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Abstract

Testing has been a major factor that limits our response to the COVID-19 pandemic.
The method of sample pooling and group test has recently been introduced. However, it
is still not clearly known how to determine the appropriate group size. In this paper, we
develop an analytical method and a numerical algorithm to determine the optimal group
size, which minimizes the total number of tests, maximizes the speedup of the pooling
strategy, and minimizes both time and cost of testing. The optimal group size is deter-
mined by the fraction of infected people and independent of the size of the population.
Furthermore, both the optimal pooling size and the achieved speedup grow exponentially
with the reciprocal of the fraction of infected people, a quite impressive and nontrivial re-
sult. Our method is effective in supporting faster and cheaper asymptomatic COVID-19
screening. Our research has important social implications and financial impacts. For ex-
ample, if the percentage of infected people is 0.001, we can achieve speedup of almost 16,
which means that months of testing time can be reduced to days, and over 93% of the test-
ing cost can be saved. Such a result has not been available in the known literature, and is
a significant progress and great advance in pooling strategy optimization for accelerating

asymptomatic COVID-19 screening.

Keywords: asymptomatic screening, COVID-19, group test, pooling strategy optimiza-

tion, sample pooling.



1 Introduction

1.1 Background

A coronavirus test requires a number of time consuming steps in the laboratory, which
can take several hours. Testing has been a major factor that limits our response to the
COVID-19 pandemic [1]. As governments reopen more businesses and public spaces, the
number of infected people will surge, especially when there are asymptomatic people [2].
The method of sample pooling and group test has recently been introduced in [3, 4].
The strategy involves pooling samples from multiple people. If the test result of a group
of k (k > 2) samples is negative, we know that all the individual samples are negative. If
the test result of a group of samples is positive, then the individual samples need to be
tested one by one. If the percentage of infected people is low, this pooling method can
potentially significantly reduce the required number of tests and substantially save the
necessary cost of tests. For example, recently, the City of Wuhan successfully screened
300 asymptomatic individuals from 9,899,828 people in only 19 days (May 14 — June 1,
2020), by using the pooling method with group size of k =5, involving 63 testing labo-
ratories, 1,451 scientists and professionals, and 701 examination equipments (24 hours a
day without interruption), and reaching a peak testing capacity of 1 million per day".
However, it is still not clearly known how to determine the appropriate group size,
although some attempt has been made. For instance, it has been recommended that the
batch size should be powers of two [5], which depends on py, the frequency of positive

samples out of all samples. It is clear that the choice of the best group size can reduce
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the time and cost of testing to the maximum extent, and therefore, will have tremendous

practical impact to COVID-19 detection, prevention, response, and control.

1.2 Contributions

The contributions of the paper can be summarized as follows.

e We develop an analytical method and a numerical algorithm to determine the opti-
mal group size k*, which minimizes the total number of tests for a population of N,
maximizes the speedup of the pooling strategy, and minimizes both time and cost

of testing.

e It is discovered that the optimal group size is determined by the fraction pg of in-
fected people and independent of the size of the population. Furthermore, both the
optimal pooling size and the achieved speedup grow exponentially with the recip-

rocal of the fraction of infected people.

e Our research has important social implications and financial impacts. For example,
if the percentage of infected people is pg = 0.001, we can achieve speedup of almost
16, which means that months of testing time can be reduced to days, and over 93%

of the testing cost can be saved.

Such a result has not been available in the known literature, and is a significant progress
and great advance in pooling strategy optimization for accelerating asymptomatic COVID-
19 screening.

In Section 2, we present our theory and develop our procedure. In Section 3, we
show numerical data. In Section 4, we conclude the paper.
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2 The Method

In this section, we develop our method to find the optimal pooling size.

2.1 Theory

We define the following quantities.

po: the probability that one individual test result is positive;

qgo: the probability that one individual test result is negative;

p1: the probability that one group test result is positive;

q1: the probability that one group test result is negative.

The value of pg is given and known in advance. It is clear that g9 = 1 — pg. Further-
more, we have g1 = ¢ = (1 —po)¥,and p; =1—¢q; =1—¢gf =1—(1—po)*.

For a single group of samples, if the test result of the group is negative (which hap-
pens with probability ¢;), only one test is enough; if the test result of the group is positive
(which happens with probability p;), (k+ 1) tests are required, one for group test, and &
for individual tests. Hence, the expected number of tests for one group using the pooling

method is
Tyoup = 1 X g1+ (k+1) x p1 = g+ (k+1)(1 — gf) = k+ 1 — k.

The total number of tests for a population of N (which is divided into N/k groups) is

N N 1
Tpooling = (E) Tgroup = (E) (k+ 1 _kqlé) =N (1 + z - qg) :



Since the number of tests without using pooling is N, the speedup of the pooling

strategy is
N 1
Speedup (k) = S(k) = = 0 :
Tpooling -k
1+ X q0

Our objective is to maximize the speedup.

It is clear that maximizing S(k) is equivalent to minimizing

F(k) = —4do
Note that
JdF (k 1
o=
To have dF (k)/dk =0, we need
1,1
— =qpln—,
2 q0 0
which implies that k satisfies
(i)
k— QOl :
In—
q0

that is,

Unfortunately, there is no analytical and closed-form solution to the above equation of .

2.2 Algorithm

We now develop a numerical algorithm to find .



We define

1 1 1\
CO=, =\ iy ¢ 1n<1/qo><¢%)'

Our purpose is to solve the equation G(k) = 0. Noticed that

S o (") Qq—o)k

and

PGk _ 1 (ln 1)2( 1 )"<0
ok In(1/q0) \ v40/ \V40 7
which implies that G(k) is a concave function. Figure 1 illustrates G(k) for go = 0.1. It
is observed that G(k) is an increasing function of k when « is less than 35, and G(k) is a
decreasing function of k when k is greater than 35. In other words, there are two solutions
to the equation G(k) = 0. One is between 3 and 4, and the other is between 54 and 55.

Figure 2 illustrates the speedup S(k) for go =0.1. It is observed that as k increases, S(k)
increases and reaches its maximum value at k = 4, and then decreases. However, when k
exceeds 55, S(k) increases again; however, the increment is very little and not noticeable.
Furthermore, the speedup beyond k = 55 is less than 1, i.e., the pooling method is not
effective any more. Therefore, we only need to find the smaller solution of k.

Algorithm 1 gives a complete description of our numerical procedure to find k*
which satisfies G(k*) = 0. Our algorithm is essentially the standard bisection method
(lines 1-11), based on the observation is that G(k) is an increasing function of k around
the smaller solution of k (lines 5-9). Since the k found is a real value, we round it to the
nearest integers, i.e., k; = | k| and k, = [k]. The value of k* is either k; or k,, depending on

which one yields the larger speedup (lines 12-15).



20

15

10

-10

—15

-20

12

17 22 27 32 37 42 47 52

k
Figure 1: G(k) vs. pooling size (pp = 0.1).
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Figure 2: S(k) vs. pooling size (po = 0.1).
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Algorithm 1: Finding k

Input: po.
Output: k* which satisfies G(k*) = 0.

Initialize the search interval of k; (1)
while (the search interval is not small enough) do (2)
k < the middle point of the search interval; 3)
Calculate G(k); (4)

if (G(k) < 0) then 5)
Change the search interval to the right half; (6)

else (7)
Change the search interval to the left half; (8)

end if 9)

end do; (10)
k < the middle point of the search interval; (11)
ki + |kJ; (12)
ky « [k]; (13)
k* < ki or kp, whichever gives the larger speedup; (14)
return k*. (15)

3 Numerical Results

In this section, we display some numerical data.

In Figure 3, we show the speedup as a function of the pooling size for pg = 0.001,
0.002, 0.003, ..., 0.010. It is observed that as k increases, Speedup(k) increases significantly,
especially when py is small; however, beyond certain point, Speedup(k) decreases notice-

ably. Hence, there is an optimal choice k¥, such that the speedup is maximized.
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Figure 3: Speedup vs. pooling size (po = 0.001,0.002,0.003, ...,0.010).
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Table 1: Optimal Pooling Size (po = 0.001,0.002,0.003, ...,0.010)

Po k ky = | k] S(ky) ky = [k S(k2) k*
0.001 32.13 32 1593399 | 33 15.92853 | 32
0.002 22.87 22 1129398 | 23 11.30195 | 23
0.003 18.77 18 9.24211 19 9.24912 19
0.004 16.32 16 8.02469 17 8.01986 16
0.005 14.65 14 7.18399 15 7.18919 15
0.006 13.42 13 6.57134 14 6.56901 13
0.007 12.47 12 6.09111 13 6.09023 12
0.008 11.69 11 5.69891 12 5.70711 12
0.009 11.06 11 5.38874 12 5.37217 11
0.010 10.52 10 5.11201 11 5.11324 11

Table 2: Optimal Pooling Size (pg = 1071,1072,1073,...,1077)

Po k ki =[] S(kr) ko = [k S(k2) k*
107! 3.75 3 1.65472 4 1.68379 4
1072 10.52 10 5.11201 11 5.11324 11
1073 32.13 32 15.93399 33 15.92853 32
1074 100.50 100 50.12365 101 50.12366 101
1073 316.73 316 158.23823 317 158.23859 317
1076 1000.50 1000 500.12486 1001 500.12486 1001
1077 3162.78 3162 1581.26376 | 3163 1581.26380 | 3163

12




In Table 1, we demonstrate the optimal pooling size k* obtained by our numerical
algorithm for pp = 0.001,0.002,0.003, ...,0.010. As pg becomes smaller, the probability g; =
gk that a group test result is negative becomes higher. For instances, when py = 0.01, the
chance for a negative group test result is g}! = 0.99!! = 0.8953382. When py = 0.001, the
chance for a negative group test result is g5 = 0.9993? = 0.9684911. Such higher chance
will balance the potential higher cost for individual tests in case a group test result is
positive.

In Table 2, we demonstrate the optimal pooling size k* obtained by our numerical
algorithm for pg =1071,1072,1073,...,1077. It is observed that as p, decreases, the optimal
pooling size and the achieved speedup increase rapidly. In particular, we have for py =
1077,

k* > 37 = 310210(1/P0) = (1/py)10€103 = (1/py)0477,

Furthermore, we have S(10~ 1) /$(10~") > 3, and
S(1077) > 0.56 x 3" = 0.56 x 3'°810(1/P0) — 0.56(1/pg)'°%103 = 0.56(1/p)°*"".

That is, both k* and S(pg) grow exponentially with 1/p, a quite impressive and nontrivial
result.

It is worth to mention that the optimal group size k* is determined by the fraction
po of infected people and independent of the size N of the population, since the equation

G(k*) = 0 only involves gq (actually pp), not N.
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4 Conclusions

We have developed an analytical method and a numerical algorithm to determine the
optimal group size, which minimizes the total number of tests, maximizes the speedup
of the pooling strategy, and minimizes both time and cost of testing. The optimal group
size is determined by the fraction of infected people and independent of the size of the
population. Furthermore, both the optimal pooling size and the achieved speedup grow
exponentially with the reciprocal of the fraction of infected people. Our method is effec-

tive in supporting faster and cheaper asymptomatic COVID-19 screening.
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G(k) vs. pooling size (p0 = 0.1).

62



1.8

1.7

1.6

1.5

1.4

1.2

1.1

1.0

0.9

0.8

Figure 2

S(k) vs. pooling size (p0 = 0.1).

22 27 32

37 42




18

16 —
] Hx\
/ “\
/ T~ po = 0.001
14 7
12
,-”f__—_‘_ﬁh“--q_h_‘
vd -
— 10 N
o \\
= /————-—-.,_‘
% m\\\ [ po = 0.002
[45]
8
. T . T~ po = 0.003
ﬁ%\x\\x\é\\\x\x\x&& Po = 0.004
4 — “‘\\“\-\RRE Po= E‘ggg
N\_R‘“&,RHH ﬂo Z 0.007
T T 0 — 0,008
RE‘:::E ﬂﬂ —0.009
T po=0.010
2
0
2 6 10 14 18 2 2 30 34 38 42 46 50
k
Figure 3

Speedup vs. pooling size (p0 = 0.001, 0.002, 0.003, ..., 0.010).



