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Abstract

The Benford Law is used world-wide for detecting non-conformance or
data fraud of numerical data. It says that the significand of a data set
from a universe is not uniformly, but logarithmically distributed. Espe-
cially, the first non-zero digit D1 is One with probability P (D1 = 1) =
log

10
2 ≈ 0.3. There are several tests available for testing Benford, the

best known are Pearson’s χ2-test, the Kolmogorov-Smirnov test and the
MAD-test suggested by Nigrini (2012). The latter test was enhanced to
significance tests in Kössler, Lenz and Wang (2021) and in Cerqueti and
Lupi (2021).
In the present paper we propose some tests, three of the four invari-
ant sum tests are new and they are motivated by the sum invariance
property of the Benford Law. Two distance measures are investi-
gated, Euclidean and Mahalanobis distance of the standardized sums
to the orign. We use the significands corresponding to the first
significant digit as well as the second significant digit, respectively.
Moreover, we suggest inproved versions of the MAD-test and obtain
critical values that are independent from the sample size. For
illustration the tests are applied to specifically selected data sets
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where prior knowledge is available about being or not being Ben-
ford. Furthermore we discuss the role of truncation of distributions.

Keywords: Benford Law; Goodness of Fit Test; Sum Invariance; Data
Fraud; Data Manipulation; Aggregation of p-values; Data Quality

1 Introduction

In many data sets the first non-zero digit d is not uniformly distributed but
obeys a logarithmic law. This fact was observed by Newcomb (1881) and Ben-
ford (1938). Conformance officers of big companies use the Benford Law for
unscrambling data manipulations mostly by applying the χ2 goodness-of-fit
test. Not every real or artificial data set follows the Benford Law, the question
arises how this can be tested in practice.

Berger and Hill (2011) as well as Nigrini (1992) analyzed the scale-, base-
and sum-invariance. The latter includes especially that the expected sum of
all the significands with leading digit 1 is equal to the sums of the significands
of the remaining digits 2, ..., 9, respectively.

In the present article we apply the sum invariance properties of Benford’s
Law for constructing several further tests of significance. Our test statistics are
suitable linear combinations of squares of suitably chosen statistics, and they
are, under the null hypothesis, asymptotically or approximately χ2-distributed.

Emphasis is especially taken on the second significant digit. A χ2 goodness-
of-fit test for the second digit was already suggested, cf. eg. Diekmann (2007)
[7]. We suggest some further tests based on properties of the second significant
digit. In section 2.1 we present some basic properties and some statistical
tests for testing Benford that are applied later on. In section 2.2 we recall
the χ2 goodness-of-fit test, the Kolmogorov-Smirnov test, and apply them to
the first and second significant digit. Moreover, the MAD-test is modified to
obtain critical values that do not depend on the sample size. In section 2.3
we introduce four variants of the invariant sum test, three of them are new,
and in section 3 we illustrate the considered tests on some chosen data sets. In
section 4 we summarize and discuss the results. All mathematical derivations
are deferred to the appendices.

2 Methodology

2.1 Some Basics of the Benford Law

Benford’s law makes claims about the leading digits of a number regardless of
its scale. Closely connected to the leading digits are the terms of significands
and significant digits, which formal notion is given in Definition 1.
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Definition 1 (Significant digits and the significand, Berger and Hill (2015)) Let
x ∈ R. The first significant digit D1(x) = d of x is given by the unique integer
d ∈ {1, 2, . . . , 9} where 10kd ≤ |x| < 10k(d+ 1) with an integer k.
The m-th significant digit Dm(x) = d with m ≥ 2 can recursively be determined by

10k
(

∑m−1
i=1 Di(x)10

m−i + d
)

≤ |x| < 10k
(

∑m−1
i=1 Di(x)10

m−i + d+ 1
)

where d ∈ {0, 1, . . . , 9} and k ∈ Z.
The significand S(x) of x ∈ R is defined as S(x) = t with t ∈ [1, 10) where

|x| = 10kt if x ̸= 0, else S(x) := 0.

Next, we can state when the significand and the first significant digit of a
random variable X are distributed according to Benford’s law.

Definition 2 (Benford’s Law for the significand, strong form of Benford’s law) The
significand S(X) follows Benford’s law if

P (S(X) ≤ t) = log t for all t ∈ [1, 10). (1)

Definition 3 (Benford’s Law for the first significant digit, weak form of Benford’s
law) The probability of the first significant digit d ∈ {1, 2, 3...9} is P (D1(X) = d) =
log(1 + d−1).

In Table 1, we give the distribution of the leading digit D1. In the following

Table 1 Probabilities P (D1(X) = d1) according to Benford’s Law

d1 1 2 3 4 5 6 7 8 9

P (d1) 0.301 0.176 0.124 0.096 0.079 0.066 0.057 0.051 0.045

we call a random variableX Benford distributed iff (1) is satisfied, and we write
X ∼ Benford. Benford distributed random variables own some remarkable
properties. In the present article we focus on the sum-invariance property.
Sum-invariance specifically means that, if summing all significands with the
first digit 1 we expect the same sum as summing all significands with the first
digit 2, 3 etc., i.e. their expectations are the same. For further explanations and
proofs we refer to Berger and Hill (2011, 2015), Pinkham (1961) and Nigrini
(1992).

2.2 Classical tests against Benford and their

modifications

Our test problem is in general

H0 : X ∼ Benford against H1 : X ≁ Benford.
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Note, H1 is a very large class of alternatives.
The χ2-test is one of the most popular goodness-of-fit tests, and it was orig-

inated by Pearson (1900). The χ2-test statistic measures the relative distance
between the relative frequencies nj/n and the probabilities pj = P (D1 = dj)
for all j = 1, 2, . . . , 9 under the Benford Law, and it is defined by

χ2 = n

9
∑

j=1

(nj/n− pj)
2

pj
=

9
∑

j=1

(nj − npj)
2

npj
. (2)

The χ2-test rejects the null hypothesis H0, if χ
2 > χ2

1−α,8, where χ2
1−α,8 is

the (1−α) quantile of the χ2 distribution with eight degrees of freedom. Note
that the χ2 goodness-of-fit test is an approximate test, the statistic (2) is
asymptotically χ2-distributed with eight degrees of freedom.

Since some data fraudsters may know Benford’s Law for the first significant
digit some authors suggest to use the second significant digits instead of the
first one and to apply a goodness-of-fit test to them, cf. eg. Diekmann (2007)
or Hein et. al (2012) for scientific fraud or Mebane (2010) for election fraud.

The probability of the second significant digit d ∈ {0, 1, 2, . . . , 9} is

P (D2(X) = d) =
∑9

j=1 log10(1 +
1

10j+d ), and it is presented in Table 2. Note
that according to rounding effects, the probabilities do not exactly sum up to
one. We abbreviate both variants of the χ2 goodness-of-fit test by GoF1 and
GoF2, respectively.

Table 2 Probabilities P (D2(X) = d2) according to Benford’s Law

d2 0 1 2 3 4 5 6 7 8 9

P (d2) 0.1197 0.1139 0.1088 0.1043 0.1003 0.0967 0.0934 0.0904 0.0876 0.0850

An alternative goodness-of-fit test is the Kolmogorov-Smirnov (KS) test,
cf. Kolomogorov (1933), Smirnov (1948) and Darling (1957). The idea of this
test is to compare the empirical cumulative distribution function (cdf) Fn(x)
with a fully specified theoretical one, F0(x). The KS-tests uses the norm

dmax = supx∈R|Fn(x)− F0(x)|. (3)

Since we investigate tests based on the first or second significant digit, respec-
tively, we apply the KS-test first to the first significant digit according to the
weak form of Benford’s Law (cf. Definition 3). Secondly we apply the test to
the second significant digit.

The critical values of the KS test were completely tabulated by Miller
(1956)[16] for underlying continuous distributions. Morrow (2014)[17] com-
puted tighter bounds by Monte Carlo simulation for the discrete Benford
distribution of the first digit, cf. Table 1.
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For the KS-test applied to the second significant digit, cf. Table 2, the
(asymptotic) critical values are approximated by simulation. To do this we
simulate from a (continuous) Benford distribution (cf. Definition 2). Then
we put the observations into bins 0, . . . , 9 according to the the definition of
the second (significant) digit. Taking a large sample size of n = 10, 000 and
repeating this M = 10, 000 times we get a sufficiently accurate estimation
of the asymptotic critical values. Some critical values are presented in Table
3. We abbreviate the KS-tests, based on the first or second significant digit,
respectively, by KS1 and KS2.

Table 3 Asymptotic critical values cKS2,1−α

and cMAD2,1−α of the KS2 and MAD2 test

α

0.01 0.05 0.1

KS2 1.46 1.19 1.05
MAD2 3.92 3.42 3.18

As another alternative goodness-of-fit test we suggest a test that is based
on the statistic

MAD =
√
n

k
∑

j=1

|nj/n− pj |, (4)

which we call MAD-test. It uses a suitably scaled sum of the absolute devi-
ations between the relative frequencies and the Benford probabilities for the
first digit. The idea is due to Nigrini (2012), who used a slightly different form,

MADN =
∑k

j=1
|nj/n−pj |

k , where the index N stays for Nigrini. In its original
version it is not a statistical test in its proper sense with acceptance/rejection
domains, but maps MADN to linguistic terms of conformance with Benford’s
law, cf. Nigrini (2012). Moreover, the MADN -test depends on the current
sample size. In our new version we introduced the factor

√
n to avoid this

disadvantage. This property is illustrated in Table 4. The motivation for intro-
ducing this factor is that the relative frequencies tend to the true probability
with

√
n rate. Recently, Cerqueti and Lupi (2021) [18] obtained the asymptotic

distribution of the MAD statistic (4). From that we computed the asymptotic
critical values, cf. Table 4. The convergence of the finite critical values to the
asymptotic critical value is rather fast.

Evidently, the critical values are not very sensitive to the sample sizes. For
simplicity, we use in our study the critical value cMAD,1−α = 3.60 for α = 0.01.

The MAD-test may also be applied to the second significant digit. Some
(asymptotic) critical values are presented in Table 3. The critical values are
obtained in an analogous way as that for the tests KS1 and KS2. We abbreviate
both variants, first and second significant digit, by MAD1 and MAD2.

One may ask why we do not use the first two digits together. This idea
was suggested in Diekmann (2007) [7], cf. also Nigrini (2012) [1]. However,
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Table 4 Critical values cMAD,1−α of the MAD test (1st digit)

α

n 0.1 0.05 0.01
72 2.883 3.111 3.618

369 2.896 3.140 3.683
1000 2.905 3.156 3.683
3998 2.895 3.159 3.663
7022 2.881 3.142 3.597

∞ 2.869 3.084 3.485

we consider data sets with moderate sample sizes, nearly between N=200 and
n=4000. If we use the first two digits together then we have altogether 90 bins
and therefore very much bins with very few or even no observations. Therefore
this idea is not applicable here.

Of course, there are other possibilities to test against Benford, despite of
the invariant sum tests that we introduce in the next section. We mention only
two recently published ideas. Kazemitabar and Kazemitabar (2022) [19] make
use of the alternative definition of Benford’s Law saying that the logarithms
of the significands are uniformly distributed. Cerqueti and Maggi (2021) [20]
discuss some distance measures, especially the sum of squares deviation and
the MAD.

2.3 Invariant Sum tests

2.3.1 General Description

In this section we apply the invariant-sum property of Benford, cf. Nigrini
(1992), Allaart (1997), and Berger and Hill (2015, theorem 5.18). To do this
we define the sets C(d1, . . . , dm) = {x ∈ [1, 10) : Dj(x) = dj for j = 1, . . . ,m},
C1(d1) = {x ∈ [1, 10) : D1(x) = d1} = [d1, d1 + 1) and C2(d2) = {x ∈
[1, 10) : D2(x) = d2} =

⋃9
j=1[j +

d2

10 , j +
d2+1
10 ). C(d1, . . . , dm) is the set of all

significands with first m digits d1, . . . , dm, C1(d1) is the set of all significands
with first digit d1, and C2(d2) is the set of all significands with second digit d2.

Proposition 1 (Sum Invariance (Berger and Hill (2015), Nigrini (2012),
Allaart (1997)) A random variable X is Benford if and only if X has sum

invariant significant digits, i.e. for every fixed m,m ∈ N, the expectations

E(S(X)✶C(d1,...,dm)(S(X))) are the same for all tuples (d1, . . . , dm), d1 ̸= 0 of digits.

Therefore one necessary condition for X to be Benford is that the expec-
tation of the sum of all significands with the first digit 1, 2, 3, ..., 9 is the same.
The same is true for the expectation of the sum of all significands with second
digit 0, 1, . . . , 9.

Let us start with the first significant digit. Denote by θ =
E
(

S(X)✶C1(i)(S(X))
)

= 1
ln 10 the expectation of the random variable
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S(X)✶C1(d1)(S(X)) if Benford is true. Let θi be the true expectation of
S(X)✶C1(i)(S(X)) for the underlying distribution.

Then our first test problem is

H0,1 : θ1 = . . . = θ9 = θ against H1,1 : ∃j ∈ {1, . . . , 9} : θj ̸= θ

Denote the sums of the significands of the observations Xi in the interval
[j, j + 1)

Sum1,j =

n
∑

i=1

S(Xi)✶C1(j)(S(Xi)).

Since we have sums of n independent identically distributed random variables
S(Xi)✶C1(j)(S(Xi)), i = 1, . . . , n, and they have finite variance, we may assume
that they are approximately normally distributed, and the standardized sums

R1,j =
Sum1,j − E(Sum1,j)

√

var(Sum1,j)

are (approximately) standard normal. The expectations E(Sum1,j) = n
ln 10 ,

variances var(Sum1,j) and covariances are derived in the appendix A.
Let be R1 = (R1,1, . . . , R1,9) and ΣR1

be the correlation matrix of the
vector R1of standardized sums under the null. We consider the following two
types of test statistics

IS1,E = R′
1R1 and IS1,M = R′

1Σ
−1
R1

R1

where IS stays for Invariant Sum. The statistic IS1,E is the Euklidean dis-
tance of the vector R1 of standardized sums from zero, and IS1,M is the
corresponding Mahalanobis distance.

The question may come up why we use both distance measures, Euclidean
and Mahalanobis. The two distances are generally different, and so are the
corresponding test statistics. Therefore there may be alternative directions for
which the Euclidean distance is better than the Mahalanobis distance and vice
versa.

Theorem 2 Under H0,1 the statistic IS1,M is asymptotically χ2-distributed with

nine degrees of freedom, and IS1,E is is approximated by a weighted sum of

independent χ2-distributed random variables, each with one degree of freedom.

The proof of the theorem can be found in appendix B.
The null hypothesis H0,1 is rejected in favour of H1,1 if IS1,M > χ2

1−α,9 or if
IS1,E > cIS1,E ,1−α, respectively, where χ2

1−α,9 is the 1− α-quantile of the χ2-
distribution with nine degrees of freedom and cIS1,E ,1−α is the corresponding
quantile of the null distribution of IS1,E . The latter quantile will be deter-
mined by approximating the null distribution of IS1,E by a suitably scaled
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Table 5 Simulated levels of significance under H0,1 and
H0,2, respectively, of the invariant sum tests, for various
sample sizes, nominal level of significance α = 0.01.

n 25 100 400 900

IS1,E 0.012 0.010 0.011 0.011
IS1,M 0.011 0.009 0.011 0.011

IS2,E 0.023 0.012 0.015 0.010
IS2,M 0.023 0.011 0.013 0.009

and shifted χ2-distribution, see appendix C. Table 5 gives simulated levels of
significance of the two tests. Even for small sample sizes they are close to
the nominal value of α = 0.01. Note that statistic IS1,M was independently
introduced by Barabesi, Cerasa, Cerioli and Perrotta (2021) .

Now, consider the second significant digit. Denote by ϑ =
E
(

S(X)✶C2(j)(S(X))
)

= 9
10 ln 10 the expectation of S(X)✶C2(j)(S(X)) if

Benford is true. Let ϑj the true expectation of S(X)✶C2(j)(S(X)) for the
underlying distribution.

Then our second test problem is

H0,2 : ϑ0 = . . . = ϑ9 = ϑ against H1,2 : ∃j ∈ {0, . . . , 9} : ϑj ̸= ϑ

Denote the sums of the significands in C2(j) of observations Xi

Sum2,j =

n
∑

i=1

S(Xi)✶C2(j)(S(Xi)).

Again, we have sums of n independent identically distributed random variables
S(Xi)✶C2(j)(S(Xi)), i = 1, . . . , n, and they have finite variance, we may assume
that they are approximately normally distributed, and the standardized sums

R2,j =
Sum2,j − E(Sum2,j)

√

var(Sum2,j)

are (approximately) standard normal. The expectations E(Sum2,j) =
9n

10 ln 10 ,
variances var(Sum2,j) and covariances are derived in the appendix A.

Let be R2 = (R2,0, . . . , R2,9) and let ΣR2
be the correlation matrix of the

sums vector R2 under the null. Similarly as above we consider the following
two types of test statistics

IS2,E = R′
2R2 and IS2,M = R′

2Σ
−1
R2

R2

Theorem 3 Under H0,2 the statistic IS2,M is asymptotically χ2-distributed with

ten degrees of freedom, and IS2,E is a weighted sum of independent χ2-distributed

random variables, each with one degree of freedom.
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Table 6 p-values for the tests IS1,E , IS1,M , IS2,E , and IS2,M applied on our
illustrative data sets

Data sets

Fibonacci Primes Population Share Prices
Test \ n 1000 1000 3998 369

IS1,E 1.00 0.00 0.00 0.89
IS1,M 1.00 0.00 0.00 0.88

IS2,E 1.00 0.02 0.00 0.26
IS2,M 1.00 0.00 0.00 0.33

The proof of the theorem can be found in appendix B.
Table 5 gives simulated levels of significance of the two tests. Again, even

for small sample sizes they are close to the nominal value of α = 0.01.

3 Illustration

We illustrate our methods by four carefully selected data sets. The first two
data sets are chosen to illustrate that our tests really yield results that are due
to number theory. The other two represent empirical data sets.

#1: Fibonacci (n = 1000)
The Fibonacci numbers are proved to be Benford distributed, cf. e.g. Berger
and Hill (2015).

#2: Prime Numbers (n = 1000)
Opposite to the Fibonacci numbers the prime numbers are known to be not
Benford, cf. e.g. Berger and Hill (2015)[8].

#3: Population (n = 3998)
This data set consists of the number of inhabitants in cities worldwide that
are larger than 100.000 people [23]. It illustrates that data from certain
truncated distributions are not Benford, cf. Appendix D.

#4: Share Prices (n = 369)
The data include share prices as a mixture from international stock market
indices [24]. Such data sets are assumed to behave like Benford, cf. Berger
and Hill (2015, section 8.3).

First, we study the behaviour of each of the four invariant sum tests.
The level of significance is α = 0.01. The nine values of the statistics R1,i,
i = 1, . . . , 9 as well as the ten values of the statistics R2,i, i = 0, . . . , 9 are
summarized in Figure 1. We see that the values of R1,j for the Share Prices
and for the Fibonacci numbers are very close to zero indicating the Benford
property. For the datasets Population and Prime Numbers the boxes are thick
and far from zero indicating non-Benford. For the second significant digit it is
similar but sometimes less clear. However, for Share Prices most of the values
R2,j are less than one resulting in small values for IS2,E and IS2,M . Table 6
contains the p-values for the tests IS1,E , IS1,M , IS2,E , and IS2,M .
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Fig. 1 Plots summarizing the values for the statistics R1,j and R2,j , respectively.

Note that the values are rounded. This way, the entries especially for p-
values may become 1.00 or 0.00. The p-value of (nearly) 1.00 of Fibonacci
numbers indicates the well-known fact that they are nearly perfect Benford.
The (rounded) p-value of 0.00 signals that prime numbers are not Benford.
These two data sets, Fibonacci and Prime numbers, are selected for illustrating
that all the tests considered yield a decision that confirms mathematical theory.
Note that for the Fibonacci and prime numbers we have some few entries
with only one digit. As they represent structural non-existing items they are
removed when testing for the second significant digit.

The tests confirm the underlying theories, i.e number theory, Berger and
Hill’s theorem on mixtures and the conjecture of bounded domains in Appendix
D. The data set #1 (Fibonacci) is clearly Benford. Furthermore, data set #3
(Population) is clearly not Benford. For an explanation based on trimming of
values or bounded domains we refer to the appendix D. Prime numbers (data
set #2) are known to be not Benford which is clearly confirmed by the three
tests IS1,E , IS1,M and IS2,M , however, the test IS2,E does not reject Benford
at the α = 0.01 level indicating that IS2,E has less power. The data set #4
(Share Prices) gives evidence of being Benford.

The results for all tests considered, KS1, KS2, GoF1, GoF2, MAD1, MAD2,
IS1,E , IS1,M , IS2,E and IS2,M , are presented in Table 7. Underlined values
mean ’rejection’, given α = 0.01. The classical tests essentially confirm the
results of the invariant sum tests.

Note that when testing primes most of the tests based on the second signifi-
cant digit do not reject Benford due to less power. However, if we inccrease the
sample size and take all prime numbers between 11 and 100,000 then Benford
will be rejected also by all the tests based on the second significant digit.

4 Summary

We consider several statistical tests of the Benford Law, some few are known,
most are new. Completely new tests are that based on the second significant
digit, except test GoF2. The various variants of the invariant sum tests are
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Table 7 Critical values (α = 0.01) and observed values of the various Goodness of Fit tests

test Data sets

critical Population Share Prices Fibonacci1 Primes1

value n=3998 n=369 n=1000 n=1000

KS1 1.422 15.4 0.36 0.03 5.41
KS2 1.46 5.00 0.58 0.20 1.41

GoF1 20.09 1090 3.45 0.17 299.9
GoF2 21.67 136 9.06 0.58 11.22

MAD1 3.60 30.7 1.23 0.23 14.9
MAD2 3.92 10.0 2.60 0.79 2.91

IS1,E 22.64 1274 4.10 0.18 332.8
IS1,M 21.67 1293 4.51 0.34 303.2
IS2,E 23.30 308 12.1 0.69 21.6
IS2,M 23.11 918 11.3 0.65 54.7

1 for the tests KS2, GoF2, MAD2, IS2,E , and IS2,M we removed all entries with only one
digit.
2 the critical value for the KS1-test is obtained by Morrow (2014)

appealing as they apply the full significant of the data. Therefore the Invariant
Sum tests use the full information in the data.

We have shown that all the tests give correct results for data sets for which
there is theory whether the Benford property is true or not, cf. Tables 7 and
8. The last line in Table 9 presents the Bonferroni adjusted p-values and it is
intended only for a very quick impression to the reader. We see that data sets
#1 and #4 are evidently Benford, the other two are not.

Table 8 p-values of the various test statistics

test Data sets

Population Share Prices Fibonacci1 Primes1

n=3998 n=369 n=1000 n=1000

KS1 0.000 0.890 1.000 0.000
KS2 0.000 0.608 0.968 0.013

GoF1 0.000 0.903 1.000 0.000
GoF2 0.000 0.432 1.000 0.261

MAD1 0.000 0.946 1.000 0.000
MAD2 0.000 0.351 1.000 0.192
IS1,E 0.000 0.888 1.000 0.000
IS1,M 0.000 0.875 1.000 0.000
IS2,E 0.000 0.261 1.000 0.017
IS2,M 0.000 0.334 1.000 0.000

BON 0.000 1.000 1.000 0.000

2 for the tests KS2, GoF2, MAD2, IS2,E , and IS2,M we removed all entries with only one
digit.
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Table A1 Variances of S(X)✶C(d1)(S(X)) if X is Benford.

first digit d1

1 2 3 4 5 6 7 8 9

0.463 0.897 1.331 1.766 2.200 2.634 3.069 3.503 3.937

Table A2 Correlation matrix Σ1,R of Sum1,j of the Invariant sum tests IS1,E and
IS1,M if X is Benford.

1. -0.293 -0.240 -0.209 -0.187 -0.171 -0.158 -0.148 -0.140
-0.293 1. -0.173 -0.150 -0.134 -0.123 -0.114 -0.106 -0.100
-0.240 -0.173 1. -0.123 -0.110 -0.101 -0.093 -0.087 -0.082
-0.209 -0.150 -0.123 1. -0.096 -0.087 -0.081 -0.076 -0.072
-0.187 -0.134 -0.110 -0.096 1. -0.078 -0.073 -0.068 -0.064
-0.171 -0.123 -0.101 -0.087 -0.078 1. -0.066 -0.062 -0.059
-0.158 -0.114 -0.093 -0.081 -0.073 -0.066 1. -0.058 -0.054
-0.148 -0.106 -0.087 -0.076 -0.068 -0.062 -0.058 1. -0.051
-0.140 -0.100 -0.082 -0.072 -0.064 -0.059 -0.054 -0.051 1.

Statements and Declarations

There are no conflicts of interest.

Appendix A

Expectations, variances and covariances of the significands with
fixed first or fixed second digit, respectively. If the random variable
X is Benford, then it has sum invariant significant digits. Let d1 ∈ {1, 2, ..., 9}
be given, then we have

E
(

S(X)✶C(d1)(S(X))
)

=

∫ d1+1

d1

t · 1

t ln 10
dt =

1

ln 10

E(S(X)✶C(d1)(S(X)))2 =

∫ d1+1

d1

t2 · 1

t ln 10
dt =

2d1 + 1

2 ln 10

var
(

S(X)✶C(d1)(S(X))
)

=
2d1 + 1

2 ln 10
−
( 1

ln 10

)2

cov
(

S(X)✶C(d1)(S(X)), S(X)✶C(d′

1
)(S(X))

)

= − 1

(ln 10)2
if d1 ̸= d′1

which are already well-known results, cf. Barabesi, Cerasa, Cerioli and Perrotta
(2021).

The variances of S(X)✶C(d1)(S(X)) are tabulated in table A1 and the
correlation matrix Σ1,R of the vector R1 is tabulated in table A2.
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Table A3 Variances of S(X)✶C2(d2)(S(X)) if X is Benford.

second digit d2

0 1 2 3 4 5 6 7 8 9

1.821 1.860 1.899 1.938 1.977 2.017 2.056 2.095 2.134 2.173

Now, let d2 ∈ {0, 1, 2, ..., 9} be given. Recall the sets C2(d2) = {x ∈ [1, 10) :
D2(x) = d2}. Then we have

E
(

S(X)✶C2(d2)(S(X))
)

=

9
∑

d1=1

∫ d1+
d2+1

10

d1+
d2
10

t · 1

t ln 10
dt

=
1

ln 10

9
∑

d1=1

(

d1 +
d2 + 1

10
− (d1 +

d2
10

)
)

=
9

10 ln 10

E
(

S(X)✶C2(d2)(S(X))
)2

=

9
∑

d1=1

∫ d1+
d2+1

10

d1+
d2
10

t2 · 1

t ln 10
dt

=
1

2 ln 10

9
∑

d1=1

(

(d1 +
d2 + 1

10
)2 − (d1 +

d2
10

)2
)

=
1

2 ln 10

9
∑

d1=1

( 2

10
(d1 +

d2
10

) +
1

102

=
1

200 ln 10

9
∑

d1=1

(

20 · d1 + 2d2 + 1
)

=
9(101 + 2d2)

200 ln 10

var
(

S(X)✶C2(d2)(S(X))
)

=
9(101 + 2d2)

200 ln 10
−
( 9

10 ln 10

)2

The variances of S(X)✶C2(d2)(S(X)) are tabulated in table A3.
To obtain the covariance note that the sets C2(d2) and C2(d

′
2) are disjunct

if d2 ̸= d′2, and therefore

E

(

(S(X)✶C2(d2)(S(X)) · (S(X)✶C2(d′

2
)(S(X))

)

= 0 if d2 ̸= d′2

Therefore the covariance equals

cov
(

S(X)✶C2(d2)(S(X)), S(X)✶C2(d′

2
)(S(X))

)

= − 81

(10 ln 10)2
if d2 ̸= d′2.

Therefore the correlation matrix ΣR,2 of the vector R2 can be computed, see
table A4.
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Table A4 Correlation matrix Σ2,R of Sum2,j of the Invariant sum tests IS2,E and
IS2,M if X is Benford.

1. -0.081 -0.080 -0.080 -0.079 -0.078 -0.077 -0.077 -0.076 -0.075
-0.081 1. -0.080 -0.079 -0.078 -0.077 -0.077 -0.076 -0.075 -0.075
-0.080 -0.080 1. -0.078 -0.077 -0.077 -0.076 -0.075 -0.074 -0.074
-0.080 -0.079 -0.078 1. -0.077 -0.076 -0.075 -0.074 -0.074 -0.073
-0.079 -0.078 -0.077 -0.077 1. -0.075 -0.074 -0.074 -0.073 -0.072
-0.078 -0.077 -0.077 -0.076 -0.075 1. -0.074 -0.073 -0.073 -0.072
-0.077 -0.077 -0.076 -0.075 -0.074 -0.074 1. -0.072 -0.072 -0.071
-0.077 -0.076 -0.075 -0.074 -0.074 -0.073 -0.072 1. -0.071 -0.070
-0.076 -0.075 -0.074 -0.074 -0.073 -0.072 -0.072 -0.071 1. -0.070
-0.075 -0.075 -0.074 -0.073 -0.072 -0.072 -0.071 -0.070 -0.070 1.

Appendix B

Proof of theorems 2 and 3.

Proof of theorem 2.
To obtain the asymptotic distributions of IS1,E and IS1,M let U1 be the
matrix of Eigenvectors of the asymptotic correlation matrix Σ1,R. Let Λ1 =
diag(λ1,1, . . . , λ1,9), where the λ1,j , j = 1, . . . , 9, are the Eigenvalues of Σ1,R.

Consider the random vector

W∗
1 = Λ

− 1
2

1 U′
1R1.

Obviously, cov(W∗
1) = Λ

− 1
2

1 U′
1Σ1,RU1Λ

− 1
2

1 = I1, where I1 is the (9 × 9) iden-
tity matrix. Let 01 be the null vector of dimension 9. Therefore W∗

1 ∼ N (01, I1),
asymptotically, under H1,0. This way we have

IS1,E = R′
1R1 = R′

1U1Λ
− 1

2

1 Λ1Λ
− 1

2

1 U′
1R1 = W∗′

1 Λ1W
∗
1 =

9
∑

j=1

λ1,jW
2
1,j

IS1,M = R′
1Σ

−1
1,RR1 = R′

1U1Λ
−1
1 U′

1R1 = R′
1U1Λ

−1/2
1,R Λ

−1/2
1 U′

1R1 = W∗′

1 W∗
1 =

9
∑

j=1

W
2
1,j

where the W1,j are the components of the vectors W∗
1. Therefore the statistics

IS1,E are, under H0,1, asymptotically weighted sums of independent χ2
1 distributed

random variables, where the weights λ1,j are the Eigenvalues of Σ1,R. Since the
statistics IS1,M are asymptotically sums of nine squares of independent standard

normal random variables, we have IS1,M ∼ χ2
9. □

Proof of theorem 3
To obtain the asymptotic distributions of IS2,E and IS2,M let U2 be the
matrix of Eigenvectors of the asymptotic correlation matrix Σ2,R. Let Λ2 =
diag(λ2,0, . . . , λ2,9), where the λ2,j , j = 0, . . . , 9, are the Eigenvalues of Σ2,R.

Consider the random vector

W∗
2 = Λ

− 1
2

2 U′
2R2.
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Table C5 Eigenvalues of the correlation matrix Σ1,R in the Invariant Sum Tests IS1,E

ans IS1,M

1.329 1.181 1.125 1.096 1.078 1.066 1.057 1.050 0.019

Table C6 Eigenvalues of the correlation matrix Σ2,R in the Invariant Sum Tests IS2,E

ans IS2,M

1.082 1.080 1.078 1.077 1.075 1.074 1.072 1.071 1.069 0.323

Obviously, cov(W∗
2) = Λ

− 1
2

2 U′
2Σ2,RU2Λ

− 1
2

2 = I2, where I2 is the (10× 10) identity
matrix. Let 02 be the null vector of dimension 10. Therefore W∗

2 ∼ N (02, I2),
asymptotically, under H2,0. This way we have

IS2,E = R′
2R2 = R′

2U2Λ
− 1

2

2 Λ2Λ
− 1

2

2 U′
2R2 = W∗′

2 Λ2W
∗
2 =

9
∑

j=0

λ2,jW
2
2,j

IS2,M = R′
2Σ

−1
2,RR2 = R′

2U2Λ
−1
2 U′

2R2 = R′
2U2Λ

−1/2
2,R Λ

−1/2
2 U′

2R2 = W∗′

2 W∗
2 =

9
∑

j=0

W
2
2,j

where the W2,j are the components of the vectors W∗
2. Therefore the statistics

IS2,E are, under H0,2 asymptotically weighted sums of independent χ2
1 distributed

random variables, where the weights λ2,j are the Eigenvalues of Σ2,R. Since the
statistics IS2,M are asymptotically sums of ten squares of independent standard

normal random variables, we have IS2,M ∼ χ2
10. □

Appendix C

Approximation of the weighted sums by a χ2 distributed random
variable. The quadratic forms R′

kRk, k = 1, 2, will be approximated by
(possibly noncentral) χ2 distributed random variables Zk suitably shifted and
scaled according to the idea of Liu, Tang and Zhang (2009). It is based on
the moment equating method. The degrees of freedom, the location and scale
parameters and the noncentrality parameter are to be determined. Recall that
λ1,j , j = 1, . . . , 9 are the Eigenvalues of the correlation matrixΣ1,R. The Eigen-
values can be found in Table C5. Analogously, recall that λ2,j , j = 0, . . . , 9 are
the Eigenvalues of the correlation matrix Σ2,R. The Eigenvalues can be found
in Table C6.

Denote

c1,r =

9
∑

j=1

λr
1,j , c2,r =

9
∑

j=0

λr
2,j , r = 1, 2, 3, 4.

Consider first the case of the first significant digit (k=1), and denote

s1,1 =
c1,3

c
3/2
1,2

= 0.357 and s1,2 =
c1,4
c21,2

= 0.128.
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The approximation generally depends on whether we have s21,1 < s1,2 or
not. In our case s21,1 < s1,2 is true and applying the approximation of Liu,
Tang and Zhang (2009) we obtain that the noncentrality parameter of the
χ2 approximation is zero, and the degrees of freedom df1, and the regression
coefficients β1,0 and β1,1 are

df1 =
1

s21,1
= 7.84619

β1,0 = −
c21,2
c1,3

+ c1,1 = 0.0780258

β1,1 =
c1,3
c1,2

= 1.13711

The approximation of our statistic IS1,E is then

IS1,E = R′
1R1 ≈ β1,1Z1 + β1,0, where Z1 ∼ χ2

df1

Therefore, if we choose α = 0.01, the critical value of the test IS1,E is
dcrit,IS1,E

= β1,1χ
2
1−α,df1

+ β1,0 = 22.6435, which is close to the critical value

dcrit,IS1,M
= χ2

0.99,9 = 21.666 of the IS1,M -test.
In the case of the second significant digit (k=2) denote

s2,1 =
c2,3

c
3/2
2,2

= 0.3334 and s2,2 =
c2,4
c22,2

= 0.111117.

Again, we have the simpler case, now s22,1 < s2,2, and the χ2 approximation
is computed in the same way as above,

df2 =
1

s22,1
= 8.99964 ≈ 9

β2,0 = −
c22,2
c2,3

+ c2,1 = 0.000128938 ≈ 0

β2,1 =
c2,3
c2,2

= 1.07527

The approximation of our statistic IS2,E is then

IS2,E = R′
2R2 ≈ β2,1Z2 + β2,0, where Z2 ∼ χ2

df2

Therefore, if we choose α = 0.01, the critical value of the test IS2,E is approx-
imately dcrit,IS2,E

= β2,1χ
2
1−α,df2

+ β2,0 = 23.2963, which is very close to the

critical value dcrit,IS2,M
= χ2

0.99,10 = 23.2093 of the IS2,M -test.
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Appendix D

On the (non-existing) Benford property for conditional distributions
conditioned under X > t with large t and with small probability
mass P (X > t). This section is intended to illustrate that data set Popula-
tion is not Benford. Recall that only cities with more than 100,000 inhabitants
are considered. Moreover, there are much less cities with more than 100,000
inhabitants than that with less inhabitants. Therefore, for the random variable,
say X, with support [a,∞) we have an underlying conditional distribution,
conditioned under X > 100, 000. Note that the starting point a of the distri-
bution is small in our example we have, perhaps a = 1 (inhabitant) or a = 10
or a = 100), a ≪ 100, 000.

Now, let t be a large threshold (t = 100, 000 in our example), and let F (x)
be a continuous cdf with positive density on support [a,∞) where a ≪ t is
some positive real number much less than t and most of the probability mass
of the random variable X is below the threshold t. Then the conditional cdf
F (x|t) = P (X < x|X > t) = F (x)−F (t)

1−F (t) may be approximated by the cdf of a

Generalized Pareto Distribution (GPD), as a result of the Pickands-Balkema-
de Haan theorem, cf. Pickands (1975, theorem 7) or Balkema and de Haan
(1974). Let x = t+ y, y ≥ 0.

The cdf of the GPD G(y; k, σ) is given by

GPD(y; k, σ) =

{

1− e−
y

σ if k = 0

1−
(

1− ky
σ

)
1
k if k ̸= 0,

where k is the shape parameter and σ is the scale parameter. The range of
the GPD is given by 0 < y < ∞ if k ≤ 0, and 0 < y < σ

k if k > 0, cf. e.g.
Smith (1987, p.1175). The parameters k and σ are given by the extreme value
theory, cf. e.g. Falk (1987) or Kössler (1999). Note that the parameter −k is
sometimes called the extreme value index of the underlying distribution, cf. de
Haan and Ferreira (2006).

Since the cdf F has support [a,∞) and we consider t ≫ a > 0 we only
have one of the cases k ≤ 0. We assume a polynomial decreasing density for
x → ∞. That is why we may assume that the parameter k < 0. Then we
have σ = −kt, cf. e.g. Falk (1987) or Kössler (1999). The conditional cdf
F (x|t) = F (t+ y|t) = Ft(y) is approximated by

Ft(y) = Ft(x− t) ≈ 1−
(

1 +
y

t

)
1
k = 1−

(x

t

)
1
k , (x > t, y > 0)

which is a Pareto cdf with scale parameter t and shape parameter γ := 1
k .

To obtain the probability P (D1(X) = 1)|X > t) that the first significand has
value one, let, for simplicty and without loss of generality, be t = 10m (in our
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example we have m = 5). Let G(x) := 1−
(

x
t

)γ
. We have

P (D1(X) = 1|X > t) ≈
∞
∑

j=−∞

(

G(2 · 10j)−G(10j)
)

=

∞
∑

j=m

(

(10j−m)γ − (2 · 10j−m
)γ
)

=

∞
∑

j=0

(

(10j)γ − (2 · 10j
)γ
)

= (1− 2γ)

∞
∑

j=0

(10γ)j =
1− 2γ

1− 10γ
:= g(γ).

Looking at the shape of the function g(γ), γ < 0 we see that for small values
of γ the probability P (D1(X) = 1|X > t) is much larger than the Benford
probability of approximately 0.301. For example, for the Pareto with shape
parameter γ = −1 or for the Cauchy distribution we have k = γ = −1 and
the last probability becomes 5

9 ≈ 0.55. For the shorter tail Pareto with shape
parameter γ = −2 (k = −0.5) we have g(γ) = g(−2) ≈ 0.75. Even for the very
long-tail Pareto with k = −2 we obtain P (D1(X) = 1) ≈ 0.428 which is still
very far from the Benford probability of approximately 0.301.

Note that in the case of an exponential distribution, which is an example
for the case of shape parameter k = 0, a similar computation yields values for
P (D1(X) = 1|X > t) ≫ 0.301.

Consider the second significant digit. A similar but somewhat more
laborious computation shows that

P (D2(X) = l|X > t) ≈
∞
∑

j=−∞

9
∑

n=1

(

G((n+ 1) · (10j + l))−G(n · (10j + l))
)

=

∞
∑

j=−1

9
∑

n=1

(

(10j(10n+ l))γ − (10j(10n+ l + 1)
)γ
)

=

9
∑

n=1

(

(10n+ l)γ − (10n+ l + 1)γ
)

∞
∑

j=−1

(10γ)j

=

9
∑

n=1

(

(10n+ l)γ − (10n+ l + 1)γ
) 1

10γ · (1− 10γ)

In Table D7 the probabilities P (D2(X) = l|X > t), l = 0, . . . , 9 are presented
for various values of the parameter γ of the Pareto distribution. It seems that,
if the tails of the density are very long as it is the case for small values of k,
the distribution of the second significant digit may be closer to Benford.
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Table D7 Probabilities P (D2(X) = l|X > t), l = 0, . . . , 9 for various values of γ of the
Pareto distribution

l

γ k 0 1 2 3 4 5 6 7 8 9

-2 -0.5 0.213 0.167 0.133 0.109 0.090 0.076 0.065 0.056 0.049 0.043
-1 -1 0.156 0.138 0.122 0.109 0.098 0.089 0.081 0.074 0.068 0.063

-0.5 -2 0.137 0.125 0.115 0.107 0.099 0.093 0.088 0.083 0.079 0.075
-0.25 -4 0.128 0.119 0.112 0.106 0.100 0.095 0.091 0.087 0.083 0.080

Appendix E Frequencies of first and second
significant digits

For the convenience of the reader who is interested in reproducing also the
classical goodnes-of-fit tests we present the frequencies of the first and second
significant digits, rspectively. The frequencies of the second significant digit
are obtained after removing all entries with only one digit. Additionally, we
present the values for the GoF1 and GoF2 statistics, respectively.

Table E8 Sample sizes n for first digit, frequencies of the first significant digit, and
values of the GoF1 statistic

Data set first significant digit GoF1

n 1 2 3 4 5 6 7 8 9

#1 Fibonacci 1000 301 177 125 96 80 67 56 53 45 0.17
#2 Primes 1000 160 146 139 139 131 135 118 17 15 299.9
#3 Population 3998 2103 775 352 247 165 134 77 77 68 1090
#4 Share Prices 369 107 63 47 34 38 23 20 21 16 3.45

Table E9 Sample sizes n for second digit, frequencies of the second significant digit, and
values of the GoF2 statistic

Data set second significant digit GoF2

n 0 1 2 3 4 5 6 7 8 9

#1 Fibonacci 994 119 115 103 107 102 95 93 92 86 82 0.58
#2 Primes 996 105 91 104 105 95 104 104 102 94 92 11.22
#3 Population 3998 589 594 483 436 387 374 306 307 256 266 136.0
#4 Share Prices 369 35 45 51 45 30 35 31 38 28 31 9.06
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