Comparative transcriptome analysis reveals the molecular mechanism of heterosis on waterlogging tolerance in Chrysanthemum indicum

Jiangshuo Su
National Forestry and Grassland Administration, Nanjing Agricultural University

Limin Zhao
National Forestry and Grassland Administration, Nanjing Agricultural University

Yingnan Yang
National Forestry and Grassland Administration, Nanjing Agricultural University

Yang Yang
National Forestry and Grassland Administration, Nanjing Agricultural University

Xuefeng Zhang
National Forestry and Grassland Administration, Nanjing Agricultural University

Zhiyong Guan
National Forestry and Grassland Administration, Nanjing Agricultural University

Weimin Fang
National Forestry and Grassland Administration, Nanjing Agricultural University

Fadi Chen
National Forestry and Grassland Administration, Nanjing Agricultural University

Fei Zhang
zhangfei@njau.edu.cn
National Forestry and Grassland Administration, Nanjing Agricultural University

Research Article

Keywords: chrysanthemum, heterosis, waterlogging tolerance, RNA-seq, overdominant expression

Posted Date: September 27th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3361617/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at BMC Plant Biology on April 10th, 2024. See the published version at https://doi.org/10.1186/s12870-024-04954-4.
Abstract

Background

Heterosis breeding is one of the most important breeding methods of chrysanthemum. Currently, the genetic mechanism of heterosis for waterlogging tolerance in chrysanthemum is still unclear. This study analyzed the expression profiles and potential heterosis-related genes of two hybrid lines and their parents with extreme differences in waterlogging tolerance under control and waterlogging stress conditions using RNA-seq.

Results

A population of 140 F$_1$ progeny derived from *Chrysanthemum indicum* (Nanchang) (waterlogging-tolerant) and *Chrysanthemum indicum* (Nanjing) (waterlogging-sensitive) was used to characterize the extent of genetic variation for seven waterlogging tolerance related traits across two years. Lines 98 and 95 respectively showing positive and negative overdominance heterosis for the waterlogging tolerance traits together with their parents were used for RNA-seq under control and waterlogging stress conditions. The results showed line 98 exhibited the maximum number of differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis revealed multiple stress-related biological processes for the common up-regulated genes. Line 98 had a significant increase in non-additive genes under waterlogging stress, with the transgressive up-regulation and paternal-expression dominance patterns being the major gene expression profiles, further, GO analysis identified 55 and 95 genes overlapped with the up-regulated genes shared by two parents in terms of response to stress and response to stimulus, respectively. A total of 6,640 genes displayed maternal-expression dominance patterns were observed in line 95. In addition, 16 candidate genes including *SAP12*, *DOX1*, and *ERF017* potentially responsible for the formation of waterlogging tolerance heterosis of line 98 were highlighted.

Conclusion

The current study gives a comprehensive overview of the root transcriptomes at F$_1$ hybrids and their parents, and provides novel insights into the molecular mechanism of heterosis and the response to waterlogging stress in chrysanthemum.

Background

Heterosis refers to the phenomenon where hybrids exhibit superior traits compared to their parents in agronomic characteristics [1]. Heterosis breeding has been proposed and applied for over a century, but there is still no complete and clear explanation for the formation mechanism of heterosis [2]. The overdominance theory proposed that heterosis arises from favorable interactions between alleles in
heterozygotes, where heterozygotes perform better than homozygotes [3,4]. Overdominant effects have been observed in various heterosis traits in different plants, such as rice [5], maize [6], and tomato [7]. The dominance theory suggests that heterosis comes from the masking of unfavorable recessive genes by favorable dominant genes at heterozygous loci [8,9]. This theory has found evidence in many hybrid species of diploid plants [10,11]. The epistasis theory suggests that the interaction between multiple alleles controlling major traits gives rise to multiplicative effects, and these genes controlling sub-traits collectively contribute to heterosis [12]. Evidence of epistasis involvement in heterosis has been found in rice [13,14] and maize [15,16]. The dosage balance in gene regulation hypothesis proposes that the dosage effects of non-additive genes modulate heterosis by affecting dosage-dependent regulatory systems, with transcription factors, chromatin proteins, and signaling transduction cascade members being the major factors of dosage-dependent regulatory systems [17-19]. Recent studies suggest that it is challenging to identify common genomic regions that explain heterosis in different hybrid combinations. Therefore, focusing on the analysis of gene expression patterns may provide a better understanding of heterosis [20].

These mechanisms described by different theories do not fully exist in every heterosis trait. The formation mechanisms of heterosis for some traits may also involve multiple effects [2,21], as the phenomenon of heterosis is based on the non-linear effects of multiple heterozygous gene combinations resulting from parental genetic differences [12,22]. This also determines the limitations of solely exploring heterosis from a genetic perspective.

Due to potential interactions within the parental genomes, the gene expression patterns and levels of hybrids are often taken as a focus in dissecting heterosis. For example, RNA-seq was used to analyze rice hybrids at the panicle primordium differentiation stage and grain filling stage, it was found that the yield heterosis might be associated with genes related to energy metabolism and sugar metabolism pathways among differentially expressed genes (DEGs) [23]. In another transcriptome analysis of the hybrid rice Xieyou 9308, carbohydrate metabolism and hormone signaling pathway-related genes were identified to potentially regulate the root growth heterosis during the tillering and heading stages [24]. The approach of analyzing DEGs based on transcriptome analysis to unravel heterosis has also been applied to other plants such as soybean [25], upland cotton [26], and pepper [27]. Non-additive genes, which exhibit significantly different expression levels compared to the median parental value of hybrids, maybe the key to the understanding of the formation of heterosis [28]. A study about lily found that most DEGs showed overdominant expression, and 28 of these genes may be involved in regulating the plant height and leaf elongation heterosis of lily [29]. In contrast, a study on cabbage head heterosis found that over 81% of the DEGs exhibited dominant expression [30]. Similarly, transcriptome analysis revealed that 63.1% of DEGs in the super-hybrid rice WFYT025 exhibited overdominant expression, suggesting that these overdominant genes might be the major contributors to the grain yield heterosis of WFYT025 [31]. Compared to growth and yield advantages, there has been relatively less research on heterosis for plant stress tolerance. In a study on the heat tolerance heterosis of maize hybrid An'nong 591, it was found that 5400 non-additive genes were specifically expressed in the hybrid under heat stress. Among them, 33 DEGs enriched in heat
response terms were identified, demonstrating the important role of non-additive expression patterns in the heat tolerance heterosis of maize [32].

Waterlogging stress is one of the most important abiotic stresses affecting plant growth and development [33]. Chrysanthemum (*Chrysanthemum morifolium* Ramat.) is a perennial herbaceous flower with shallow roots and poor waterlogging tolerance. Even short periods of waterlogging can cause wilting, yellowing of leaves, browning, and rotting of roots, hence decreasing its ornamental quality and yield. Prolonged waterlogging can even lead to extensive mortality in cultivated chrysanthemum [34]. Breeding waterlogging-tolerant chrysanthemum varieties is an effective approach to address this industry problem. However, due to chrysanthemum's polyploidy and high heterozygosity, hybrid breeding remains an important means of developing new chrysanthemum varieties [35]. Some progress has been made on waterlogging tolerance in chrysanthemum. Researchers established a comprehensive evaluation system for waterlogging tolerance in chrysanthemums using the membership function method [36]. Su et al. (2017) analyzed the interrelationships among combining ability, genetic distance, and heterosis using a 4×3 incomplete diallel cross, and found that six growth and biomass-related traits were mainly controlled by non-additive gene effects [37]. By constructing a genetic linkage map using 162 F₁ progeny, 37 unconditional QTLs, 51 conditional QTLs, and several epistasis QTLs associated with waterlogging tolerance were successfully identified [38]. Several wild *Chrysanthemum* species give access to resistance breeding by providing pivotal candidate resistance genes which are not usually absent in cultivated chrysanthemum [34,39]. Wang et al. (2013) obtained hybrid offspring with stronger waterlogging tolerance through interspecific hybridization between *C. morifolium* cv. 'Nannong Yinshan' and *C. zawadskii*, demonstrated that interspecific hybridization is an effective way to improve the waterlogging tolerance of cultivated chrysanthemums [40]. However, little is known about the mechanism of heterosis on waterlogging tolerance, and the causal genes responsible for waterlogging tolerance are urgently needed in chrysanthemums. *Chrysanthemum indicum* has been regarded as making significant contributions to the origin of cultivated chrysanthemum, which has wide geographical distribution, multiple ecotypes, and high genetic diversity, severing a model species for hexaploidy chrysanthemum [41].

In this study, we assessed the genetic variation and heterosis of waterlogging tolerance in an F₁ population derived from waterlogging-tolerant *C. indicum* (Nanchang) and waterlogging-sensitive *C. indicum* (Nanjing) [42]. To further explore the formation mechanism of waterlogging tolerance heterosis in chrysanthemums, two hybrid offspring, lines 98 and 95, exhibiting extreme differences in waterlogging tolerance, as well as two parents were selected to investigate the global transcriptomes before and after waterlogging stress using RNA-Seq. Differentially expressed transcripts and their expression patterns were analyzed, and 16 potential candidate genes assigned to GO terms for response to stress and hormone response were identified. Our findings provide new insights into the mechanism underlying waterlogging tolerance heterosis in chrysanthemums and contribute to the heterosis utilization in future breeding programs.
Materials and Methods

Materials

The experimental materials consisted of the highly waterlogging-tolerant maternal parent, *C. indicum* (Nanchang) (termed NC), and the waterlogging-sensitive paternal parent, *C. indicum* (Nanjing) (termed NJ), along with 140 F₁ lines. Hybridization was conducted from October to November 2018, with the maternal plants bagged immediately after emasculation and artificial pollination. Mature and fully developed seeds were harvested two months after pollination and stored at room temperature. In March 2019, the seeds were sown in polystyrene foam trays containing a substrate mixture of vermiculite and perlite (3:1 ratio). After germination, which took approximately 60 days, the seedlings were transplanted into the field and sequentially numbered using Arabic numerals. Two rounds of top pruning were performed on the seedlings to generate sufficient cuttings for waterlogging tolerance identification. All the materials were preserved at the Chrysanthemum Germplasm Resource Preservation Center of Nanjing Agricultural University (118.985°N, 32.068°E).

Waterlogging treatment and phenotypic evaluation

The potted waterlogging experiments were conducted in a greenhouse from August to October 2019 and June to August 2020. Healthy, uniform plants of two parents and 140 F₁ progeny were selected for the experiments. The 6 cm cuttings were planted in 32-hole high-footed plug trays filled with a sterile substrate mixture of perlite and vermiculite in a ratio of 1:3. Once the cuttings developed roots and reached approximately 10 leaves, they were transferred to turnover boxes (65 cm × 43 cm × 16 cm) for further treatment. The experiments consisted of control and treatment groups. For both the parent and their offspring, the treatment groups were replicated 10 plants per individual, while the control groups were replicated 6 plants per individual. The waterlogging stress was imposed by maintaining 3 cm above the soil surface and water was supplied regularly to maintain the stress level. The control plants were subjected to normal watering management. The temperature during the two experimental periods was controlled at 20–25°C, with a relative humidity of 80% and a photoperiod of 16 hours.

After 9 days of waterlogging treatment, scores were recorded based on four morphological indicators: leaf color (1–7 points), leaf shape (1–5 points), stem color (1–4 points), and stem shape (1–4 points) to assess the appearance of the plants following waterlogging. Since the control group exhibited good growth, the score was only performed on the treatment group. The score criteria referred to the method of Su et al. [39], and the score values were derived from a combination of the four morphological indicator values. Six growth parameters, i.e., shoot height (SH), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root fresh weight (RFW), and root dry weight (RDW), were measured for both the control and treatment groups. The measurements of these growth parameters were taken immediately after the ending of stress treatment. SH and RL were measured using a ruler, while SFW and RFW were measured using an electronic balance. Then, the samples were placed in envelopes and dried at 105°C until a constant weight was reached. SDW and RDW were measured using an electronic balance. The
average of ten replicates were used as the phenotypic values of each individual for the Score and 6 biomass traits.

To describe the differences in waterlogging tolerance among the parents and 140 F₁ lines, the waterlogging tolerance index (WI = treatment group value/control group value) was calculated for each measured trait. Furthermore, the waterlogging tolerance of each entry in C. indicum F₁ population was evaluated using the membership function method via the following formula: \(X_i = \frac{(X - X_{\text{min}})}{(X_{\text{max}} - X_{\text{min}})} \times 100\% \), where \(X_i \) represents the membership function value of the i-th traits, \(X \) represents the waterlogging tolerance index value of the i-th traits, and \(X_{\text{max}} \) and \(X_{\text{min}} \) represent the maximum and minimum values of the waterlogging tolerance traits for the i-th traits, respectively. The average membership function values of waterlogging tolerance traits (MFVW) were used to represent the waterlogging tolerance of each entry, where a higher MFVW indicates more tolerance. Following the approach by Yan [43], the waterlogging tolerance grade of the F₁ population was classified into five categories based on the MFVW and standard deviation (SD): Highly waterlogging-tolerant (HWT, \(X_i \geq MFVW + 1.64SD \)), Waterlogging-tolerant (WT, \(MFVW + 1SD \leq X_i \leq MFVW + 1.64SD \)), Moderately waterlogging-tolerant (MWT, \(MFVW - 1SD \leq X_i \leq MFVW + 1SD \)), Waterlogging-sensitive (WS, \(MFVW - 1.64SD \leq X_i \leq MFVW - 1SD \)), and Highly waterlogging-sensitive (HWS, \(X_i \leq MFVW - 1.64SD \)), where \(X_i \) represents the membership function value of the i-th hybrid line.

Phenotypic data processing and analysis

The calculation of heterosis was based on the method described by Zhang et al. [44], using two parameters: mid-parent heterosis (MPH) and high-parent heterosis (HPH). Data input and organization were performed using Microsoft Excel 2019 software. Descriptive statistical analysis, correlation analysis, and significance analysis of heterosis were conducted using SPSS 24 software.

Sample preparation and RNA sequencing

Root samples were collected from two parental plants, C. indicum (Nanjing) and C. indicum (Nanchang), as well as two F₁ lines with extreme differences in waterlogging tolerance, lines 98 (HWT) and 95 (HWS), after 0 h and 12 h waterlogging treatment. Three biological replicates were prepared, with each replicate consisting of three consistent plants. Approximately 0.5g of each sample was collected after mixed-grinding and rapidly frozen in liquid nitrogen, then stored at -80°C. Total RNA was extracted using the Trizol reagent kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. The RNA quality was evaluated using the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA), and RNase-free agarose gel electrophoresis was performed to confirm the integrity of the RNA. After total RNA extraction, the rRNA was removed using the Ribo ZeroTM Magnetic Kit (Epicentre, Madison, WI, USA) to enrich for mRNA, which was then reverse-transcribed into cDNA using random primers. The cDNA fragments were purified using the QiaQuick PCR Purification Kit (Qiagen, Venlo, the Netherlands), followed by end repair, the addition of A bases, and ligation to Illumina sequencing adapters. Gel electrophoresis was performed to select the appropriate size range of the ligated products, followed by
PCR amplification. Sequencing was conducted using the Illumina NovaSeq 6000 platform (Gene Denovo Biotechnology Co., Guangzhou, China).

Sequence assembly and data analysis

The raw reads obtained from sequencing were subjected to quality control using the fastp software [45]. This process involved the removal of reads containing adapters and reads consisting entirely of A bases. Additionally, low-quality data (more than 50% base quality value $Q \leq 20$) was filtered. This resulted in the generation of clean reads. The Trinity software was used for read assembly [46]. Trinity first merged reads with a certain length overlap to generate longer fragments. These assembled fragments, obtained through read overlap relationships and devoid of N bases, were considered as assembled unigenes. The quality of the assembly results was evaluated using metrics such as the N50 value, sequence length, and Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis (http://busco.ezlab.org/). To annotate the unigene sequences, a blastx search was performed against protein databases including NR, SwissProt, KEGG, and COG/KOG, with an E-value cutoff of $<1E-5$. This allowed the identification of the protein with the highest sequence similarity to the given unigene, providing protein functional annotation information for the unigene. For gene differential expression analysis, the input data consisted of read counts obtained from gene expression level analysis. The edgeR software was utilized for differential analysis between samples [47], while the DESeq2 software was employed for differential analysis between groups [48]. Genes with a false discovery rate (FDR) ≤ 0.05 and a fold change ≥ 2 were selected as significant DEGs. The assembled unigenes were quantified using the RSEM software [49], and gene expression levels were calculated using the Reads Per Kilobase of transcript per Million mapped reads (RPKM) method. Transcriptome sequencing and analysis were conducted by Guangzhou Jidio Biotechnology Co., Ltd. Venn diagrams and heatmaps of gene expression levels were generated using the omicsmart platform tools.

Quantitative real-time PCR validation of RNA sequencing

Six DEGs were randomly selected to validate the reliability of RNA sequencing data. Primers for gene validation were designed using Primer 5.0 software. The reference gene, the $EF1\alpha$ gene of *C. indicum*, was selected for normalization. The qRT-PCR procedure followed the methods described by Ren et al. [50]. Each sample was subjected to three technical replicates. The primer sequences used are listed in Table S1.

GO and KEGG pathway enrichment analysis

The DEGs were mapped to various terms in the Gene Ontology (GO) database (http://www.geneontology.org/), and the number of genes associated with each term was calculated. This allowed for the identification of gene lists and the statistical determination of the number of genes associated with specific GO functions. GO terms that met the threshold of Q value ≤ 0.05 were defined as significantly enriched terms. Pathway analysis was performed using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) web server (http://www.kegg.jp/). After multiple testing corrections, pathways with a Q value \(\leq 0.05 \) were defined as significantly enriched pathways.

Classification and identification of gene expression patterns

The average expression values of three biological replicates of two hybrids were respectively compared with the mid-parent values after 0 h and 12 h of waterlogging stress. ShortTime-series Expression Miner software was used to analyze the expression patterns of the hybrids’ genes [51]. The classification of gene expression patterns in hybrids was based on the study by Swanson-Wagner et al. [52]. Genes were categorized into eight significant types (Q-value \(\leq 0.05 \)) based on the difference in expression levels between hybrids and parents, i.e., additive (hybrid gene expression equal to the average of parents), two types of overdominance (hybrid gene expression significantly higher or lower than parents), two types of high-parent dominance, and two types of low-parent dominance (hybrid gene expression equal to one parent and significantly higher or lower than the other parent).

Results

Waterlogging tolerance identification of C. indicum F\(_1\) progeny

Statistical analysis of the F\(_1\) population after 9 days of waterlogging stress revealed a wide range of phenotypic variations among the seven investigated traits (Table S2, Fig. 1a-g). The coefficient of variation ranged from 14.47–59.38%, with SFW and SDW showing higher variability than other traits, indicating a more pronounced response of the root system to waterlogging stress. Based on their MFVWs, 68% of the F\(_1\) progeny were classified as moderately waterlogging-tolerant, while 7 and 6 individuals belonged to the HWT and HWS categories, accounting for 5.63% and 4.93%, respectively (Table S3, Fig. 1h). The phenotypes of five representative F\(_1\) lines after 9 days of treatment are shown in Fig. S1. Heterosis analysis revealed significant positive mid-parent heterosis in the F\(_1\) population for score, RL, SFW, SDW, and RDW, ranging from 10.09–34.41%. MFVW has the weakest positive mid-parent heterosis (2.93%) and is not significant. The high-parent heterosis for all waterlogging tolerance traits in this F\(_1\) population was negative (Table 1). However, several individuals with positive and negative transgressive segregation were found for these traits (Fig. 1), indicating a significant transgressive segregation phenomenon in the F\(_1\) generation.
Table 1
Heterosis and MFWV of waterlogging tolerance traits in *C. indicum* (Nanchang), *C. indicum* (Nanjing), and their F₁ hybrids

<table>
<thead>
<tr>
<th>Traits</th>
<th>C. indicum (Nanchang)</th>
<th>C. indicum (Nanjing)</th>
<th>MPV</th>
<th>F<sub>1</sub> population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CV</td>
</tr>
<tr>
<td>Score</td>
<td>0.95</td>
<td>0.3</td>
<td>0.63</td>
<td>24.33%</td>
</tr>
<tr>
<td>SH</td>
<td>0.59</td>
<td>0.34</td>
<td>0.46</td>
<td>47.40%</td>
</tr>
<tr>
<td>RL</td>
<td>0.71</td>
<td>0.12</td>
<td>0.41</td>
<td>37.67%</td>
</tr>
<tr>
<td>SFW</td>
<td>0.44</td>
<td>0.08</td>
<td>0.26</td>
<td>51.77%</td>
</tr>
<tr>
<td>RFW</td>
<td>0.8</td>
<td>0.54</td>
<td>0.67</td>
<td>42.41%</td>
</tr>
<tr>
<td>SDW</td>
<td>0.58</td>
<td>0.26</td>
<td>0.42</td>
<td>41.42%</td>
</tr>
<tr>
<td>RDW</td>
<td>0.52</td>
<td>0.11</td>
<td>0.31</td>
<td>44.03%</td>
</tr>
<tr>
<td>MFVW</td>
<td>0.65</td>
<td>0.25</td>
<td>0.45</td>
<td>24.24%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>MPH/%</th>
<th>HPH/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>0.69</td>
<td>10.08**</td>
<td>-27.58**</td>
</tr>
<tr>
<td>SH</td>
<td>0.38</td>
<td>-17.03**</td>
<td>-34.54**</td>
</tr>
<tr>
<td>RL</td>
<td>0.46</td>
<td>11.15**</td>
<td>-35.01**</td>
</tr>
<tr>
<td>SFW</td>
<td>0.35</td>
<td>34.41**</td>
<td>-21.12**</td>
</tr>
<tr>
<td>RFW</td>
<td>0.47</td>
<td>-29.77**</td>
<td>-41.27**</td>
</tr>
<tr>
<td>SDW</td>
<td>0.50</td>
<td>20.37**</td>
<td>-12.90**</td>
</tr>
<tr>
<td>RDW</td>
<td>0.40</td>
<td>27.78**</td>
<td>-22.50**</td>
</tr>
<tr>
<td>MFVW</td>
<td>0.46</td>
<td>2.93</td>
<td>-28.97**</td>
</tr>
</tbody>
</table>

** indicates significance at P < 0.01. The significance test of MPH for each trait is based on the single sample mean t-test results of offspring index values and MPV value, while the significance test of HPH for each trait is based on the single sample mean t-test results of offspring index values and MPV value.

Notably, line 95 showed obvious yellowing, wilting, and even rotting of the lower leaves, and its root mass was significantly reduced compared to the control group; in contrast, line 98 showed no significant morphological changes (Fig. 2a). Heterosis analysis revealed that line 98 exhibited positive mid-parent heterosis for all waterlogging tolerance traits (Table S4, Fig. 2b-g), with score showing the highest mid-parent heterosis (58.73%), followed by RDW (32.56%). Additionally, line 98 displayed positive high-parent heterosis for all traits except for RFW and RL, and the maximum high-parent heterosis rate was observed in score (5.26%), indicating that line 98 behaved stronger waterlogging tolerance compared to the waterlogging-tolerant parent *C. indicum* (Nanchang). In contrast, line 95 had the lowest MFVW in this F₁ population and exhibited negative mid-parent heterosis and high-parent heterosis for all traits (Table S4, Fig. 2b-g), indicating its weaker waterlogging tolerance than the waterlogging-sensitive parent *C. indicum* (Nanjing). Therefore, lines 98 and 95 were selected to conduct a further study of waterlogging tolerance heterosis.

RNA sequencing and quantitative real-time PCR validation

For the study of the differences in the response mechanisms to waterlogging stress between hybrid lines and parents, root tissue RNA was extracted to construct 24 libraries. As a result, 47.94–54.93 million raw reads were yielded for each sample. After filtering the raw read data, we obtained 46.7–54.0 million clean reads, which corresponded to 6.97–8.06 Gb of clean bases. The Q30 level ranged from 91.87–93.05%, and the GC content ranged from 41.69–44.63%. A total of 119,965 unigenes were assembled, with
lengths ranging from 201 to 1,446 bp and an average length of 808 bp. The N50 value was greater than 1,264 bp. Based on the annotation results from the Nr, KEGG, KOG, and SwissProt databases, a total of 61,549 unigenes were annotated in at least one database. The average Pearson's correlation coefficient among the three samples was 0.9675 (Fig. S2), indicating that the transcript abundances of the biological replicate samples were highly correlated. These results suggest the high quality of the RNA-seq. Detailed information about the RNA-Seq data was provided in Table S5.

The reliability of the RNA-seq data was further validated using the qRT-PCR method. A total of six genes were randomly selected for validation, including AP2-ERF transcription factor (Unigene21365), late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family (Unigene101624), DCD (Development and Cell Death) domain protein (Unigene43272), lipoxygenase 1 (Unigene3146), peroxidase superfamily protein (Unigene22039) and abscisic acid receptor PYL4-like (Unigene77240). The qRT-PCR results were consistent with the RNA-seq data (Fig. S3), confirming the reliability of the RNA-seq data.

Identification of DEGs under waterlogging stress

Sixteen pairwise comparisons (C-98 vs W-98, C-95 vs W-95, C-NC vs W-NC, C-NJ vs W-NJ/C-NC vs C-98, C-NJ vs C-98, C-NJ vs C-NC/W-NC vs W-98, W-NJ vs W-98, W-NJ vs W-NC/C-NC vs C-95, C-NJ vs C-95, C-NJ vs C-NC/W-NC vs W-95, W-NJ vs W-95, W-NJ vs W-NC) were made to examine the DEGs (fold change ≥ 2 and FDR ≤ 0.05). In the comparisons between the control and waterlogging stress groups, a total of 15,572 (7,546 up-regulated and 8,026 down-regulated), 10,763 (5,233 up-regulated and 5,530 down-regulated), 10,931 (5,541 up-regulated and 5,390 down-regulated), and 14,810 DEGs (7,395 up-regulated and 7,415 down-regulated) were identified for line 98, line 95, NC, and NJ, respectively. Compared to the parental and highly waterlogging-sensitive line 95, the highly waterlogging-tolerant hybrid line 98 exhibited the maximum number of DEGs, indicating its strong response to waterlogging stress (Fig. 3a, b). In the pairwise comparisons of C-NC vs C-98, C-NJ vs C-98, and C-NJ vs C-NC, there were 15,245 (12,348 up-regulated and 2,897 down-regulated), 13,965 (8,180 up-regulated and 5,785 down-regulated), and 23,132 DEGs (7,478 up-regulated and 15,654 down-regulated) were identified, respectively (Fig. 3c-e). In the pairwise comparisons of W-NC vs W-98, W-NJ vs W-98, and W-NJ vs W-NC, 17,050 (13,373 up-regulated and 3,677 down-regulated), 21,582 (13,203 up-regulated and 8,379 down-regulated), and 24,844 DEGs (8,605 up-regulated and 16,239 down-regulated) were identified, respectively (Fig. 3f-h). Compared to the control group, the waterlogging stress treatment group exhibited a higher number of DEGs. For example, a total of 26,640 DEGs were identified between line 95 and its parents in normal conditions, while the number decreased to 19,302 under waterlogging stress (Fig. 3c-h). In addition, more parental DEGs were discovered in line 98 under waterlogging stress, indicating line 98 had different response mechanisms to waterlogging stress from its parents, and the related DEGs might explain the waterlogging tolerance heterosis to a certain extent.

Correlations between the hybrid and its parents under waterlogging stress and control conditions were investigated using cluster analysis with Cluster 3.0 software. The transcriptome profile of line 98 was similar to *C. indicum* (Nanjing) under waterlogging stress and control conditions. The transcriptome
profile of line 98 was similar to *C. indicum* (Nanjing) (male parent) under control conditions, but it was closer to *C. indicum* (Nanchang) (female parent) under waterlogging stress conditions (Fig. S4).

Functional enrichment analysis of the common DEGs under waterlogging stress

In the pairwise comparisons between the control group and the waterlogging stress group, 3,931 genes (1,720 up-regulated, 2,132 down-regulated) out of the total 15,572 DEGs were found to be in common among line 98 and the parents (Fig. 4a, b). The functional enrichment analysis of these common genes revealed 55 biological process terms (FDR ≤ 0.05), including several terms related to response to stimulus (GO:0050896), hormone (GO:0009725), stress (GO:0006950), etc. (Table S6). Further analysis of the common up-regulated genes showed that 63 GO biological process terms were significantly enriched (Table S7). These terms included various processes involved in plant response to abiotic stress, particularly response to stimulus (GO:0050896) and stress (GO:0006950), with 451 and 295 genes significantly enriched, respectively. Additionally, terms related to ethylene metabolism and hormone response, such as ethylene metabolic process (GO:0009692), cellular alkene metabolic process (GO:0043449), and response to hormone (GO:0009725), were also enriched. As for the common down-regulated genes, 45 GO biological process terms were significantly enriched, including processes related to RNA modification (GO:0009451), ribonucleoprotein complex biogenesis (GO:0022613), and organic substance transport (GO:0071702) (Table S8). The functional enrichment analysis of the common DEGs between line 98 and the waterlogging-tolerant parent *C. indicum* (Nanchang) revealed 14 significant biological process terms, such as phytoalexin biosynthetic process (GO:0052315), indole phytoalexin metabolic process (GO:0046217), and phytoalexin metabolic process (GO:0052314). However, no significant biological process terms were enriched in the specific DEGs of line 98 or its common DEGs with the waterlogging-sensitive parent *C. indicum* (Nanjing).

Simultaneously, KEGG pathway enrichment analysis was conducted for the 3,931 common DEGs. The results revealed 12 KEGG significant enrichment pathways involving a total of 827 DEGs, including phenylpropanoid biosynthesis, ribosome, biosynthesis of unsaturated fatty acids, metabolic pathways, stilbenoid, diarylheptanoid, and gingerol biosynthesis, α-linolenic acid metabolism, ribosome biogenesis in eukaryotes, and biosynthesis of secondary metabolites, etc. (Fig. 4c).

Expression pattern analysis of DEGs between hybrids and parents

Eight gene expression patterns were defined based on the expression profiles of parents and hybrids (Fig. 5a-d). Among them, Profile 0 and Profile 7 represented additive expression, Profile 1, Profile 3, Profile 4, and Profile 6 represented dominant expression, and Profile 2 and Profile 5 represented overdominant expression, respectively. Trend analysis was conducted using the DEGs between hybrids and parents under both control and waterlogging stress conditions. Intriguingly, line 98 was significantly enriched (Qvalue ≤ 0.05) in four expression patterns, namely, additivity (Profile 0), transgressive up-regulation (Profile 5), paternal-expression dominance (Profile 3), and maternal-expression dominance (Profile 1) in
both control and waterlogging stress conditions. Additionally, line 98 was also enriched in maternal-expression dominance pattern (Profile 6) under waterlogging stress. These non-additive expression patterns contained a total of 25,829 genes in line 98 under waterlogging stress condition, accounting for 39.41% of the total DEGs (65,547), which were much higher than that in line 95 (14,813; 21.63%). Under control condition, line 98 showed the maximum number of DEGs in Profile 3 (9,918), followed by Profile 5 (4,680) (Fig. 5e). However, under waterlogging stress condition, the two maternal-expression dominance patterns (5,204 for Profile 6 and 4,417 for Profile 1) and overdominant expression pattern (7,148 for Profile 5) in line 98 exhibited more number of DEGs (Fig. 5b, e). These results suggested that the three non-additive expression patterns may play an important role in waterlogging tolerance heterosis in chrysanthemums, especially for the overdominant expression pattern with the highest increase in genes after experiencing waterlogging stress. Under both control and waterlogging stress conditions, the highest number of DEGs in maternal expression dominance patterns was observed in line 95 (Fig. 5c, e). However, after being subjected to waterlogging stress, the number of genes was decreased in line 95 for all expression patterns except for profile 7 (Fig. 5d, e).

Comparative and functional enrichment analyses of non-additive genes in hybrids

To further investigate the waterlogging tolerance heterosis of line 98, enrichment analyses of the DEGs showing transgressive up-regulation (profile 5) and the maternal-expression dominance (profile 6) under waterlogging stress were conducted. The results revealed that the DEGs in profile 5 were enriched in 189 GO biological process terms, several of which were related to waterlogging tolerance, including responses to osmotic stress (GO:0006970), response to stress (GO:0006950), response to stimulus (GO:0050896), and response to hormone (GO:0009725) (Table S9). However, the DEGs in Profile 1 and Profile 6 did not show significant enrichment in any biological process terms. Under waterlogging stress condition, 5,069 out of the 7,148 transgressive up-regulation genes in line 98 were specific to waterlogging stress, which were assigned to 148 GO biological process terms, with a significant enrichment in waterlogging tolerance-related GO terms, including responses to stress (GO:0006950), stimulus (GO:0050896), osmotic stress (GO:0006970), hormone (GO:0009725), and external stimuli (GO:0009605). The top 20 significantly enriched GO terms and KEGG pathways are shown in Fig. 6a, b. The response to stress term contained 747 genes, with an overlap of 55 genes with the 1,720 common up-regulated DEGs (Table S10). The response to the stimulus term contained 1,179 genes, with an overlap of line 95 genes with the common up-regulated DEGs. Furthermore, many stress-related genes were found among these overlapping genes, such as PUB23-like (Unigene0065212), WRKY17 (Unigene0076621), RHA2A (Unigene0020876), and SAP12 (Unigene0072913), as well as three genes involved in reactive oxygen species defense, DOX1 (Unigene0031048), PER64 (Unigene0124910), and PER47 (Unigene0022039). The heatmap of expression levels demonstrated that the above genes exhibited higher expression levels in line 98 compared to line 95 and two parents, indicating their potential role in the waterlogging tolerance heterosis (Fig. 6c).

Notably, SAP12 and DOX1 showed a 12-fold and 10-fold up-regulation under waterlogging treatment, respectively. Among the 120 genes covered by the response to hormone (GO:0009725) term, five
transcription factors related to ethylene signaling were identified, including \textit{ERF008} (Unigene0040439), \textit{ERF1A} (Unigene0126404), \textit{ERF1B} (Unigene0021365), \textit{ERF9} (Unigene0061735), and \textit{ERF017} (Unigene0095957). Especially, \textit{ERF017} and \textit{ERF1B} showed 38-fold and 7-fold up-regulation under waterlogging stress, respectively. In addition to ethylene, several enriched DEGs related to other hormones were also discovered, such as auxin-responsive factor \textit{ARF19} (Unigene0001119), jasmonic acid signaling-related transcription factor \textit{MYC2} (Unigene0067836), abscisic acid receptor \textit{PYL4-like} (Unigene0077240), and brassinosteroid-associated gene \textit{BAK1} (Unigene0000389). These hormone-responsive genes also exhibited significantly higher expression levels in line 98 (Fig. 6d), indicating their potential contribution to its enhanced waterlogging tolerance. Nevertheless, further molecular experiment is required to verify our assumptions on the waterlogging tolerance heterosis in chrysanthemum.

\section*{Discussion}

The utilization of heterosis has long been one of the main objectives of chrysanthemum breeders. Although heterosis has been widely exploited in improving the tolerance to biotic and abiotic stresses of cultivated chrysanthemum via intraspecific and interspecific crosses \cite{40, 53}, the molecular and genetic mechanisms underlying the phenomenon remain poorly understood. This might be largely attributed to the complex genetic background and high heterozygosity of cultivated chrysanthemum. \textit{C. indicum} is an ideal model species of hexaploid chrysanthemum owing to both its high phenotypic diversity and close relationship with chrysanthemum \cite{35}. Liu et al. (2012) proposed \textit{C. indicum} (Nanjing) played an important role in the origin of cultivated chrysanthemum according to the phylogenetic analysis of single-copy nuclear gene and chloroplast DNA sequences \cite{54}. A recent study also revealed \textit{C. indicum} (Nanjing) is more closely related to cultivated chrysanthemum based on whole genome resequencing \cite{36}. In addition, heterosis is strongly correlated with the genetic distance between parents in studies on rice \cite{55}, broccoli \cite{56}, and Arabidopsis \cite{57}. Therefore, the present study selected \textit{C. indicum} (Nanjing) and \textit{C. indicum} (Nanchang), which exhibited significant differences in waterlogging tolerance, as parents to generate an F$_1$ population for analyzing the heterosis of waterlogging tolerance. The results showed all the measured waterlogging tolerance traits are widely segregated within the F$_1$ population, with the coefficients of variation for root-related traits significantly higher than those for shoot-related traits (Table S2). This indicates that different genotypes exhibit larger differences in roots compared to shoots after being subjected to waterlogging stress. It also highlights the importance of root system growth in the phenotypic evaluation of waterlogging tolerance, which is consistent with previous research findings \cite{38}.

Using transcriptome sequencing to analyze DEGs between hybrids and parents is an effective means to explore the possible molecular mechanisms of heterosis. In the pairwise comparisons between \textit{C. indicum} (Nanjing), \textit{C. indicum} (Nanchang), and line 98, it was found that the maximum number of DEGs was detected between the two parents under both control and waterlogging stress (23,132 and 24,844). Under control conditions, there were fewer DEGs between line 98 and \textit{C. indicum} (Nanjing) (13,965), while under waterlogging stress, there were fewer DEGs between line 98 and \textit{C. indicum} (Nanchang) (17,050) (Fig. 3c, f). This result was consistent with the clustering analysis of all transcriptions, where line 98 was...
closely clustered with *C. indicum* (Nanjing) under control conditions, while it was alone under stress (Fig. S4). This phenomenon, where genes in hybrids tend to be biased towards specific parents in their expression, has also been reported in maize, Arabidopsis, and rice \[58−60\]. The interaction between waterlogging-responsive genes inherited from different parents in line 98 might result in the activation or suppression of more responsible genes. Additionally, stress-tolerance genes inherited from *C. indicum* (Nanchang) may exhibit different expression patterns in hybrids. These issues might contribute to the waterlogging tolerance heterosis observed in line 98.

Reasonable gene selection and discovery are key aspects of transcriptome analysis. To identify waterlogging-tolerant-related DEGs, three pairwise comparisons (C-98 vs W-98, C-NC vs W-NC, C-NJ vs W-NJ) were performed. A total of 3,931 common DEGs and line 98 specific genes were identified in this study (Fig. 3a, b). GO enrichment analysis demonstrated that these parental common genes were mainly involved in several processes directly related to plant stress response (Table S6). However, the DEGs specific to line 98 did not enrich any biological process terms. This suggests that the common DEGs play an important role in the waterlogging tolerance heterosis of line 98, which is consistent with previous studies \[29,31,32,61\] that focused on shared genes for heterosis analysis. Further enrichment analysis revealed that among the up-regulated shared genes, 295 genes were enriched in the "response to stress" (GO:0006950) term, and 451 genes were enriched in the "response to stimulus" (GO:0050896) term, which might play a crucial role in response to waterlogging stress and contribute to the waterlogging tolerance heterosis observed in line 98. This further confirms that the expression levels of common genes related to waterlogging stress response in line 98 have been changed under the combined action of the parental genomes, thereby enhancing its waterlogging tolerance.

Non-additive effects have been proven to play an important role in the formation of plant heterosis \[62\]. In this study, trend analysis was conducted on the DEGs of lines 98 and 95 under control and waterlogging stress conditions. Among the five significant expression patterns identified in line 98, the number of genes assigned to the transgressive up-regulation pattern increased most under waterlogging stress, followed by two maternal-expression dominant patterns (Fig. 5e). Further GO enrichment analysis revealed that the genes included in the transgressive up-regulation pattern were significantly enriched in multiple stress response-related biological process terms, indicating the important role of transgressive up-regulation genes in the waterlogging tolerance heterosis of chrysanthemum. Similar findings have been reported in previous studies on rice \[63\] and maize \[64\], where multiple key yield-related heterosis loci exhibited transgressive up-regulation. Studies on biomass heterosis in cotton \[65\] and tobacco \[66\] also found that the main expression pattern of DEGs in hybrids was transgressive up-regulation. The transcriptome analysis of maize hybrid An'nong 591 also found that the number of overdominance genes increased more than 2.5 times under heat stress \[32\], which is consistent with the results of this study. GO enrichment analysis was conducted on the 5,069 waterlogging stress-specific transgressive up-regulation genes and compared them with the up-regulated parental common genes previously screened out. This further led to the identification of transgressive up-regulation parental common genes that are responsible for waterlogging stress response. The results showed that 148 GO biological process terms
were significantly enriched, including responses to organic stress (GO: 0006970), endogenous stimuli (GO: 0009719), chemical (GO: 0042221), stress (GO: 0006950), and stimuli (GO: 050896). Among them, 55 genes were assigned to respond to stress terms, and 95 were assigned to response to stimulus terms (Table S10). Furthermore, seven out of the 55 genes were selected. *PUB23-lik* (Unigene0065212) [67] and *WRKY17* (Unigene0076621) [68] have been shown to play a role in plant stress tolerance studies. *RHA2A* (Unigene0020876) has also been confirmed to be associated with drought and salt tolerances in previous studies on soybeans [69] and rice [70]. The expression level of the oxidative stress-related gene *SAP12* (Unigene0072913) [71,72] in super line 98 increased 12-fold after waterlogging stress treatment. *DOX1* (Unigene0031048), *PER64* (Unigene0124910), and *PER47* (Unigene0022039) are associated with plant reactive oxygen species. The strong waterlogging tolerance of line 98 may result from the combined action of different types of stress response pathways. Ethylene plays an important role in plant response to waterlogging stress, and previous transcriptome analyses have identified ethylene-responsive genes that are important for chrysanthemum waterlogging tolerance, including some related genes [73]. In the waterlogging stress-specific transgressive up-regulation genes, five transcription factors related to ethylene signaling were identified. Among them, *ERF1B* (Unigene0021365) and *ERF017* (Unigene0095957) showed the strongest response to waterlogging, with expression levels up-regulated 7-fold and 38-fold, respectively. These genes may also participate in the formation of waterlogging tolerance heterosis and are worthy of further investigation.

Conclusion

In this study, RNA-seq was used to elucidate the differences in the global gene expression profiles of *C. indicum* (Nanjing), *C. indicum* (Nanchang), as well as their positive over-dominant hybrid line 98 and negative over-dominant hybrid line 95 under control and waterlogging stress conditions. Trend analysis was also conducted to decipher their gene expression patterns and explore the mechanism underlying the waterlogging tolerance heterosis in chrysanthemums. The study ultimately highlighted the significant role of transgressive up-regulation expressed genes and parental common up-regulated genes in the waterlogging tolerance heterosis of the hybrids. These findings provide new insights into the mechanism of heterosis and contribute to future heterosis breeding and molecular improvement of waterlogging tolerance of chrysanthemum.

Abbreviations

WI Waterlogging tolerance index

MFVW Membership function value of waterlogging tolerance traits

RPKM Reads per kilobase of transcript per million mapped reads

GO Gene ontology
KEGG Kyoto encyclopedia of genes and genomes
QTL Quantitative trait locus
NR Non-redundant protein sequence database
KOG Clusters of orthologous groups for eukaryotic complete genomes
FDR False discovery rate

Declarations

Acknowledgements

We wish to thank the high-performance computing platform of Bioinformatics Center, Nanjing Agricultural University for providing data analysis platform services.

Authors contributions

F.Z. and F.C. conceived and designed the project. L.Z., J.S., Y.N.Y. and X.Z. conducted the experiments. L.Z., J.S., and Y.Y. performed the data analysis and wrote the manuscript. J.S. and F.Z. revised the manuscript. F.Z., F.C., W.F., and Z.G. guided the research. All authors read and approved the final manuscript.

Funding

This work was financially supported by the National Key Research and Development Program of China (2022YFD1200500), the National Natural Science Foundation of China (31870306, 32102421), the “JBGS” Project of Seed Industry Revitalization in Jiangsu Province (JBGS[2021]020), Natural Science Foundation of Jiangsu Province (BK20210395), China Agriculture Research System (CARS-23-A18) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution.

Data availability

RNA-seq data of this study can be found at the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/bioproject/) with the BioProject ID PRJNA1013215.

Ethics approval and consent to participate

Field and laboratory studies were conducted by local legislation. This article does not contain any studies with human participants or animals and does not involve any endangered or protected species. The plant materials sampled and experiments performed in this research complied with institutional, national, and international guidelines and legislation.

Consent for publication
Not applicable.

Competing interests

The authors declare no competing interests.

References

Figures
Figure 1

Frequency distribution of seven waterlogging tolerance traits and box plot of MFVW in the F₁ population derived from *C. indicum* (Nanchang) and *C. indicum* (Nanjing). a Plant height. b root length. c Shoot fresh weight. d Root fresh weight. e Shoot dry weight. f Root dry weight. g score. The green and orange arrowheads in panel a-g indicate the two parents: NC, *C. indicum* (Nanchang); NJ, *C. indicum* (Nanjing). h Box plot showing the variation of MFVWs among the five waterlogging tolerance levels in F₁ lines.
Figure 2

Phenotypic characteristics of F$_1$ hybrids 95 and 98 and their parents. **a** plant phenotype of hybrid and parents after 9 days of waterlogging stress. Scale bar = 2 cm. **b-g** Statistical analysis of shoot height (SH), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), shoot dry weight (SDW), and root dry weight (RDW) of F$_1$ hybrid 95 and 98 and their parents. Similar alphabet shows a non-significant difference at $P \leq 0.05$ between cultivars. Data represent mean values ± SE. The control group is prefixed with C; The 9-day waterlogging stress treatment group is prefixed with W; NC indicates female parent *C. indicum* (Nanchang), and NJ indicates male parent *C. indicum* (Nanjing).
Figure 3

Basic analysis of differentially expressed genes. a, b Histogram and Venn diagrams showing the number of up-regulated and down-regulated differentially expressed genes among hybrids 95 and 98 and their parents under waterlogging stress and control conditions. c–e Venn diagram of up-regulated and down-regulated differentially expressed genes in paired comparison between hybrids and parents under control condition. f–h Venn diagram of up-regulated and down-regulated differentially expressed genes in paired comparison between hybrids and parents under waterlogging stress condition. The control group is prefixed with a capital letter C; The 9-day waterlogging stress treatment group is prefixed with a capital letter W; NC, C. indicum (Nanchang); NJ, C. indicum (Nanjing).
Figure 4

Basic analysis of differentially expressed genes and KEGG enrichment analysis of line 98 and its parents under waterlogging stress and control conditions. a, b Venn diagram of up-regulated and down-regulated differentially expressed genes. c KEGG enrichment map of 3,931 common DEGs of line 98. The numbers on the right side of the bar graph represent the number of genes contained in the corresponding KEGG pathways.
pathway; The numbers in parentheses represent the significance level of the corresponding KEGG pathway ($-\log_{10}(Qvalue)$).

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Additivity</th>
<th>Overdominance</th>
<th>paternal-expression dominance</th>
<th>maternal-expression dominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-NJ C-98 C-NC</td>
<td>profile0</td>
<td>2.3E-35</td>
<td>profile5 1.7E-132 1.00</td>
<td>profile3 0.00 profile4 1.00</td>
</tr>
<tr>
<td></td>
<td>profile7</td>
<td>1.00</td>
<td>profile2 1.00</td>
<td>profile6 1.00 profile1 0.03</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W-NJ W-98 W-NC</td>
<td>profile0</td>
<td>4.8E-11</td>
<td>profile5 1.6E-257 1.00</td>
<td>profile3 0.00 profile4 1.00</td>
</tr>
<tr>
<td></td>
<td>profile7</td>
<td>1.00</td>
<td>profile2 1.00</td>
<td>profile6 2.1E-13 profile1 9.9E-12</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-NJ C-95 C-NC</td>
<td>profile0</td>
<td>3.9E-241</td>
<td>profile5 1.00 profile2 1.00</td>
<td>profile3 0.00 profile4 1.00</td>
</tr>
<tr>
<td></td>
<td>profile7</td>
<td>1.00</td>
<td></td>
<td>profile6 1.00 profile1 6.1E-317</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W-NJ W-95 W-NC</td>
<td>profile0</td>
<td>3.3E-320</td>
<td>profile5 1.00 profile2 1.00</td>
<td>profile3 6.9E-294 profile4 1.4E-12</td>
</tr>
<tr>
<td></td>
<td>profile7</td>
<td>1.00</td>
<td></td>
<td>profile6 1.1E-196 profile1</td>
</tr>
</tbody>
</table>

Figure 5

Analysis of gene expression trends in hybrids compared to parents under control and waterlogging stress conditions. **a, b** The gene expression genetic patterns of line 98. **c, d** The gene expression genetic patterns of line 95. The corresponding P-value is marked in the expression pattern diagram, and the significant expression patterns ($P < 0.05$) are marked in gray. **e** Statistical analysis of the number of genes contained in each expression pattern. The control group is prefixed with a capital letter C; The 9-day waterlogging
stress treatment group is prefixed with a capital letter W; the numbers after C and W represent biological repeated numbers; NC, *C. indicum* (Nanchang); NJ, *C. indicum* (Nanjing).

Figure 6

Enrichment analysis of 5,069 unique transgressive up-regulation genes and expression heat map of 16 candidate genes. **a** Enrichment of GO biological process terms for 5069 unique transgressive up-regulation genes of line 98. Only the top 20 GO terms with the lowest Q value are shown. **b** KEGG enrichment of 5069 unique transgressive up-regulation expression genes in line 98. Only the top 20 pathways with the lowest Q value are shown. The numbers on the right side of the bar graph represent the number of genes contained in the corresponding GO terms. The numbers in parentheses represent the significance level of the corresponding GO terms (-Log_{10}(Qvalue)). **c** Expression heatmaps of 9 hormone response-related genes enriched in GO terms in response to the hormone. **d** Expression heatmaps of 7 plant stress resistance-related genes enriched in GO terms in response to stress. The legend at the right of the figure indicates the gene expression levels transformed by log_{10} (FPKM).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FIG.S1.png
- FIG.S2.png
• FIG.S3.png
• FIG.S4.png
• TableS1.xlsx
• TableS2.xlsx
• TableS3.xlsx
• TableS4.xlsx
• TableS5.xlsx
• TableS6.xlsx
• TableS7.xlsx
• TableS8.xlsx
• TableS9.xlsx
• TableS10.xlsx
• supplementarylegends.docx