

Architecture dependent
kernel code

Libvirt

Intel RDT
... Application 1 Application J

Fig. 3: Stratus resource and application manager software architecture.

3.3 Allowing Architecture Interoperability

The emergence of new architectures in the context of the server market has forced
many performance evaluation studies to be conducted in order to assess performance
and energy efficiency [44, 45], as well as architecture-specific features like SIMD
instructions [46, 47]. For this purpose, it is important to have an experimental frame-
work that can provide a common and homogeneous methodology to perform the
experiments.

Figure 3 shows the software architecture of Stratus. Stratus resource and appli-
cation manager is tailored to different libraries or APIs (e.g., libvirt) that access the
OS kernel. Some of this code is architecture-dependent as it has to access specific
hardware. This is the case, for instance, of performance counters. Current processors
deploy dedicated performance counters to account for the number of processor cycles
and instructions committed. Additional general-purpose counters can be programmed
to monitor architecture-specific events like misses at a given cache level. Since the per-
formance counter architecture varies among processor vendors, a framework developed
for an Intel processor will not run on an Arm processor. In fact, consecutive genera-
tions or micro-architectures of the same processor manufacturer may have different or
even incompatible performance counter architectures.

Any software that accesses processor-specific registers or architecture-dependent
code must be tuned to the underlying hardware. In this regard, Stratus has been
so far implemented in Intel and Arm processors. Stratus resource and application
manager is linked to the Linux kernel source files in order to access specific hardware
tools. This is the case for performance counters, which are accessed using Perf [48].
In the case of Intel processors, the manager uses Intel Resource Director Technology
(RDT) [49] to perform last level cache (LLC) and memory bandwidth monitoring and
partitioning. This allows Stratus to monitor and partition system resources without
using any external programs.

8

Workloads list
Template with experiment parameters

Configuration file

Template to
configuration file

Monitoring

Setup resource
monitoring

and partitioning

Configure resource shares Partitioning

Start VMs Load
snapshot

Set
#cores

VM

Snap. name
VM domain

Main loop

Read HW counters &
resource utilization

Apply QoS policy

Sleep during
quantum time

End execution

Stratus
manager

Launch
script

Setup performance events
with Perf, Intel and libvirt

CPUs

Execute
workload

Send SSH
cmd to VM Workload

args. Send SSH cmd
to Client node

Prepare environment
(e.g., CPU frequency)

1

2

3

4

Fig. 4: Workflow followed by Stratus’ resource and application manager to launch
experiments with VMs. Yellow boxes represent actions that are optional.

4 Stratus Resource and Application Manager

As mentioned in the previous section, Stratus resource and application manager is a
key element of the experimental framework. It provides a friendly interface to perform
experiments and access to system resources.

This section first illustrates how Stratus performs experiments by describing the
steps followed in an experiment where one or multiple VMs are launched. Notice that
these steps would be similar to those performed if applications are launched natively in
the machine (i.e., those steps concerning VM management would be skipped). Then,
we describe how Stratus accesses each of the system’s shared resources regarding both
monitoring and partitioning.

4.1 Execution of Experiments

To illustrate how Stratus’ resource and application manager performs experiments,
Figure 4 shows a block diagram of the workflow when carrying out experiments using
Stratus’s manager. The diagram illustrates the main steps performed when launching
one or more VMs together with the applications to be run on them (VM-application

9

pairs). Next, each of the steps is discussed in detail.

1) Define experiment workload and parameters. As a prior step, the workload
(i.e., VMs and applications to be run on them) and experimental conditions must be
defined. To ease this task, Stratus makes use of MAKO templates [50], which provides
a simple and intuitive language to specify the parameters of the experiments: VMs
and applications to be executed (domain name, workload, number of CPUs, etc.),
VCPUs core pinning, performance events to be monitored, length of the quantum, etc.
The template can also specify if VMs are only allowed to use a partition of a shared
resource (LLC, memory bandwidth, network bandwidth, or disk bandwidth).

2) Execute Launch script to start the manager. To start running an exper-
iment, the user executes the launch script. First, the script prepares the execution
environment. For instance, fixing the processor frequency to avoid variability among
experiments. Additionally, the server clocks of both the server and client machines
are synchronized to ensure server- and client-collected metrics are aligned, using
the Network Time Protocol (NTP) [51] with a known NTP time server (e.g.
europe.pool.ntp.org). When the environment is ready, the configuration file is gener-
ated with the workloads to execute and all the experiment parameters from the MAKO
template. Then, the manager starts to run.

3) Prepare VMs for execution. The first step the manager performs is setting
up and starting the VMs. To reduce the start-up overhead, the manager uses the
snapshots feature of Libvirt. A snapshot is a copy of the state of a VM, including the
disk and main memory contents. This feature preserves a VM’s actual state and data
at a given time. Therefore, this state can be reverted at any moment. For each VM, we
have taken a snapshot that has already performed the OS boot process and is ready
to receive the command to launch the target benchmark. Once the VMs are started
and the snapshots are loaded, the number of CPUs of each VM (i.e., VCPUs) can be
modified in case a multi-threaded application is going to be executed, and more than
one CPU is required.

4) Setup resource monitoring and partitioning. With QEMU, each VCPU is
associated with a processor ID (PID) in the host OS. These PIDs are required to
monitor hardware performance counters with Perf individually for each thread (i.e.,
VCPU) of the VM. Similarly, LLC and memory bandwidth monitoring is performed
on a PID basis. The remaining resources, network, and disk bandwidth are monitored
per VM. The manager also allows partitioning of the main system shared resources
and assigns each VM a share of a given resource. Therefore, if specified in the template,
a resource share is allocated to the VM.

5) Start running applications in the VMs. When the VMs are operative and
ready to start executing the applications, an SSH command is sent to each VM to start
the execution of each workload. Stratus’ manager is adapted to support the execution
of client-server workloads (e.g., TailBench benchmark suite) and best-effort or batch
workloads (e.g., stressor microbenchmarks or SPEC CPU benchmarks). In the case of

10

a client-server workload, an SSH command is sent to the client node to start running
the clients, which send requests to the server (already running).

6) Perform actions in each quantum. Once the execution starts, the manager
executes the main loop (see Figure 4) for the rest of the execution time. In each
iteration, the manager is suspended for a given quantum length (established in the
template). Then, data is collected from different sources (e.g., hardware performance
counters, Linux file system, Intel library, or Libvirt) to monitor the main system
resources (CPU usage, LLC occupancy, main memory, network, and disk bandwidth).
Additionally, the manager is adapted to allow implementing and applying QoS policies.
For instance, policies that manage resource sharing among VMs [7, 11, 12], predict
interference among VMs [8, 9, 13, 15, 52] or schedule VMs [53].

7) Execution end. The main loop ends when the manager detects that all the VMs
have finished running their applications, the moment at which it shuts down the
running VMs.

All the data collected from the hardware performance counters and system
resources are stored in CSV files, ready to be processed. Additionally, for characteri-
zation and debugging purposes, statistics and data are also collected inside the VMs.
For instance, in Tailbench workloads, the clients report results such as latency per
query, queries per interval, tail latency, etc.

4.2 Monitoring & Partitioning Main Shared Resources

Tenant applications compete for shared resources in cloud systems. This means that
the performance of a given tenant application (or VM) will depend on the co-running
applications. In other words, on the share of the resource that is able to use. Conse-
quently, it is worth studying to which extent the performance of a given application
is affected by varying the amount of share allocated to the application.

To perform this kind of experiment and help researchers in their decision-making,
we need to define the tools to be implemented. In the last few years, server processors
have been provided with advanced technologies that allow monitoring and partitioning
of the major system resources.

Below, we explain how monitoring and partitioning of each shared resource is
implemented in Stratus without relying on any external tool.

CPU Utilization. CPU utilization accounts for the percentage of time a CPU is
active. It is a crucial metric in cloud environments since CPU utilization has been
proven to be low (less than 20%) most of the time [54, 55], and thus, many resource
provisioning strategies [12, 27, 56] seek to improve the CPU usage. To obtain the
utilization of each CPU, we use the data collected from the file /proc/stat, which
reports statistics about the kernel activity aggregated since the system first booted.
To pin the VMs’ VCPUs to logical cores of the physical machine, Stratus uses Libvirt’s
API [38].

11

Last Level Cache (LLC). Due to the high latency to access to main memory upon
LLC misses, the LLC is one of the critical shared resources in current multi-core pro-
cessors. Recently, some processor manufacturers like Intel have developed technologies
that allow monitoring and partitioning of the LLC. In Intel processors, these tech-
nologies are known as Cache Monitoring Technology (CMT) and Cache Allocation
Technology (CAT) [57]. Partitioning is performed using Classes of Service (CLOS),
which can be defined either as groups of applications (PIDs) or as groups of logical
cores to which a partition of the LLC is assigned. The LLC is partitioned in a per-way

basis; that is, a cache way acts as the granularity unit of CLOS.

Memory Bandwidth. Memory bandwidth can considerably impact the performance
or responsiveness of applications. For instance, in a server system with different VMs
accessing the main memory, the inter-VM interference can significantly grow and make
the most memory-sensitive VMs perform below an acceptable level, compromising the
QoS. Recent Intel Xeon Scalable processors introduce Memory Bandwidth Allocation
(MBA) [58], which allows to distribute memory bandwidth between the running appli-
cations. More precisely, it allows controlling the memory bandwidth between the L2
and the L3 (i.e., LLC) caches. Similarly to CAT, MBA works using CLOS. That is,
MBA bandwidth limits apply only to CLOS, to which the user can assign tasks (PIDs)
or cores. However, MBA works on a per-core basis. If the individual memory band-
widths of two applications running on the same core are limited with different values,
the maximum limitation is the one that will apply to that core.

Disk Bandwidth. Many workloads operate on big data files or databases that cannot
be completely loaded to main memory. Consequently, these workloads must constantly
rely on the I/O system to access the disk and load/store the required data. Monitoring
and partitioning this subsystem is, therefore of high interest. I/O access to the disks
can be monitored using the virsh tool or Libvirt’s API. Both mechanisms offer the same
functionality and allow monitoring the number of read, write, and flush operations,
the number of bytes read and written, as well as the total duration of the read, write,
and flush operations.

Network Bandwidth. VMs running on the same physical machine share network
resources whose bandwidth and latency play an important role in the QoS of tenant
applications. Consequently, network resources should be monitored and partitioned
to minimize inter-VM interference. The number of network packets or bytes that go
through a network interface can be monitored with Libvirt’s API.

5 Case Studies

A modular approach to designing an experimental framework allows the addition
of software layers (e.g., virtualization) and deployment in multiple machines with
different architectures. This section presents two case studies illustrating how the
proposed experimental framework can be used for performance evaluation studies.

12

Table 3: Shared resources utilization (average values across the entire execution) of
the microbenchmark stress ng when running in isolation.

Scenario CPU (%) Mem. (GB/s) LLC (MB) Disk (MB/s) Net. (MB/s)
Low Stress 10.7 0.01 4.1 0.1 0.0
Medium Stress 44.7 3.6 13.4 0.1 0.0
High Stress 82.2 5.5 14.7 0.1 0.0

5.1 Co-locating Latency-Critical and Background Jobs

Current data centers seek to maximize resource utilization by co-locating multiple
applications in the same server node. Among those applications, latency-critical are
very common as they support interactive services (e.g., web search, video streaming,
image recognition) used in many application domains. Due to the strict QoS require-
ments (quantified with the 95th or 99th percentile latency), a few latency-critical
applications can be placed together on the same server. To maximize resource utiliza-
tion, a common approach is to co-locate latency-critical jobs with background jobs
with less strict QoS requirements [8, 11, 12].

However, when running multiple applications, interference appears at the shared
resources [15, 54, 59], which can lead to violating a QoS agreement. A common
approach to quantify how the interference at the shared resources affects the per-
formance of applications is employing microbenchmarks [15, 60–62]. These synthetic
benchmarks are specially designed to stress specific system resources (e.g., perform
many accesses to the last level cache).

This case study presents some experimental results obtained with the xapian appli-
cation from the TailBench suite [16] and the stress-ng [18] microbenchmark. Both
xapian and stress-ng are executed each in a VM with 2 and 8 virtual CPUs, respec-
tively, in the Stratus platform. Table 3 shows the three stressing scenarios tested and
the utilization of the main shared system resources in each scenario of stress-ng

when running alone. The stressing scenarios have an increasing level of CPU utiliza-
tion (from Low to High) due to the pressure introduced in the last level cache (LLC)
and main memory.

Figure 5 shows the resource consumption of xapian and stress-ng (average CPU
utilization, LLC occupancy, and memory bandwidth) in each of the evaluated stressing
scenarios. For comparison purposes, the results obtained when running xapian alone
(Individual) have been included. Finally, the right Y-axis shows the 95th percentile
latency of xapian in each scenario. It can be observed that as the microbenchmark
consumes more LLC space (Figure 5b) and memory bandwidth (Figure 5c), the aver-
age CPU utilization (Figure 5a) grows significantly. This causes the tail latency of
xapian to grow as more interference is introduced. The LLC is the resource that affects
most the performance of xapian. This application has very small memory bandwidth
consumption (less than 100 MB/s) as its working set fits in the LLC. However, the
bandwidth usage increases as stress-ng evicts xapian’s data. Notice that even in the
low-stress scenario, the 95th percentile latency of xapian grows by nearly 12%, which
increases over 20% in the medium- and high-stress scenarios.

13

Individual Low stress Med. stress High stress0

20

40

60

80

100

Av
er

ag
e

CP
U%

xapian stressor

4.3

4.6

4.9

5.2

5.5

5.8

95
th

 ta
il

la
te

nc
y

(m
s)

xapian latency

(a) Average CPU%

Individual Low stress Med. stress High stress0

20

40

60

80

100

LL
C

oc
cu

pa
nc

y
(%

)

xapian stressor

4.3

4.6

4.9

5.2

5.5

5.8

95
th

 ta
il

la
te

nc
y

(m
s)

xapian latency

(b) LLC occupancy

Individual Low stress Med. stress High stress0

1

2

3

4

5
M

em
or

y
BW

 (G
B/

s)

xapian stressor

4.3

4.6

4.9

5.2

5.5

5.8

95
th

 ta
il

la
te

nc
y

(m
s)

xapian latency

(c) Memory bandwidth

Fig. 5: CPU and memory consumption of xapian and the stressor microbenchmark
(stress-ng). Performance of xapian (tail latency) is also plotted.

2 4 8 12
Number of cores

1.00
1.25
1.50
1.75
2.00
2.25
2.50

Sp
ee

du
p

krkopt
nursery

coil2000
mushroom

ring
pendigits

(a) Intel

2 4 8 12
Number of cores

1.00
1.25
1.50
1.75
2.00
2.25
2.50

Sp
ee

du
p

krkopt
nursery

coil2000
mushroom

ring
pendigits

(b) Arm

Fig. 6: Speedup obtained with Decision Tree classifier ML method and a set of datasets
(one per line) by increasing the number of cores with respect to 2 cores.

5.2 Intel vs. Arm Performance Comparison

Traditional x86 architectures dominate the server CPU market share, mostly Intel
processors. However, alternative processor architectures such as Arm are also recently
driving into the server market. For this reason, recent studies [63–65] have focused
on comparing the performance of Intel and Arm-based CPUs. To this end, using the

14

2 4 8 12
Number of cores

1.4
1.6
1.8
2.0
2.2
2.4

IP
C

krkopt
nursery

coil2000
mushroom

ring
pendigits

(a) Intel

2 4 8 12
Number of cores

0.2

0.4

0.6

0.8

IP
C

krkopt
nursery

coil2000
mushroom

ring
pendigits

(b) Arm

Fig. 7: Average IPC per core obtained with the Decision Tree classifier ML method
and a set of datasets (one per line) with an increasing number of cores.

same interface to perform the experiments in each machine results in a more fair
comparison, easing the researcher’s work.

For illustrative purposes, this case study presents some experimental results on
how the application performance is improved with an increasing number of cores when
executed in two server processors: an Intel processor with a Xeon Silver 4116 CPU
with 12 Hyper-Threading (2 threads per core) cores, and an Arm Cavium ThunderX2
processor (CPU CN9975) with 28 cores that support up to 4 threads per core. To ease
the comparison, both processors are configured to run at the same frequency, 2.10
GHz. In each processor, we have evaluated a set of datasets from the Penn Machine
Learning Benchmark (PMLB) suite [66] with the Decision Tree classifier machine
learning (ML) method [67].

Figure 6 shows the results obtained when running each dataset in single-threaded
mode (i.e., one thread running in each core) with an increasing number of cores,
from 2 to 12 (maximum number of cores in the Intel processor) both in the Intel
and Arm processors. Regardless of the underlying machine, datasets present similar
trends. We found that the difference in speedup among datasets is directly related to
the amount of floating-point (FP) operations that are required to execute. That is,
the higher the number of FP operations, the more the dataset benefits from running
with additional cores. For instance, in the Arm machine, those applications (krkopt,
nursery and pendigits) that barely change their speedup (i.e., always close to one), the
fraction of FP operations executed is less than 5%. In contrast, those datasets that
show higher speedup, ring and coil2000, show a significant fraction of FP operations,
around 13% and 7.5%, respectively.

Overall, applications achieve higher scalability when running on the Intel machine,
even though applications behave similarly in both machines. To compare the perfor-
mance, Figure 7 shows the average instructions per cycle (IPC) obtained for each
application in each core configuration. Important performance differences can be
observed between the IPCs obtained, especially among those applications that show
very low speedup with an increasing number of cores. For instance, when running
with two cores, krkopt achieves an average IPC of 2.45 on the Intel machine, while

15

this value drops to 0.5 in the Arm machine. Notice that the Arm machine has fewer
issue ports than the Intel machine (6 compared to 8), which can hinder performance
significantly. In addition, the L2 cache is four times smaller (256 KB compared to
1 MB). Unfortunately, unlike Intel, Arm microarchitecture does not provide perfor-
mance events to measure statistics about the ports’ utilization or cache misses, which
makes the performance analysis difficult.

6 Discussion and Future Work

Stratus allows experimental research in cloud systems considering all three compo-
nents: the client, the server, and the storage. This platform is aimed at studying
resource interference that takes place among applications running on the same server
(thus, only one server node is deployed). If there were to be multiple independent
servers, an instance of the resource and application manager should run on each server
(see Figure 1).

As for future work, we plan to extend Stratus to support research in complex plat-
forms consisting of multiple cooperating servers and several storage nodes. Current
clouds replicate many system components to deal with availability, reliability, and per-
formance (i.e., meeting users’ QoS) [68]. Availability refers to increasing the capability
of shared resources to support higher user requests. Reliability refers to supporting
fault tolerance. That is, the system can continue to support the same services, although
some hardware components (e.g., a server or a storage node) fail. Variability appears
as a function of the server’s load that replies to the user’s request as well as the load of
the storage node (disk). Also, some contention can appear in the interconnection net-
work as servers compete for storage nodes. To address these concerns, cloud systems
replicate applications in distinct servers and data in separate storage disks.

We plan to upgrade the current infrastructure by adding more servers and storage
nodes, as well as a master node to schedule requests as depicted in Figure 8. Notice
that the original Stratus version needs to be slightly modified at the server nodes
must communicate with the master node (instead of directly with the client’s requests
generator) and with multiple disk nodes. The master machine receives client requests
and schedules them to the servers according to a given policy. This hardware-software
infrastructure will open the research scope in many directions, for instance, scheduling
policies at the master node or latency reduction techniques [69–72].

7 Conclusions

Research on resource management spans a wide range of applications, such as high-
performance computing, machine learning, and mobile computing. Research and tests
should be performed in controlled experimental platforms. Nevertheless, proposed
frameworks often fail regarding the types of nodes included, virtualization support,
and management of critical shared resources.

This paper has presented Stratus, a modular experimental platform for research
on resource management that overcomes the mentioned limitations. Stratus includes
diverse types of computing nodes, a comprehensive virtualization stack, and the ability

16

 

Server

cluster

Master

Server 2 Server N
...

Disk M...Storage

Cluster

Client
requests

Request scheduler

Centralized resource
information

APP/VM manager

Resource manager

APP/VM manager

Resource manager

Server 1

APP/VM manager

Resource manager

Disk 1 Disk 2

Fig. 8: Design of a possible future expansion of Stratus considering more nodes.

to partition major shared resources among the tenant’s applications. Stratus imple-
ments a software manager that integrates three main functionalities: VM management,
monitoring of performance counters and system resource utilization, and partitioning
of main shared resources. This work presented case studies illustrating how Stratus
can be used for research in different computing domains and platforms.

As for future work, we plan to extend Stratus to support research in systems
consisting of many servers and storage nodes. Finally, some research topics that the
future version will support have been drawn.

Acknowledgments. Not applicable.

Funding. This work has been supported by the Spanish Ministerio de Universidades
under the grant FPU18/01948 and by the Spanish Ministerio de Ciencia e Innovación
and European ERDF under grants PID2021-123627OB-C51 and TED2021-130233B-
C32, and by Generalitat Valenciana under Grant AICO/2021/266.

Authors contributions. All authors contributed equally to the work’s conception
and design. Platform design and software development was performed by LP, SP, and
JP. Data collection and representation were performed by LP. JS was in charge of
the project administration, supervision, and data validation. JS, MEG, and SP were
responsible for the funding acquisition and administration. All the authors contributed
in the writing and reviewing of the manuscript.

Data availability. Tailbench applications are publicly available at https://github.
com/supreethkurpad/Tailbench. Stress ng microbenchmark can be downloaded using

17

https://github.com/supreethkurpad/Tailbench
https://github.com/supreethkurpad/Tailbench

common package manager tools if Linux distributions (e.g., Ubuntu’s APT). Datasets
from PMLB are publicly available at https://github.com/EpistasisLab/pmlb, as well
as the code for the Decision Tree classifier ML method https://github.com/rhiever/
sklearn-benchmarks.

Declarations

Conflict of interest. The authors declare that they have no competing interests

Ethical approval. Not applicable.

Consent to participate. Not applicable.

Consent for publication. Not applicable.

References

[1] Gupta, A., Milojicic, D.: Evaluation of hpc applications on cloud. In: 2011 Sixth
Open Cirrus Summit, pp. 22–26 (2011). https://doi.org/10.1109/OCS.2011.10

[2] Netto, M.A.S., Calheiros, R.N., Rodrigues, E.R., Cunha, R.L.F., Buyya, R.: Hpc
cloud for scientific and business applications: Taxonomy, vision, and research
challenges. ACM Comput. Surv. 51(1) (2018) https://doi.org/10.1145/3150224

[3] Hormozi, E., Hormozi, H., Akbari, M.K., Javan, M.S.: Using of machine learning
into cloud environment (a survey): Managing and scheduling of resources in cloud
systems. In: 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing, pp. 363–368 (2012). https://doi.org/10.1109/3PGCIC.
2012.69

[4] Sahoo, J., Mohapatra, S., Lath, R.: Virtualization: A survey on concepts, tax-
onomy and associated security issues. In: 2010 Second International Conference
on Computer and Network Technology, pp. 222–226 (2010). https://doi.org/10.
1109/ICCNT.2010.49

[5] Serrano, D., Bouchenak, S., Kouki, Y., de Oliveira Jr., F.A., Ledoux, T., Lejeune,
J., Sopena, J., Arantes, L., Sens, P.: Sla guarantees for cloud services. Future Gen-
eration Computer Systems 54, 233–246 (2016) https://doi.org/10.1016/j.future.
2015.03.018

[6] Suresh, A., Gandhi, A.: Servermore: Opportunistic execution of serverless func-
tions in the cloud. In: Proceedings of the ACM Symposium on Cloud Computing.
SoCC ’21, pp. 570–584 (2021). https://doi.org/10.1145/3472883.3486979

[7] Chen, Q., Xue, S., Zhao, S., Chen, S., Wu, Y., Xu, Y., Song, Z., Ma, T., Yang,
Y., Guo, M.: Alita: Comprehensive performance isolation through bias resource
management for public clouds. In: Proceedings of SC20: International Conference

18

https://github.com/EpistasisLab/pmlb
https://github.com/rhiever/sklearn-benchmarks
https://github.com/rhiever/sklearn-benchmarks
https://doi.org/10.1109/OCS.2011.10
https://doi.org/10.1145/3150224
https://doi.org/10.1109/3PGCIC.2012.69
https://doi.org/10.1109/3PGCIC.2012.69
https://doi.org/10.1109/ICCNT.2010.49
https://doi.org/10.1109/ICCNT.2010.49
https://doi.org/10.1016/j.future.2015.03.018
https://doi.org/10.1016/j.future.2015.03.018
https://doi.org/10.1145/3472883.3486979

for High Performance Computing, Networking, Storage and Analysis, pp. 1–13
(2020). https://doi.org/10.1109/SC41405.2020.00036

[8] Patel, T., Tiwari, D.: Clite: Efficient and qos-aware co-location of multiple
latency-critical jobs for warehouse scale computers. In: Proceedings of 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pp. 193–206 (2020). https://doi.org/10.1109/HPCA47549.2020.00025

[9] Chen, S., Jin, A., Delimitrou, C., Mart́ınez, J.F.: Retail: Opting for learning
simplicity to enable qos-aware power management in the cloud. In: 2022 IEEE
International Symposium on High-Performance Computer Architecture (HPCA),
pp. 155–168 (2022). https://doi.org/10.1109/HPCA53966.2022.00020

[10] Nishtala, R., Petrucci, V., Carpenter, P., Sjalander, M.: Twig: Multi-agent task
management for colocated latency-critical cloud services. In: Proceedings of 2020
IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 167–179 (2020). https://doi.org/10.1109/HPCA47549.2020.00023

[11] Chen, S., Delimitrou, C., Mart́ınez, J.F.: PARTIES: QoS-Aware Resource Parti-
tioning for Multiple Interactive Services. In: Proceedings of the 24th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), pp. 107–120 (2019). https://doi.org/10.1145/3297858.
3304005

[12] Javadi, S.A., Suresh, A., Wajahat, M., Gandhi, A.: Scavenger: A black-box batch
workload resource manager for improving utilization in cloud environments. In:
Proceedings of the ACM Symposium on Cloud Computing (SoCC), pp. 272–285
(2019). https://doi.org/10.1145/3357223.3362734

[13] Shekhar, S., Abdel-Aziz, H., Bhattacharjee, A., Gokhale, A., Koutsoukos, X.: Per-
formance interference-aware vertical elasticity for cloud-hosted latency-sensitive
applications. In: Proceedings of the IEEE 11th International Conference on Cloud
Computing (CLOUD), pp. 82–89 (2018). https://doi.org/10.1109/CLOUD.2018.
00018

[14] Pons, L., Feliu, J., Puche, J., Huang, C., Petit, S., Pons, J., Gómez, M.E.,
Sahuquillo, J.: Effect of hyper-threading in latency-critical multithreaded cloud
applications and utilization analysis of the major system resources. Future Gen-
eration Computer Systems 131, 194–208 (2022) https://doi.org/10.1016/j.future.
2022.01.025

[15] Pons, L., Feliu, J., Sahuquillo, J., Gómez, M.E., Petit, S., Pons, J., Huang, C.:
Cloud white: Detecting and estimating qos degradation of latency-critical work-
loads in the public cloud. Future Generation Computer Systems 138, 13–25 (2023)
https://doi.org/10.1016/j.future.2022.08.012

19

https://doi.org/10.1109/SC41405.2020.00036
https://doi.org/10.1109/HPCA47549.2020.00025
https://doi.org/10.1109/HPCA53966.2022.00020
https://doi.org/10.1109/HPCA47549.2020.00023
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3357223.3362734
https://doi.org/10.1109/CLOUD.2018.00018
https://doi.org/10.1109/CLOUD.2018.00018
https://doi.org/10.1016/j.future.2022.01.025
https://doi.org/10.1016/j.future.2022.01.025
https://doi.org/10.1016/j.future.2022.08.012

[16] Kasture, H., Sanchez, D.: Tailbench: a benchmark suite and evaluation method-
ology for latency-critical applications. In: 2016 IEEE International Symposium
on Workload Characterization (IISWC), pp. 1–10 (2016)

[17] Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D.,
Kaynak, C., Popescu, A.D., Ailamaki, A., Falsafi, B.: Clearing the clouds: A
study of emerging scale-out workloads on modern hardware. Proceedings of the
Seventeenth International Conference on Architectural Support for Programming
Languages and Operating Systems (2012)

[18] Canonical Ltd: Ubuntu manpage: stress-ng. Available at https://manpages.
ubuntu.com/manpages/artful/man1/stress-ng.1.html. Accessed: 2022-11-20
(2020)

[19] ESnet, NLANR, DAST: iPerf tool for network bandwidth measurements. Avail-
able at https://iperf.fr/. Accessed: 2022-11-20 (2020)

[20] Why would a cloud computing company use the SPEC CPU2017 benchmark
suite? Available at https://www.spec.org/cpu2017/publications/DO-case-study.
html. Accessed: 2019-08-02 (2017)

[21] Pons, L., Petit, S., Pons, J., Gómez, M.E., Huang, C., Sahuquillo, J.: Stratus: A
Hardware/Software Infrastructure for Controlled Cloud Research. In: Proceedings
of PDP, pp. 299–306 (2023)

[22] Badia, S., Carpen-Amarie, A., Lèbre, A., Nussbaum, L.: Enabling large-scale
testing of iaas cloud platforms on the grid’5000 testbed. In: Proceedings of the
2013 International Workshop on Testing the Cloud, pp. 7–12 (2013)

[23] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L.,
Hibler, M., Johnson, D., Webb, K., et al.: The design and operation of cloudlab.
In: USENIX Annual Technical Conference, pp. 1–14 (2019)

[24] Keahey, K., Anderson, J., Zhen, Z., Riteau, P., Ruth, P., Stanzione, D., Cevik,
M., Colleran, J., Gunawi, H.S., Hammock, C., et al.: Lessons learned from the
chameleon testbed. In: Proceedings of the 2020 USENIX Conference on Usenix
Annual Technical Conference, pp. 219–233 (2020)

[25] Sfakianakis, Y., Marazakis, M., Bilas, A.: Skynet: Performance-driven resource
management for dynamic workloads. In: 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD), pp. 527–539 (2021). https://doi.org/10.1109/
CLOUD53861.2021.00069

[26] Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: Character-
ization and architectural implications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, pp. 72–81
(2008)

20

https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://iperf.fr/
https://www.spec.org/cpu2017/publications/DO-case-study.html
https://www.spec.org/cpu2017/publications/DO-case-study.html
https://doi.org/10.1109/CLOUD53861.2021.00069
https://doi.org/10.1109/CLOUD53861.2021.00069

[27] Cai, B., Li, K., Zhao, L., Zhang, R.: Less provisioning: A hybrid resource scaling
engine for long-running services with tail latency guarantees. IEEE Transac-
tions on Cloud Computing 10(3), 1941–1957 (2022) https://doi.org/10.1109/
TCC.2020.3016345

[28] Ma, L., Liu, Z., Xiong, J., Jiang, D.: Qwin: Core allocation for enforcing differenti-
ated tail latency slos at shared storage backend. In: 2022 IEEE 42nd International
Conference on Distributed Computing Systems (ICDCS), pp. 1098–1109 (2022).
https://doi.org/10.1109/ICDCS54860.2022.00109

[29] Zhang, Y., Chen, J., Jiang, X., Liu, Q., Steiner, I.M., Herdrich, A.J., Shu,
K., Das, R., Cui, L., Jiang, L.: Libra: Clearing the cloud through dynamic
memory bandwidth management. In: 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp. 815–826 (2021). https:
//doi.org/10.1109/HPCA51647.2021.00073

[30] Google Cloud Compute Engine - CPU platforms [online]. Available at https:
//cloud.google.com/compute/docs/cpu-platforms. Accessed: 2022-11-14 (2022)

[31] Amazon’s EC2 [online]. Available at https://aws.amazon.com/ec2/
instance-types/?nc1=h ls. Accessed: 2022-11-14 (2022)

[32] Huawei Elastic Cloud Server (ECS) [online]. Available at https://www.
huaweicloud.com/intl/en-us/product/ecs.html. Accessed: 2022-11-14 (2022)

[33] Sefraoui, O., Aissaoui, M., Eleuldj, M.: Openstack: Toward an open-source solu-
tion for cloud computing. International Journal of Computer Applications 55(3),
38–42 (2012)

[34] Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the linux virtual
machine monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225–230
(2007). Dttawa, Dntorio, Canada

[35] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS
operating systems review 37(5), 164–177 (2003)

[36] Amazon Web Services [online]. Available at https://aws.amazon.com/ec2/faqs/
?nc1=h ls. Accessed: 2022-11-28 (2022)

[37] Google Compute Engine FAQ [online]. Available at https://cloud.google.com/
compute/docs/faq. Accessed: 2022-11-28 (2022)

[38] ibvirt: The virtualization API [online]. Available at https://libvirt.org. Accessed:
2022-11-28 (2022)

[39] QEMU [online]. Available at https://www.qemu.org. Accessed: 2022-11-28

21

https://doi.org/10.1109/TCC.2020.3016345
https://doi.org/10.1109/TCC.2020.3016345
https://doi.org/10.1109/ICDCS54860.2022.00109
https://doi.org/10.1109/HPCA51647.2021.00073
https://doi.org/10.1109/HPCA51647.2021.00073
https://cloud.google.com/compute/docs/cpu-platforms
https://cloud.google.com/compute/docs/cpu-platforms
https://aws.amazon.com/ec2/instance-types/?nc1=h_ls
https://aws.amazon.com/ec2/instance-types/?nc1=h_ls
https://www.huaweicloud.com/intl/en-us/product/ecs.html
https://www.huaweicloud.com/intl/en-us/product/ecs.html
https://aws.amazon.com/ec2/faqs/?nc1=h_ls
https://aws.amazon.com/ec2/faqs/?nc1=h_ls
https://cloud.google.com/compute/docs/faq
https://cloud.google.com/compute/docs/faq
https://libvirt.org
https://www.qemu.org

(2022)

[40] Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J.,
Wang, A., Stringer, J., Shelar, P., Amidon, K., Casado, M.: The design and imple-
mentation of open vSwitch. In: 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pp. 117–130. USENIX Association, Oak-
land, CA (2015). https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/pfaff

[41] Russell, R.: virtio: towards a de-facto standard for virtual i/o devices. ACM
SIGOPS Operating Systems Review 42(5), 95–103 (2008)

[42] DPDK [online]. Available at https://www.dpdk.org/. Accessed: 2022-11-28
(2022)

[43] Weil, S., Brandt, S., Miller, E., Long, D., Maltzahn, C.: Ceph: A scalable, high-
performance distributed file system. In: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI), pp. 307–320 (2006)

[44] Padoin, E.L., Pilla, L.L., Castro, M., Boito, F.Z., Alexandre Navaux, P.O.,
Méhaut, J.-F.: Performance/energy trade-off in scientific computing: the case of
ARM big. LITTLE and Intel Sandy Bridge. IET Computers & Digital Techniques
9(1), 27–35 (2015)

[45] Criado, J., Garcia-Gasulla, M., Kumbhar, P., Awile, O., Magkanaris, I., Man-
tovani, F.: Coreneuron: performance and energy efficiency evaluation on intel
and arm cpus. In: 2020 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 540–548 (2020). IEEE

[46] Mitra, G., Johnston, B., Rendell, A.P., McCreath, E., Zhou, J.: Use of SIMD
Vector Operations to Accelerate Application Code Performance on Low-Powered
ARM and Intel Platforms. In: Proceedings of IPDPSW, pp. 1107–1116 (2013)

[47] Flynn, P., Yi, X., Yan, Y.: Exploring source-to-source compiler transformation
of openmp simd constructs for intel avx and arm sve vector architectures. In:
Proceedings of PMAM, pp. 11–20 (2022)

[48] T. Gleixner, I.M.: Performance counters for linux (2009)

[49] Intel Corporation: Intel RDT Library. Available athttps://github.com/intel/
intel-cmt-cat (2021)

[50] Michael Bayer et al.: Mako Templates. Available at http://www.makotemplates.
org/ (2019)

[51] Mills, D.L.: Internet time synchronization: the network time protocol. IEEE
Transactions on communications 39(10), 1482–1493 (1991)

22

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.dpdk.org/
https://github.com/intel/intel-cmt-cat
https://github.com/intel/intel-cmt-cat
http://www.makotemplates.org/
http://www.makotemplates.org/

[52] Jia, R., Yang, Y., Grundy, J., Keung, J., Hao, L.: A systematic review of schedul-
ing approaches on multi-tenancy cloud platforms. Information and Software
Technology 132, 106478 (2021) https://doi.org/10.1016/j.infsof.2020.106478

[53] Wang, Z., Xu, C., Agrawal, K., Li, J.: Adaptive scheduling of multiprogrammed
dynamic-multithreading applications. Journal of Parallel and Distributed Com-
puting 162, 76–88 (2022) https://doi.org/10.1016/j.jpdc.2022.01.009

[54] Lu, C., Ye, K., Xu, G., Xu, C.-Z., Bai, T.: Imbalance in the cloud: An analysis on
alibaba cluster trace. In: 2017 IEEE International Conference on Big Data, pp.
2884–2892 (2017). https://doi.org/10.1109/BigData.2017.8258257

[55] Liu, Q., Yu, Z.: The elasticity and plasticity in semi-containerized co-locating
cloud workload: A view from alibaba trace. In: Proceedings of the ACM Sympo-
sium on Cloud Computing (SoCC), pp. 347–360 (2018). https://doi.org/10.1145/
3267809.3267830

[56] Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., Bianchini, R.:
Resource central: Understanding and predicting workloads for improved resource
management in large cloud platforms. In: Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP), pp. 153–167 (2017). https://doi.org/10.
1145/3132747.3132772

[57] Intel: Improving real-time performance by utilizing cache allocation technology.
Intel Corporation, April (2015)

[58] Andrew H., Abbasi, Khawar M., Marcel C.: Introduction to Memory
Bandwidth Allocation. Available at https://software.intel.com/en-us/articles/
introduction-to-memory-bandwidth-allocation (2019)

[59] Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P., Kozyrakis, C.: Heracles:
Improving resource efficiency at scale. In: Proceedings of ISCA, pp. 450–462
(2015)

[60] Yang, H., Breslow, A., Mars, J., Tang, L.: Bubble-Flux: Precise Online QoS Man-
agement for Increased Utilization in Warehouse Scale Computers. In: Proceedings
of ISCA, pp. 607–618. Association for Computing Machinery, New York, NY,
USA (2013)

[61] Moradi, H., Wang, W., Zhu, D.: DiHi: Distributed and Hierarchical Perfor-
mance Modeling of Multi-VM Cloud Running Applications. In: Proceedings of
HPCC/SmartCity/DSS, pp. 1–10 (2020)

[62] Masouros, D., Xydis, S., Soudris, D.: Rusty: Runtime interference-aware predic-
tive monitoring for modern multi-tenant systems. IEEE Transactions on Parallel
and Distributed Systems 32(1), 184–198 (2020)

23

https://doi.org/10.1016/j.infsof.2020.106478
https://doi.org/10.1016/j.jpdc.2022.01.009
https://doi.org/10.1109/BigData.2017.8258257
https://doi.org/10.1145/3267809.3267830
https://doi.org/10.1145/3267809.3267830
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation

[63] Jackson, A., Turner, A., Weiland, M., Johnson, N., Perks, O., Parsons, M.: Eval-
uating the Arm Ecosystem for High Performance Computing. In: Proceedings of
PASC, pp. 1–11. Association for Computing Machinery, ??? (2019)

[64] Chen, S., Galon, S., Delimitrou, C., Manne, S., Mart́ınez, J.F.: Workload char-
acterization of interactive cloud services on big and small server platforms. In:
Proceedings of IISWC, pp. 125–134 (2017)

[65] Hammond, S.D., Hughes, C., Levenhagen, M.J., Vaughan, C.T., Younge, A.J.,
Schwaller, B., Aguilar, M.J., Pedretti, K.T., Laros, J.H.: Evaluating the Marvell
ThunderX2 Server Processor for HPC Workloads. In: Proceedings of HPCS, pp.
416–423 (2019)

[66] Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.:
PMLB: a large benchmark suite for machine learning evaluation and comparison.
BioData mining 10(1), 1–13 (2017)

[67] Olson, R.S., La Cava, W., Mustahsan, Z., Varik, A., Moore, J.H.: Data-driven
Advice for Applying Machine Learning to Bioinformatics Problems. arXiv e-print.
https://arxiv.org/abs/1708.05070 (2017)

[68] Slimani, S., Hamrouni, T., Ben Charrada, F.: Service-oriented replication strate-
gies for improving quality-of-service in cloud computing: a survey. Cluster
Computing 24, 361–392 (2021)

[69] Barroso, L.A., Hölzle, U., Ranganathan, P.: The Datacenter as a Computer:
Designing Warehouse-scale Machines. Springer, ??? (2019)

[70] Kang, Y., Zheng, Z., Lyu, M.R.: A latency-aware co-deployment mechanism for
cloud-based services. In: 2012 IEEE Fifth International Conference on Cloud
Computing, pp. 630–637 (2012). https://doi.org/10.1109/CLOUD.2012.90

[71] Zhang, Y., Hua, W., Zhou, Z., Suh, G.E., Delimitrou, C.: Sinan: ML-Based and
QoS-Aware Resource Management for Cloud Microservices. In: Proceedings of
ASPLOS. Association for Computing Machinery, New York, NY, USA (2021)

[72] Zhang, I., Raybuck, A., Patel, P., Olynyk, K., Nelson, J., Leija, O.S.N., Martinez,
A., Liu, J., Simpson, A.K., Jayakar, S., et al.: The demikernel datapath os archi-
tecture for microsecond-scale datacenter systems. In: Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, pp. 195–211 (2021)

24

https://doi.org/10.1109/CLOUD.2012.90

	Introduction
	Related Work
	Implementing a Modular Experimental Infrastructure
	Cloud Specific Features
	Using Stratus for HPC
	Allowing Architecture Interoperability

	Stratus Resource and Application Manager
	Execution of Experiments
	Monitoring & Partitioning Main Shared Resources

	Case Studies
	Co-locating Latency-Critical and Background Jobs
	Intel vs. Arm Performance Comparison

	Discussion and Future Work
	Conclusions
	Acknowledgments
	Funding
	Authors contributions
	Data availability
	Conflict of interest
	Ethical approval
	Consent to participate
	Consent for publication

