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Abstract 

Designing ultralight conductive aerogels with tailored electrical and mechanical properties is 

critical for various applications. Conventional approaches rely on iterative optimization 

experiments, which are time-consuming when exploring a vast parameter space. Herein, an 

integrated workflow is developed to combine collaborative robotics with machine learning to 

accelerate the design of conductive aerogels with programmable electrical and mechanical 

properties. First, an automated pipetting robot is operated to prepare 264 mixtures using four 

building blocks at different ratios/loadings (including Ti3C2Tx MXene, cellulose nanofibers, 

gelatin, glutaraldehyde). After freeze-drying, the structural integrity of conductive aerogels is 

evaluated to train a support vector machine classifier. Through 8 active learning cycles with data 

augmentation, 162 kinds of conductive aerogels are fabricated/characterized via robotics-

automated platforms, enabling the construction of an artificial neural network prediction model. 

The prediction model can conduct two-way design tasks: (1) predicting the physicochemical 

properties of conductive aerogels from fabrication parameters and (2) automating the inverse 

design of conductive aerogels for specific property requirements. The combined use of model 

interpretation and finite element simulations validates a pronounced correlation between aerogel 

density and its compressive strength. The model-suggested conductive aerogels with high 

electrical conductivity, customized compression resilience, and pressure insensitivity allow for 

compression-stable Joule heating for wearable thermal management. The fusion of robotics-

accelerated experimentation, machine intelligence, and simulation tools expedites the tailored 

design and scalable production of conductive aerogels.  
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Conductive aerogels have gained significant research interests due to their ultralight 

characteristics, adjustable mechanical properties, and inherent electrical conductivities.1-6 These 

attributes make them desirable for a range of applications, spanning from pressure sensors7-10 to 

electromagnetic interference shielding,11-13 thermal insulation,14-16 and wearable heaters.17-19 

Conventional methods for the fabrication of conductive aerogels involve the preparation of 

aqueous mixtures of various building blocks, followed by a freeze-drying process.20-23 Key 

building blocks include conductive nanomaterials (e.g., carbon nanotubes, graphene, Ti3C2Tx 

MXene nanosheets),24-30 functional fillers (e.g., cellulose nanofibers (CNFs), silk nanofibrils, 

chitosan),29,31-34 polymeric binders (e.g., gelatin),25,26 and crosslinking agents (e.g., glutaraldehyde 

(GA), metal ions).30,35-37 By adjusting the proportions of these building blocks, one can fine-tune 

the end properties of the conductive aerogels, such as electrical conductivities and compression 

resilience.38-41 However, the correlations between compositions, structures, and properties within 

conductive aerogels are complex and remain largely unexplored.42-47 Therefore, to produce a 

conductive aerogel with user-designated mechanical and electrical properties, labor-intensive and 

iterative optimization experiments are often required to identify the optimal set of fabrication 

parameters. Creating a predictive model that can automatically recommend the ideal parameter set 

for a conductive aerogel with programmable properties would greatly expedite the development 

process.48 

Machine learning (ML) is a subset of artificial intelligence (AI) that builds models for 

predictions or recommendations.49-51 AI/ML methodologies serve as an effective toolbox to 

unravel intricate correlations within the parameter space with multiple degrees of freedom 

(DOFs).50,52,53 The AI/ML adoption in materials science research has surged, particularly in the 

fields with available simulation programs and high-throughput analytical tools that generate vast 
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amounts of data in shared and open databases,54 including gene editing,55,56 battery electrolyte 

optimization,57,58 and catalyst discovery.59,60 However, building a prediction model for conductive 

aerogels encounters significant challenges, primarily due to the lack of high-quality data points. 

One major root is the lack of standardized fabrication protocols for conductive aerogels, and 

different research laboratories adopt various building blocks.35,40,46 Additionally, recent studies on 

conductive aerogels focus on optimizing a single property, such as electrical conductivity or 

compressive strength, and the complex correlations between these attributes are often neglected to 

understand.37,42,61-64 Moreover, as the fabrication of conductive aerogels is labor-intensive and 

time-consuming, the acquisition rate of training data points is highly limited, posing difficulties in 

constructing an accurate prediction model capable of predicting multiple characteristics. 

Herein, we developed an integrated platform that combines the capabilities of collaborative 

robots with AI/ML predictions to accelerate the design of conductive aerogels with programmable 

mechanical and electrical properties. Based on specific property requirements, the robots/ML-

integrated platform was able to automatically suggest a tailored parameter set for the fabrication 

of conductive aerogels, without the need for conducting iterative optimization experiments. To 

produce various conductive aerogels, four building blocks were selected, including MXene 

nanosheets, CNFs, gelatin, and GA crosslinker (see Note S1 and Fig. S1 for the selection rationale 

and model expansion strategy). Initially, an automated pipetting robot (i.e., OT-2 robot) was 

operated to prepare 264 mixtures with varying MXene/CNF/gelatin ratios and mixture loadings 

(i.e., solid contents in the mixtures), and these mixtures underwent a freeze-drying process to 

produce various aerogels. Based on the structural integrity and monolithic nature, these aerogels 

were categorized to train a support vector machine (SVM) classifier, and then a feasible parameter 

space was successfully defined. Next, through 8 active learning loops with data augmentation, 162 
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kinds of conductive aerogels were stagewise fabricated/characterized, and these data were input to 

construct an artificial neural network (ANN) model with high prediction accuracy. During the 

active learning loops, the data acquisition rate was increased by integrating an OT-2 robot and a 

UR5e collaborative robotic arm in the aerogel fabrication and characterization processes. By 

harnessing the model’s prediction capabilities, two-way design tasks were realized: (1) accurately 

predicting the mechanical and electrical properties of a conductive aerogel based on a set of 

fabrication parameters, and (2) automatically discovering suitable conductive aerogels that satisfy 

specific property requirements. Through SHapley Additive exPlanations (SHAP) model 

interpretation, several data-driven insights were identified, and the pronounced impact of mixture 

loading on the aerogel’s compressive strength was validated using Finite Element (FE) 

simulations. As a final demonstration, the prediction model was employed to discover a strain-

insensitive conductive aerogel suitable for wearable thermal management. The model-suggested 

conductive aerogel exhibited high electrical conductivity, customized compression resilience, and 

ultralow pressure sensitivity, enabling efficient Joule heating performance upon repetitive 

compression cycles. Our hybrid approach, which seamlessly integrated robot-assisted experiments 

with AI/ML algorithms and simulation tools, not only enabled efficient customization of 

conductive aerogels but also provided a versatile workflow for other nanoscience fields.48,65-67 
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Results 

Tuning mechanical and electrical properties of conductive aerogels through varying multiple 

fabrication parameters 

As shown in the TEM images in Fig. S2a,b, Ti3C2Tx MXene nanosheets showed average lateral 

dimensions of 1.4 × 1.1 µm2, and CNFs exhibited an average diameter of 15 nm and an average 

length of 1 µm. Fig. S3a reveals that CNF and MXene dispersions exhibited average zeta potentials 

of less than –40 mV. Fig. S3b indicates that the MXene/CNF/gelatin/GA mixtures, across various 

ratios and mixture loadings, retained high dispersity. After undergoing a freeze-drying process at 

–80 °C and 0.3 Pa, these MXene/CNF/gelatin/GA mixtures at different ratios and mixture loadings 

produced various conductive aerogels. By modifying the MXene/CNF/gelatin/GA ratios and 

altering the mixture loadings, Fig. S4a reveals a non-linear variation in the mechanical properties 

of conductive aerogels. Similarly, Fig. S4b depicts the non-linear shifts in the electrical properties 

of conductive aerogels, such as electrical resistance, in response to changes in the fabrication 

parameters. 

To establish a comprehensive database linking the fabrication parameters with the end 

properties of conductive aerogels, over 5,300 data points are required, given a step size of 2.0 wt.% 

and four mixture loadings (see our estimation in Note S2). However, building such a dataset is 

impractical due to time and resource constraints. To overcome this challenge, an integrated 

platform that leveraged collaborative robotics and AI/ML predictions was developed to acquire 

high-quality data points and construct a high-accuracy prediction model. By harnessing the 

model’s prediction capabilities, the development of conductive aerogels with user-designated 

mechanical and electrical properties was facilitated. 
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Defining a feasible parameter space through automated pipetting robot and support-vector 

machine (SVM) classifier 

To construct a high-accuracy prediction model, an AI/ML framework was developed and had three 

critical phases: (1) establishing a feasible parameter space, (2) implementing active learning loops, 

and (3) synthesizing virtual data points. The rationale of each phase is detailed in Note S3. 

As illustrated in Fig. 1a, the first phase aimed to define a feasible parameter space using 

an OT-2 robot and an SVM classifier. The OT-2 robot was commanded to prepare a library of 

aqueous mixtures with different MXene/CNF/gelatin ratios and mixture loadings (from 2.5 to 10.0 

mg mL–1). Movie S1 showcases the OT-2 robot’s efficiency to prepare 264 mixtures in 6 hours, 

with an interval of 10 wt.% for four mixture loadings. Once prepared, these mixtures were 

vortexed, cast into silicone molds, and then subjected to a freeze-drying process. Afterward, the 

264 freeze-dried samples were obtained and then categorized based on their structural integrity 

and monolithic nature (classification standards in Note S4). As shown in the inset of Fig. 1a, 

classification varied from (1) sizable, intact samples (A-grade), (2) smaller fragmented samples 

(B-grade), to (3) extensively altered forms with inconsistent pieces (C-grade). As detailed in Fig. 

1b and Table S1, the collection consisted of 201 A-grade, 49 B-grade, and 14 C-grade samples. 

Multiple blind tests were performed by different researchers to maintain unbiased evaluations. 

Afterward, these discrete grades served as training data points for a SVM classifier, the 

goal of which was to distinguish the hyperplanes with maximal margins between the data points 

at different grades (see Note S5). Given a specific MXene/CNF/gelatin ratio, the trained SVM 

classifier was able to predict the possibility of obtaining an A-grade aerogel at a high accuracy of 

95% (examined by a set of testing data points not previously introduced to the SVM classifier, 

Table S2). As shown in Fig. 1c, the SVM classifier produced four heatmaps (one for each mixture 



8 
 

loading), illustrating the possibilities of obtaining A-grade aerogels across the entire parameter 

space. By setting the A-grade possibility threshold at 65%, a feasible parameter space was defined 

in Fig. S5a. Fig. S5b shows that the area of the feasible parameter space shrank from 83.7% to 

48.6%, as the mixture loading decreased from 10.0 to 2.5 mg mL–1, respectively. Within the AI/ML 

framework, the SVM classifier acted as an important filtering unit for the prediction model, and 

only the MXene/CNF/gelatin ratios that led to A-grade aerogel production were suggested. The 

SVM classifier effectively eliminated the need of exploring of the unfeasible regions that led to 

fragile conductive aerogels with scale-up difficulties. 

During the robot-assisted mixture preparation, an optional step is to incorporate GA as a 

crosslinking agent into the MXene/CNF/gelatin mixtures. GA is widely acknowledged as a 

chemical crosslinker for CNFs,68 gelatin,69 and MXene nanosheets.30,36 To investigate possible 

covalent bonds formed between CNFs and/or MXene nanosheets, two kinds of MXene/CNF 

aerogels (at the 80/20 ratio and at 10 mg mL–1) were produced: one incorporated with GA (denoted 

as “+”) and the other without GA (as “–”). Afterward, X-ray photoelectron spectroscopy (XPS) 

was adopted to characterize the chemical bonds in two MXene/CNF aerogels. As shown in Fig. 

1d, the C 1s spectrum of the GA-crosslinked aerogel demonstrated the increased intensities of both 

C–C (at 285 eV) and C=O bonds (at 288 eV), suggesting that the covalent bonds were majorly 

formed amongst CNFs. As presented in Fig. S6, the Ti 2p spectrum of the GA-crosslinked aerogel 

suggested that no Ti–C bonds were formed, indicating that MXene nanosheets remained intact 

upon the GA incorporation. 
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Fig. 1. Defining a feasible parameter space through automated pipetting robot and support-

vector machine (SVM) classifier. (a) Schematic illustration of the fabrication process of 

conductive aerogels accelerated by an automated pipetting robot (i.e., OT-2 robot). Four building 

blocks were incorporated, including MXene nanosheets, CNFs, gelatin, and GA. By adjusting the 

MXene/CNF/gelatin/GA ratios and the mixture loadings (i.e., solid contents of aqueous mixtures), 

the mechanical and electrical properties of conductive aerogels were controlled. (b) 264 

MXene/CNF/gelatin aerogels with different grades based on their structural integrity and 
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monolithic nature. (c) Four heatmaps showcasing the possibilities of producing A-grade 

conductive aerogels at specific MXene/CNF/gelatin ratios and mixture loadings. (d) C 1s spectra 

of two MXene/CNF aerogels (at the 80/20 ratio and 10 mg mL–1) with and without the GA 

incorporation. 

 

 

Constructing a prediction model via active learning loops, data augmentation, and 

collaborative robots 

Within the feasible parameter space, active learning loops and in silico data augmentation were 

employed to gather representative data points, and a high-accuracy prediction model for 

conductive aerogels was progressively constructed. During the active learning loops, two 

collaborative robots, including an OT-2 robot and a UR5e-automated compression tester, were 

implemented to reduce the workload on human operators and enhance the data acquisition rates. 

As illustrated in Fig. 2a, the active learning loops were initiated by commanding the OT-2 

robot to prepare 20 aqueous mixtures at random MXene/CNF/gelatin/GA ratios and mixture 

loadings. Once vortexed, cast in silicone molds, and freeze-dried, the aqueous mixtures yielded 

the first batch of conductive aerogels. The MXene/CNF/gelatin/GA ratios of these conductive 

aerogels were recorded as the “composition” labels, while their mixture loadings served as the 

“loading” labels. Subsequently, the mechanical and electrical properties of these conductive 

aerogels were characterized. As shown in Fig. 2b, to increase the data acquisition rates, a UR5e 

robotic arm was integrated with an Instron compression tester to achieve an autonomous testing 

platform. As demonstrated in Movie S2, the UR5e arm was programmed to transfer conductive 

aerogels continuously from the sample station to the testing station. Once the UR5e arm completed 
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placing a conductive aerogel at the testing station, an audio signal prompted the Instron tester to 

begin the compression test. After the test was finished, the Instron tester signaled the UR5e arm to 

remove the conductive aerogel and then position a new one. During the active learning loops, >400 

conductive aerogels (3–4 replicates for each data point) were evaluated using the autonomous 

testing platform, and the total operation time was estimated to be 81 hours, averaging about 12 

minutes to test one aerogel sample. 

From the stress–strain curve of each conductive aerogel, the compressive stress at 30% 

strain (abbreviated as 𝜎!") was characterized, and the average 𝜎!" value from 3–4 aerogel 

replicates was designated as the “mechanical” label. Next, by using a two-electrode system (with 

a 1-cm gap between electrodes), the initial electrical resistance of each conductive aerogel 

(abbreviated as 𝑅") was measured, and the average 𝑅" value from 3–4 aerogel replicates was 

recorded as the “electrical” label. In short, each kind of conductive aerogel resulted in one data 

point, which included four “composition” labels, one “loading” label, one “mechanical” label, and 

one “electrical” label (see Table S3). For one active learning loop, 20 new kinds of conductive 

aerogels were produced, therefore adding 20 data points to the database. 

To improve model training efficiency and counteract potential overfitting, the User Input 

Principle (UIP) method was adopted to synthesize virtual data points (refer to Note S6 for detailed 

description). The creation of virtual data points took place in the vicinity of collected real data 

points. For instance, Fig. S7a,b demonstrate that, with slight variations in the 

MXene/CNF/gelatin/GA ratios (e.g., 64/24/12/+ vs. 62/26/12/+) led to the conductive aerogels 

with similar 𝜎!" (10.58 kPa vs. 10.63 kPa) and 𝑅" values (8.9 Ω vs. 10.1 Ω). Meanwhile, when the 

replicates of conductive aerogels were characterized, Fig. S7c indicates that there were slight 

measurement variations in 𝜎!" and 𝑅". To synthesize virtual data points, Gaussian noises were 
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introduced in the proximity of the composition, mechanical, and electrical labels based on our 

experimental observations. Afterward, both real and virtual data points were utilized as training 

data points for an ANN-based model using 4-fold cross-validation.70 

To collect more data points in the next active learning loop, the ANN model assessed the 

unfamiliarity level of each data point within the feasible parameter space using a hybrid acquisition 

function termed A Score, represented by Equation 1,71 

𝐴	𝑆𝑐𝑜𝑟𝑒 = 𝐿+ ∙ 𝜎.                 (1) 

, where 𝐿+ denotes the Euclidean distance between in-model and model-targeted data points and 𝜎" 

denotes the ANN model’s prediction variance (as detailed in Note S7). The data points with the 

highest A Scores were the least familiar to the model and pinpointed for experimental validation 

in the next loop. By extracting the composition and loading labels of pinpointed data points, the 

OT-2 robot was activated to prepare a new set of MXene/CNF/gelatin/GA mixtures. Once 

vortexed, cast, and freeze-dried, a new batch of conductive aerogels was produced. Similarly, the 

𝜎!" and 𝑅" values of these conductive aerogels were characterized via the autonomous testing 

platform and the two-electrode system, respectively. Based on these real data points, virtual data 

points were synthesized using the UIP method. Upon inputting the real and virtual data points, the 

ANN model was retrained, re-assessed A Scores, and suggested another set of fabrication 

parameters for the next active learning cycle. With the operation of two collaborative robots, the 

active learning loops were largely facilitated. Each loop took an average of 2.5 days: 2 hours 

dedicated to OT-2 pipetting, 48 hours for freeze-drying, 4 hours allocated to autonomous testing, 

and another 4 hours for model training. In total, 8 active learning loops were carried out, and 162 

kinds of conductive aerogels were stagewise produced (refer to Table S3). Finally, the database 

contained approximately 160,000 data points, including both actual and virtual ones. 
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During the active learning loops, the ANN model continued to evolve and was evaluated 

from two perspectives: (1) the distribution of collected data points and (2) the accuracy of multi-

property predictions. First, as shown in Fig. 2c,d and S8, 2D Voronoi tessellation diagrams were 

plotted to visualize how data points were sequentially collected and distributed within the feasible 

parameter space. During active learning loops, the ANN model efficiently explored the feasible 

parameter space and guided experiments towards the unfamiliar regions, effectively mitigating the 

rise of redundant data clusters. 

Second, the accuracy of multi-property predictions was assessed using a set of testing data 

points, which were never input into the model (see Table S4). For each testing data point, the ANN 

model provided the predicted 𝜎!"	and 𝑅"	values based on the “composition” and “loading” labels. 

Then, the model-predicted 𝜎!"	and 𝑅" values were compared with the actual 𝜎!"	and 𝑅"	values of 

the testing data point. The deviation between model-predicted and actual 𝜎!" values was evaluated 

using the mean absolute error (MAE), as detailed in Equation 2, 

𝑀𝐴𝐸 = #

$
∑ 2𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝜎!"% − 𝜎!"% 2$
%&#               (2) 

, where N is the cumulative number of testing data points, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝜎!"%  is the model-predicted 

𝜎!" value based on a testing data point (i), 𝜎!"
%  is the actual 𝜎!" value of a testing data point (i). On 

the other hand, the deviation between model-predicted and actual 𝑅" values were assessed using 

the mean relative error (MRE), as detailed in Equation 3, 

𝑀𝑅𝐸 = #

$
∑ 8'()(+,-.%/0-.	2!" )4'()	(2!" )	

'()	(2!
" )	

8$
%&#               (3) 

, where N is the cumulative number of testing data points, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑅"%  is the model-predicted 

𝑅" value based on a testing data point (i), 𝑅"%  is the actual 𝑅" value of a testing data point (i). 

Smaller MAE and MRE values indicated higher prediction accuracy, while larger values indicated 
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lower accuracy. By evaluating MAEs and MREs, we were able to assess the model’s prediction 

accuracy in predicting the mechanical and electrical properties of conductive aerogels from their 

fabrication parameters. 

Throughout 8 active learning loops, the MAE (that assessed the accuracy of 𝜎!" prediction) 

continually decreased from 2.5 to 1.5 kPa (Fig. 2e, top), and the MRE (that assessed the accuracy 

of 𝑅" prediction) decreased from 49.0% to 18.4% (Fig. 2e, bottom). Towards the end of active 

learning loops, both MAE and MRE values were stabilized and gradually approached toward the 

measurement variations of 𝜎!" (~1.1 kPa) and 𝑅" (~10.1%). Among other models based on linear 

regression, decision tree, gradient-boosted decision tree, random forest algorithms, the ANN 

model demonstrated the lowest MAE and MRE values (Fig. 2e). Furthermore, without conducting 

data augmentation, the ANN model presented a higher MAE of >1.9 kPa (for 𝜎!" prediction) and 

a higher MRE of >37% (for 𝑅" prediction), due to the model overfitting upon the use of a small 

database (Fig. 2f). As the virtual-to-real data ratio increased to 100 and 1,000, the MAE values 

decreased to 1.8 kPa and 1.5 kPa, and the MRE values decreased to 21.5% and 18.4%, respectively. 

In this work, the optimal virtual-to-real data ratio was set to be 1,000, which enabled high learning 

efficiency and still kept the model training time below 4 hours. On the other hand, when the virtual-

to-real data ratio increased to 5,000 and 10,000, the model training time increased to >1 and >2 

days, respectively. Finally, the ANN model that demonstrated the lowest MAE and MRE values 

was selected as “the champion model”, which was deployed the next to automate the design of 

conductive aerogels with programmable mechanical and electrical properties. 
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Fig. 2. Constructing a prediction model via active learning loops, data augmentation, and 

collaborative robots. (a) Schematic illustration of a multi-stage AI/ML framework for 

constructing a prediction model via active learning loops, data augmentation, and robot–human 

teaming. (b) An autonomous testing platform integrated with a UR5e robotic arm and an Instron 
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compression tester. 2D Voronoi tessellation diagrams (c) without and (d) with the GA 

incorporation after 8 active learning loops. (e) MAE (top) and MRE (bottom) values of various 

prediction models based on linear regression, decision tree, gradient-boosted decision tree, random 

forest, and ANN algorithms. (f) MAE (top) and MRE (bottom) values of various ANN models 

based on different virtual-to-real data ratios. 

 

 

Predicting compressive strengths and electrical resistances of conductive aerogels 

By leveraging the champion model’s prediction capabilities, two-way design tasks were 

successfully demonstrated, involving (1) predicting the 𝜎!" and 𝑅" values of a conductive aerogel 

from its fabrication parameters and (2) suggesting an ideal set of MXene/CNF/gelatin/GA ratio 

and mixture loading to produce a conductive aerogel with user-designated characteristics. 

First, by selecting different sets of fabrication parameters, various conductive aerogels 

were fabricated and characterized (recipes #1–#8 in Table S5). As evidenced in Fig. 3a,b, the 

champion model predicted the 𝜎!" and 𝑅" values of these conductive aerogels accurately based on 

their “composition” and “loading” labels, and the predicted values were close to the experimentally 

characterized results. Second, the inverse design of conductive aerogels was automated by the 

champion model, without the need for iterative optimization experiments. As illustrated in Fig. 3c, 

two conductive aerogels were targeted with specific property requirements, including (1) high-

strength aerogels (𝜎!" >10 kPa) and (2) high-strength, conductive aerogels (𝜎!" >10 kPa and 𝑅" 

<10 Ω). By inputting these design requests, the champion model performed clustering analyses to 

pinpoint the most suitable sets of fabrication parameters. By following the model-suggested 

fabrication parameters, two kinds of conductive aerogels were produced. As demonstrated in Fig. 
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3d, for the design request #1, the champion model suggested two aerogels (recipes #9–#10 in 

Table S6), both of which demonstrated the 𝜎!" values that were higher than the input requirement 

of 10 kPa. For the design request #2, the champion model suggested four aerogels (recipes #11–

#14 in Table S6), showing the average 𝜎!" and 𝑅" values >10 kPa and <10 Ω, respectively. The 

inset of Fig. 3c and Fig. S9 show the SEM images of the model-suggested aerogels (recipes #9 

and #14). As displayed in the violin plots (Fig. 3e), the achievable 𝜎!" and 𝑅" values of conductive 

aerogels spanned widely between 0.1 < 𝜎!" < 16.0 kPa and 100 < 𝑅" < 1010 Ω, through navigating 

the DOFs of MXene/CNF/gelatin/GA ratios and mixture loadings. Compared with the state-of-

the-art works of conductive aerogels (Table S7),2,8,19,20,29,33,72-80 our AI/ML integrated approach 

proved to be efficient in discovering the conductive aerogels with programmable mechanical and 

electrical properties, without the need for iterative optimization experiments. 
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Fig. 3. Predicting compressive strengths and electrical resistances of conductive aerogels. (a) 

Comparison between the actual stress–strain curves of conductive aerogels (recipes #1–#8) and 

the model-predicted 𝜎!" values. (b) Comparison between the actual initial electrical resistances of 

conductive aerogels (recipes #1–#8) and model-predicted 𝑅" values. (c) By inputting specific 
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design requests, the champion model was able to automate the inverse design processes of 

conductive aerogels by directly suggesting suitable sets of fabrication parameters, without the need 

for iterative optimization experiments. Inset shows the SEM images of two model-suggested 

conductive aerogels. (d) Comparison between actual and model-predicted 𝜎!" (left) and 𝑅" (right) 

values of conductive aerogels (recipes #9–#14). (e) Violin plots of achievable 𝜎!" and 𝑅" values 

of conductive aerogels. 

 

 

SHAP model interpretation and FE simulations to uncover complex fabrication–structure–

property correlations 

To address the “black box” nature of the champion model, the SHAP model interpretation method 

was applied to 162 data points collected during active learning loops. SHAP relies on a game 

theoretic approach and contains a permutation explainer program to explain the output of any 

AI/ML model.81 By iterating over complete permutations of the features, the SHAP values are 

calculated to approximate the contribution of each fabrication parameter to a specific property. A 

positive SHAP value indicates a positive correlation, and vice versa (see Note S8 and Fig. S10 for 

further details). In this study, the SHAP values of MXene, CNF, gelatin, GA loadings, and mixture 

loading on the 𝜎!" and 𝑅" values of conductive aerogels were calculated. As shown in Fig. S11, 

the SHAP value of MXene loading on 𝑅" ranged from –0.94 to +0.97, showing the widest range 

compared to the other SHAP values (e.g., CNF loading from –0.41 to +0.65, gelatin loading from 

–0.83 to +0.94, GA loading from –0.24 to +0.36, and mixture loading from –0.35 to +1.00). The 

SHAP results clearly indicate that the 𝑅" values of conductive aerogels were primarily influenced 

by the amount of MXene nanosheets incorporated. On the other hand, Fig. 4a shows that the SHAP 
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value of mixture loading on ranged the widest from –1.00 to +0.97 among the others (e.g., MXene 

loading from –0.28 to +0.28, CNF loading from –0.41 to +0.32, gelatin loading from –0.71 to 

+0.56, and GA loading from –0.23 to +0.19). The above SHAP results suggest that the mixture 

loading of aqueous mixture (that affected the density of a conductive aerogel) presented the most 

significant impact on the mechanical properties.  

Next, to investigate strong correlations between mixture loading and 𝜎!" value, four 

conductive aerogels were fabricated at the same MXene/CNF/gelatin/GA ratio of 80/20/0/– but at 

different mixture loadings (from 2.5 to 10.0 mg mL–1). As shown in Fig. 4b, as the mixture 

loadings increased, the 𝜎!" values of conductive aerogels rose significantly from 0.2 kPa to 5.9 

kPa. Four other conductive aerogels were produced at the same mixture loading of 10.0 mg mL–1 

but with various MXene/CNF/gelatin/GA ratios (from 80/20/0/– to 20/80/0/–). Despite the 

difference in aerogel composition, the 𝜎!" values exhibited only a minor shift from 7.5 kPa to 5.9 

kPa. Supported by SHAP analyses and experimental results, it was determined that adjusting the 

mixture loading level was a more effective method for tuning the compression resilience of a 

conductive aerogel (e.g., 𝜎!"). 

To delve deeper into the mechanistic effects of mixture loadings on the mechanical 

properties of conductive aerogels, three FE models were constructed. These FE models represented 

the conductive aerogels at the same MXene/CNF/gelatin/GA ratio (80.0/20.0/0.0/–) yet at different 

mixture loadings (10.0, 7.5, 5.0 mg mL–1). These FE models were named as high-, medium-, and 

low-density aerogel models. Extracted from the SEM images in Fig. 4c and summarized in Table 

S8, several structural features of conductive aerogels, such as pore dimensions, wall thicknesses, 

and fracture densities, were input to construct these FE models using a commercial package of 

ABAQUS/CAE 2020. In the FE simulations, the microstructures of conductive aerogels were 
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represented as the 4 × 4 supercells containing two-dimensional staggered lattices using second-

order plane strain elements, and the periodic boundary conditions were imposed. Then, wall 

discontinuities were randomly introduced into the FE models to account for the structural 

imperfections of conductive aerogels. Note S9, Fig. S12, and S13 provide further details regarding 

the construction of FE models. Next, by exerting a vertical compressive strain of 30%, the 𝜎!" 

values of three FE models were simulated in Fig. 4b, showing good agreement with the 

experimentally characterized 𝜎!" values. Fig. 4d showcases the FE models of conductive aerogels 

under 30% compression to provide insights regarding internal displacements and localized stress 

distributions. As compared in Fig. 4e, the FE models under 30% compression cohered with the 

SEM observations of conductive aerogels at their compressed states. 

The high-density aerogel exhibited small, closely packed pores (with the average size of 

18.2 × 6.4 µm2) and thus allowed for uniform stress distributions upon compression, largely 

suppressing internal displacements of compartments. In the high-density aerogel, the localized 

stress tended to concentrate at the corners of each compartment, while the MXene-based walls 

were robust enough (with Young’s modulus at 3.4 GPa) to prevent significant deformation toward 

cracking. On the other hand, as the mixture loading decreased, the medium- and low-density 

aerogels had larger and wider pores (28.3 × 17.8 and 39.1 × 19.0 µm2), which were less efficient 

to transmit vertical stresses to neighboring compartments. As a result, the pores were likely to 

deform and distort upon the localized stress, resulting in significant internal displacements of 

compartments. Through the combined use of SHAP analyses, experimental validation, and FE 

simulations, we provided a promising solution to the “black box” challenges often associated with 

AI/ML predictions, enhancing the champion model’s interpretability. 
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Fig. 4 SHAP model interpretation and FE simulations to uncover complex fabrication–

structure–property correlations. (a) Normalized SHAP values of MXene, CNF, gelatin, GA 

loadings, and mixture loading on the 𝜎!" values of conductive aerogels. (b) Comparison between 
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the FE-simulated and experimentally characterized 𝜎!"	values of conductive aerogels at the same 

MXene/CNF/gelatin/GA ratio yet at different mixture loadings. (c) SEM images of high-, 

medium-, and low-density conductive aerogels at their uncompressed states. (d) Localized stress 

distribution profiles of high-, medium-, and low-density aerogel models (from FE simulations) 

under 30% compression. (e) SEM images of high-, medium-, and low-density conductive aerogels 

at their compressed states. 

 

 

Machine intelligence accelerated discovery of strain-insensitive conductive aerogels for 

wearable thermal management 

Conductive aerogels offer promising applications in personal thermal management, owing to their 

lightweight feature, high electrical conductivity, and thermal insulation properties.14 Fig. 5a 

outlines the machine intelligence accelerated design process to fabricate a strain-insensitive 

conductive aerogel suitable for wearable heating applications. First, two property requirements 

were considered: (1) compatible compressive strength with current filling materials (𝜎!" ~4–8 kPa) 

and (2) high electrical conductivity for efficient Joule heating (𝑅" <20 Ω). Upon inputting these 

design requests, the champion model was able to suggest multiple sets of fabrication parameters, 

and various conductive aerogels that met two property requirements were fabricated (see Table 

S9). 

Next, an additional criterion of low pressure sensitivity was set to discover a strain-

insensitive conductive aerogel, ensuring strain-stable Joule heating performance under repetitive 

compression. The definition of pressure sensitivity is provided in Equation 4, 
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𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	(𝑆) = |(242!)/2!|

7#!
              (4) 

As demonstrated in the 𝑅"–sensitivity profiles (Fig. 5b), the conductive aerogel based on recipe 

#16 was selected (at the MXene/CNF/gelatin/GA ratio of 78/13/9/– and at the mixture loading of 

7.5 mg mL–1). The model-suggested conductive aerogel exhibited a 𝜎!" value of 4.0 kPa, a low 𝑅" 

value of 1.7, and an ultralow pressure sensitivity of 0.02 kPa–1. Fig. 5c demonstrates that the 

relative resistance changes of the strain-insensitive conductive aerogel was only 0.9% under 100 

cycles of 20% compression. Next, the Joule heating performance of the strain-insensitive 

conductive aerogel was investigated by applying various voltages, as evidenced in the measured 

temperature–time profiles (Fig. 5d). At the applied voltages of 0.5, 1.0, 1.5, and 2.0 V, the strain-

insensitive conductive aerogel demonstrated sharp temperature increases up to 29, 37, 51, and 70 

°C, respectively, within 300 seconds. As shown in Fig. S14, the strain-insensitive conductive 

aerogel displayed a linear relationship between the maximum temperature and the square of the 

applied voltage, well adhering to Joule’s law. 

To further assess the Joule heating performance under compression, the strain-insensitive 

conductive aerogel at both relaxed and 20% compressed states was subject to 100 heating cycles 

at 1.0 and 1.5 V. As shown in Fig. 5e, the conductive aerogels demonstrated strain-unresponsive 

heating/cooling profiles, with stable average temperature variations for 100 heating cycles. Such 

efficient and strain-stable Joule heating performance was well-suited for wearable heating 

applications. Additionally, we conducted thermal conductivity measurements to assess the thermal 

insulation properties of the strain-insensitive conductive aerogel. The density and thermal 

insulation performance of the strain-insensitive conductive aerogel were characterized as 10.1 mg 

cm–3 and 0.034 W mK–1, respectively. Compared with other thermal insulation materials in Fig. 

S15, the strain-insensitive conductive aerogel offered lightweight features, competitive thermal 
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insulation properties, and efficient Joule heating performance. To demonstrate its practical 

exploitation, multiple strain-insensitive conductive aerogels with the dimensions of 5.0 × 5.0 × 1.0 

cm3 were inserted into a commercial jacket. Powered by a portable battery system (at 1.5 V), the 

aerogel-incorporated jacket was heated on demand to warm the subregion of a volunteer (thermal 

images in Fig. 5f).  
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Fig 5. Machine intelligence accelerated discovery of strain-insensitive conductive aerogels 

for wearable thermal management. (a) Schematic illustration of machine intelligence design 

process of strain-insensitive conductive aerogels. (b) 𝑅"–sensitivity profile of model-suggested 

conductive aerogels. (c) Time-resolved relative resistance changes of a strain-insensitive 

conductive aerogel under 100 cycles of 20% compression. (d) Temperature–time profiles of a 
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strain-insensitive conductive aerogel at different applied voltages. (e) Time-resolved temperature 

profiles of a strain-insensitive conductive aerogel at its relaxed and 20% compressed states under 

Joule heating (at 1.0 and 1.5 V). (f) Thermal images of the aerogel-incorporated jacket under Joule 

heating at 1.5 V. 
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Conclusion 

In conclusion, an integrated platform that combined automated robotic experiments with an AI/ML 

framework was realized to automate the inverse design of conductive aerogels with programmable 

mechanical and electrical properties. Through an AI/ML framework comprising SVM classifier, 

active learning loops, and data augmentation, the champion model demonstrated exceptional 

prediction capabilities and allowed for two-way design tasks, including accurately predicting the 

𝜎!" and 𝑅" values of a conductive aerogel and suggesting suitable fabrication parameters to 

produce conductive aerogels that met specific property requirements. Compared with conventional 

design of experiment, this hybrid approach was efficient to discover the conductive MXene 

aerogels with achievable 𝜎!" and 𝑅" values spanning between 0.1 < 𝜎!" < 16.0 kPa and 100 < 𝑅" 

< 1010 Ω. The SHAP analyses and FE simulations further provided mechanistic insights into the 

impacts of fabrication parameters on the properties of conductive aerogels, enhancing our 

understanding of the aerogels’ mechanical behaviors. Moreover, the predictive power of the 

champion model was harnessed to discover a strain-insensitive conductive aerogel with compatible 

mechanical strength, high electrical conductivity, and ultralow pressure sensitivity suitable for 

wearable heating applications. 

The successful integration of robotic experiments, AI/ML predictions, and FE simulations 

has demonstrated a synergistic approach, with potential applications beyond conductive aerogels, 

such as tactile sensors,82,83 stretchable conductors,84,85 catalysts,59,60 and electrochemical 

electrolyte optimization.57,58 Our findings contribute to advancing the understanding of vital 

correlations between fabrication parameters and physicochemical properties, enabling the rational 

design of functional materials for scalable production. 
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Materials 

Lithium fluoride (LiF, BioUltra, ≥99.0%), hydrochloric acid (HCl, 37%), northern bleached 

softwood kraft (NBSK) pulp (NIST® RM 8495), TEMPO (99%), sodium bromide (NaBr, 

≥99.5%), sodium bicarbonate (NaHCO3, ≥99.7%), sodium hydroxide (NaOH, ≥98%), and gelatin 

(from porcine skin, Type A) were purchased from Sigma-Aldrich. Ti3AlC2 MAX powders were 

purchased from Lai Zhou Kai Kai, China. Silicone molds were purchased from Amazon. 

Deionized water (18.2 MΩ) was obtained from a Milli-Q water purification system (Millipore 

Corp., Bedford, MA, USA) and used as the water source in this work. 

 

Methods 

Preparation of Ti3C2Tx MXene nanosheets. Ti3C2Tx MXene nanosheets were prepared according 

to the literature.86 First, 3.0 g of LiF was dissolved in 6.0 M HCl at 35 °C under vigorous stirring. 

After the dissolution of LiF, 1.0 g of Ti3AlC2 MAX powder was slowly added into the HF-

containing solution. The mixture was kept at 35 °C for 24 hours. Afterward, the solid residue was 

washed with 2.0 M HCl and DI water sequentially until the pH value increased to 6. Subsequently, 

the washed residue was added into 100 mL of DI water, ultrasonicated for 1 hour, and centrifuged 

at 3,000 r.p.m. for 30 minutes. The supernatant was collected as the final suspension of MXene 

nanosheets with the concentration of 10–12 mg mL–1. 

 

Preparation of CNF dispersion. The CNF dispersion was prepared according to the literature.87 

First, 20 g of NBSK pulp was suspended in 1.0 L of DI water, and then TEMPO (2 × 10–3 mole) 

and NaBr (0.02 mole) were added into the pulp. The TEMPO-mediated oxidation was initiated by 
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adding 0.2 mole of NaClO, and the oxidation process was maintained for 5–6 hours under 

continuous stirring, during which the pH was controlled at 10.0 by adding NaOH solution. The 

TEMPO-oxidized pulp was repeatedly washed with DI water until the pH returned back to 7.0. 

Afterward, the pulp was disassembled in a microfluidizer processor (Microfluidics M-110EH), 

and the concentration of CNF dispersion was about 10 mg mL–1. 

 

Preparation of gelatin solution. 8.0 g of gelatin was dissolved in 1.0 L of DI water followed by 

continuous stirring for 48 hours, and the concentration of gelatin solution was 8.0 mg mL–1. 

 

Robot-assisted fabrication of conductive aerogels. An automated pipetting robot (OT-2, 

Opentrons) was operated to prepare different mixtures with varying MXene/CNF/gelatin ratios. 

For each mixture, the dispersions of MXene nanosheets and CNFs as well as the gelatin solution 

were mixed at different volumes. The mixture loadings of MXene/CNF/gelatin mixtures were 

controlled to be 10.0, 7.5, 5.0, and 2.5 mg mL–1. The solution containing 25 wt.% of GA was 

optionally added into the MXene/CNF/gelatin mixtures at a consistent ratio of 35 µL for every 100 

mg of solid content. Afterward, the robot-prepared MXene/CNF/gelatin/GA mixtures were 

vortexed at 2,000 r.p.m. for 30 seconds and poured into silicone molds. Silicone molds with 

cavities of 15 × 15 mm and a height of 12 mm were used to prepare cuboid aerogel samples. The 

slurry-like mixtures were refrigerated overnight at 4.0 °C and then frozen using liquid nitrogen 

followed by a freeze-drying process (at –85 °C and 10–3 atm, Labconco FreeZone), allowing for 

the production of conductive aerogels.  
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Compression tests of conductive aerogels. The stress–strain curves of conductive aerogels (with 

average dimensions of 1.5 × 1.5 × 1.0 cm3) were measured by a mechanical testing machine 

(Instron 68SC-05) with a 500 N load cell for 5 cycles of loading and unloading (at 5 mm s–1 for 

30% compression). A collaborative robotic arm (UR5e, Universal Robots) was integrated into a 

universal testing system to automate the compression tests. 

 

Electrical resistance measurements of conductive aerogels. The initial electrical resistance, 𝑅", 

of the conductive aerogels were measured using a two-electrode system connected with an 

electrochemical workstation (Autolab PGSTAT302N, Metrohm) or an Industrial Multimeter 

(Fluke 87V). The gap between two electrodes was fixed at 1 cm. 

 

Pressure sensitivity measurements of conductive aerogels. The conductive aerogels were initially 

set up on a two-electrode system and linked to an electrochemical workstation (Autolab 

PGSTAT302N, Metrohm). To determine the pressure sensitivity (𝑆) of conductive aerogels, they 

were subjected to a continuous compression process using the Instron compression tester, reaching 

up to 30% strain at a rate of 0.02 mm s–1. Throughout this compression testing, the relative 

resistance changes of conductive aerogels were consistently monitored. Additionally, their stress–

strain curves and 𝜎!"	values were characterized. The 𝑆 of the aerogel was subsequently calculated 

using Equation 4. 

 

Joule heating of strain-insensitive conductive aerogels. To evaluate the Joule heating 

performance, the strain-insensitive conductive aerogels were first positioned on a two-electrode 

system. This system was then linked to either an electrochemical workstation (Autolab 
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PGSTAT302N, Metrohm) or a portable battery setup. To measure the surface temperature, 

thermocouple probes (K Type Thermometer, Gain Express AZ Instruments) were attached to the 

sides of the aerogels. The electrochemical workstation enabled the application of varying voltages, 

ranging from 0.0 to 5.0 V. During cycling tests, the conductive aerogel was subjected to constant 

voltages of 1.0 and 1.5 V for 100-second intervals, followed by a 100-second pause. 

 

Thermal conductivity measurements of strain-insensitive conductive aerogels. Thermal 

conductivity measurements were carried out at room temperature using a heat flow meter (HFM-

25, Thermtest Instruments). The temperature differentials were set at 17.5 °C and 32.0 °C. For 

these tests, the strain-insensitive conductive aerogel with the dimensions of 5.0 × 5.0 × 2.0 cm3 

was utilized. 

 

Characterization. The microstructures of conductive aerogels were investigated using a field 

emission scanning electron microscope (FESEM, Hitachi SU-70) operating at 1.0–2.0 kV for low, 

medium, and high-resolution imaging, equipped with an energy dispersive spectroscopy (EDS) for 

elemental analyses. All of the SEM samples were sputtered with a layer of AuPd (~1.0 nm) prior 

imaging. XPS were obtained by an X-ray photoelectron spectrometer (Kratos AXXIS UltraDLD) 

using a microfocused Al X-ray beam (100 µm, 25 W) with a photoelectron take-off angle of 90°.  

 

Construction of finite element (FE) models. The FE models of conductive aerogels were created 

using the commercial package ABAQUS/CAB 2020. The microstructures of high-, medium-, and 

low-density aerogels (at the same MXene/CNF/gelatin/GA ratio of 80/20/0/–) were represented as 
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two-dimensional periodic cellular structures with rectangular unit cells. The pore dimensions were 

approximated from the SEM images of experimental samples (Fig. 4c). The FE model structure 

was represented using plane strain elements within a 4 × 4 supercell, onto which periodic boundary 

conditions were imposed by relating the displacements of nodes on opposing sides of the structure. 

To simulate the effects of the random imperfections observed in the SEM images of experimental 

samples, a constant number of wall discontinuities was seeded for all three FEA models, with the 

exact number chosen as a tuning parameter. By imposing 30% vertical compression on the 

supercells, the 𝜎!" values were extracted from 10 successive runs with differently seeded 

discontinuities. The localized stress profiles across the aerogel structures were extracted at both 

relaxed and compressed states. 

 

Code availability 

The Python code to implement the machine learning tasks within this study are available from 

GitHub (https://github.com/oshin71/Programmable-MXene-Aerogel). 

 

Data availability 

The data that support the plots within this paper and other findings of this study are available from 

the corresponding authors upon reasonable request. 
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