Mobilization of lithospheric mantle carbon during the Palaeocene-Eocene thermal maximum

Thomas Gernon (✉ Thomas.Gernon@noc.soton.ac.uk)
University of Southampton https://orcid.org/0000-0002-7717-2092

Ryan Barr
University of Southampton

John Fitton
University of Edinburgh

Thea Hincks
University of Bristol

Jack Longman
Carl von Ossietzky University Oldenburg https://orcid.org/0000-0002-2725-2617

Andrew Merdith
Claude Bernard University Lyon 1

Ross Mitchell
Institute of Geology and Geophysics, Chinese Academy of Sciences https://orcid.org/0000-0002-5349-7909

Martin Palmer
University of Southampton

Article

Keywords: global warming, environmental change, lithospheric mantle carbon

Posted Date: March 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-333061/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Nature Geoscience on June 23rd, 2022. See the published version at https://doi.org/10.1038/s41561-022-00967-6.
Mobilization of lithospheric mantle carbon during the Palaeocene-Eocene thermal maximum

Thomas M. Gernona*, Ryan Barra, J. Godfrey Fittonb, Thea K. Hincksc, Jack Longmana,c, Andrew S. Merdithd, Ross N. Mitchelle, Martin R. Palmerf

aSchool of Ocean & Earth Science, University of Southampton, Southampton SO14 3ZH, UK
bSchool of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
cInstitute for Chemistry & Biology of the Marine Environment, University of Oldenburg, D-26129 Oldenburg, Germany
dLaboratoire de Géologie, Université de Lyon 1, France
eState Key Laboratory of Lithospheric Evolution, Institute of Geology & Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

The early Cenozoic exhibited profound environmental change influenced by plume magmatism, continental breakup, and opening of the North Atlantic Ocean. Global warming culminated in the transient (170 thousand year, kyr) hyperthermal event, the Palaeocene-Eocene thermal maximum (PETM) 56 million years ago (Ma). Although sedimentary methane release has been proposed as a trigger, recent studies have implicated carbon dioxide (CO\textsubscript{2}) emissions from the coeval North Atlantic igneous province (NAIP). However, we calculate that volcanic outgassing from mid-ocean ridges and large igneous provinces associated with the NAIP yields only one-fifth of the carbon required to trigger the PETM. Rather, we show that volcanic sequences spanning the rift-to-drift phase of the NAIP exhibit a sudden and ∼220-kyr-long intensification of volcanism coincident with the PETM, and driven by substantial melting of the sub-continental lithospheric mantle (SCLM). Critically, the SCLM is enriched in metasomatic carbonates and is a major carbon reservoir. We propose that the coincidence of the Iceland plume and emerging asthenospheric upwelling disrupted the SCLM and caused massive mobilization of this deep carbon. Our melting models and coupled tectonic-geochemical simulations indicate the release of >1012 gigatons of carbon, which is sufficient to drive PETM warming. Our model is consistent with anomalous CO\textsubscript{2} fluxes during continental breakup, while also reconciling the deficit of deep carbon required to explain the PETM.

1During the early Cenozoic, a major episode of continental breakup in the North Atlantic region (Fig. 1a) resulted in widespread magmatism and the opening of the North Atlantic Ocean12. Initially the Iceland plume caused regional uplift and a phase of subaerial volcanism lasting ∼5 million years13. Then, at ∼56 million years ago (Ma), an incipient mid-ocean ridge developed1 (Fig. 1d), coinciding with an order-of-magnitude increase in melt production rates2,3, and accelerated westward migration of Greenland via ridge push4 (Fig. 1e). This transitional phase of volcanism in the North Atlantic igneous province (NAIP) involved peak eruption rates5 of ∼2.4 km3 yr-1 (ref.9) and occurred contemporaneously with intense early Eocene warming, including the PETM11.

During the PETM, sea surface temperatures increased by ∼5°C (ref.12), ocean acidification occurred13,14 and there was an abrupt and short-lived (∼170 thousand year, kyr)11,15 negative δ13C carbon isotope excursion (Fig. 1c). It is thought that the release of approximately 1–1.5 × 1012 gigatons (Gt) of carbon into the ocean-atmosphere system is necessary to account for these changes16,17. This massive carbon flux has been attributed to methane release associated with clathrate destabilization along continental shelves17 and/or hydrothermal venting during interaction of magmas and organic-rich mudrocks18. However, on the basis of paired δ11B–δ13C data and carbon-cycle modeling14, and B/Ca in planktic foraminifera16, it has been proposed that triggering of the PETM required a short, sharp injection of a δ13C depleted source of carbon, possibly tied to volcanic outgassing across the NAIP.

To test this hypothesis, we estimated the combined CO\textsubscript{2} emissions from incipient mid-ocean ridge volcanism and large igneous provinces (LIPs) in the NAIP, parameterized by plate-tectonic reconstructions (Fig. 1b,d) and existing estimates of magmatic productivity9 (Methods). In our model, we considered pre-eruptive CO\textsubscript{2} concentrations of 2 wt%, which are typical of flood basalt eruptions19. The associated CO\textsubscript{2} release from the ocean crust is then calculated from the ratio between the observed levels of magmatic production along the present-day mid-ocean ridge system (∼18 km3 yr-1), and estimated CO\textsubscript{2} degassing fluxes along the modern global ridge system (7 × 1011 mol yr-1)20. This calculation suggests that ∼10% of the CO\textsubscript{2} in the juvenile ocean crust is degassed at ridges. Using this estimate, the NAIP ridges likely produced ∼1.1 × 1012 Gt during the PETM. This is an order of magnitude lower than the requisite 1–1.5 × 1012 Gt C during the PETM. This is an order of magnitude lower than the requisite 1–1.5 × 1012 Gt C during the PETM. Furthermore, seafloor isochrons indicate that magmatic productivity along
Figure 1. Early Cenozoic tectonic and magmatic evolution of the North Atlantic region | a, Map of the present-day North Atlantic region showing the distribution of Palaeocene–Eocene lava flows and intrusives \(^1\), with dated volcanics denoted by colored symbols \(^2\). b, Plate tectonic reconstruction showing nascent ridge systems developing along the Labrador Sea and North Atlantic. c, Ages of the volcanic sections discussed (Up=Upper; VFF=Vandfaldsdalen Fm), defined by radiometric dates \(^{3,4}\), magnetostratigraphy and nannofossil zonation \(^5,6\), and corresponding carbon and oxygen isotope records showing the PETM isotope excursions (solid and faint lines show 1 Myr and 20 kyr locally weighted functions, respectively) \(^7\). d, Seafloor production rates for the Labrador Sea and North Atlantic, derived from GPlates (Methods), shown alongside the timing of Eocene hyperthermals. (E) Palaeolongitude of Greenland \(^8\) indicating the onset of ocean crustal production in the North Atlantic and ridge push at 56 Ma.

The North Atlantic ridge peaked after, not during, early Eocene hyperthermals (Fig. 1d). Therefore, some other major, but transient, source of volcanic carbon appears to be required if the volcanic outgassing hypothesis \(^{14,16}\) is correct.

We have investigated several volcanic sequences spanning the Palaeocene-Eocene boundary (Fig. 1c). The Deep Sea Drilling Project Leg 81 Site 555 lies on the Rockall Plateau (Fig. 1a), near the proto-North Atlantic ridge (Fig. 1b). Here, Phase 1 volcanism \(^{21}\) (Fig. 2a) is coeval with the Milne Land basalts in East Greenland and the Middle to Upper Series lavas in the Faroe Islands \(^1\) (Fig. 2b-c). In the Rockall sequence, we found a sharp increase in the frequency of volcanic tuffs just before the Palaeocene–Eocene boundary (Fig. 2a) (Methods). The PETM is defined by \(^{\delta^{13}}\)C, however the volcanocstratigraphy in our study area is not conducive to developing a high-resolution carbon isotope stratigraphy (Methods). Therefore, we rely on a combination of radiometric, magnetostratigraphic and palaeontological age constraints, in addition to well-defined sediment accumulation rate estimates (Methods). Mudstones interbedded with the uppermost tuffs contain the dinoflagellate cyst, Apectodinium augustum \(^{27}\), which is biostratigraphically diagnostic of the PETM as it signifies a sudden prevalence of tropical seasurface temperatures \(^{28}\). Based on sedimentation rates (50 cm kyr\(^{-1}\)) \(^4\), this volcanic flare-up lasted for 171–213 kyr, similar to the duration of the coeval PETM \(^{11,15}\), and was followed by a sharp decline in volcanism \(^{21}\). The tuffs exhibit wide compositional diversity from basanites to dacites (Supplementary Figs. 1, 2a–b), an increased range of magnesium number (Mg\#; to a maximum observed value of 63), and a marked shift to highly negative eNd signatures at ca. 56.03 Ma (Fig. 2a). This activity signals a step change in magmatic processes and volcanic unrest along the ridge, as recorded across a major area of the NAIP (>130,000 km\(^2\)) \(^{129}\). Sampled PETM-age tuffs are enriched in Rb and Ba and depleted in Nb and Sr (Supplementary Fig. 2c), and have similar compositions to some of the lowermost (“negative ash series”) tuffs of the Danish Basin, which likely derive from nearby volcanoes along the continental shelf \(^{29}\). The geochemical similarities between tuffs from Rockall and the Danish Basin is consistent with paleogeography (Fig. 1b), palynological constraints \(^{27}\) and the stratigraphic position of these tuffs towards the end of the PETM elsewhere in the NAIP \(^6\).
Fig. 2. Palaeocene-Eocene volcanostratigraphy and geochemistry of the proto-North Atlantic ridge. **a,** Simplified log of the Rockall ‘Phase 1’ sequence\(^{21}\) showing lithologies, Mg\# (i.e., \(100 \times \text{molecular } MgO/(MgO + FeO)\), where FeO is assumed to be 0.9FeOT), and \(\varepsilon\text{Nd}\) (Supplementary Fig. 1). **b,** Simplified log of the Faroes Basalt Formations\(^{22}\), with Mg\# and \((\text{Eu}/\text{Yb})_{n}\) (chondrite-normalized\(^{23}\)). Mg\# data are from\(^{22}\) and \((\text{Eu}/\text{Yb})_{n}\) are from\(^{24,25}\), note the sharp transition to high Mg\# (and enriched REE contents) at ca. 56.1 Ma\(^1\), which is also observed in **c,** east Greenland (Milne Land Formation)\(^{22}\). **d,** \((\text{La}/\text{Yb})_{n}\) vs \((\text{Eu}/\text{Yb})_{n}\) of the Faroes and Hold with Hope (HvH) lavas (chondrite-normalized\(^{23}\)) and modeled non-modal batch melting of a lherzolitic mantle source, adopted from\(^{26}\), showing different degrees of melting of a garnet lherzolite (green, blue and red curves). **e,** \((\text{Sm/Yb})_{n}\) vs \((\text{Ce/Sm})_{n}\) and an REE melting model (Methods), showing percentage melt along the top and the relative proportions of garnet- and spinel-lherzolites from 100% gt-lherzolite (red curve) to 100% sp-lherzolite (green curve). Both models indicate that the Faroes Middle Lava Formation (i.e., high Mg\# basalts in the lower 500 m of the MLF; see **b**), that erupted immediately prior to and during the PETM, experienced the highest degrees of melting of a mantle source containing \(\geq 10\%\) garnet.
Interpretation of geochemical data from the Rockall tufts is complicated because they derive from diverse sources and have experienced varying degrees of seafloor weathering. Hence, we next studied the coeval thin basaltic lava sequences that wereemplaced subaerially near the ridge axis (Fig. 1). The Palaeocene-Eocene lavas of the Faroe Islands and East Greenland are ideally suited because, unlike the contemporaneous lavas in SE Greenland, they are minimally affected by crustal contamination. The base of the Milne Land Formation in East Greenland, which correlates with the base of the Middle Lava Series of the Faroes, both referred to as ‘MLF’, is dated at 56.1 ± 0.4 Ma and the duration of activity is well constrained (Fig. 2). Thus, the base of the MLF correlates with (or shortly predates) the initiation of volcanism at Rockall Plateau (Fig. 2a).

We estimate that the 1.25 km-thick MLF package, with mafic lavas emplaced over 200–300 kyr, yielding an average eruption rate of ~4–6 m kyr−1, but potentially an order of magnitude higher early in the eruptive cycle. At the base of the sequence, thick (>100 m) pyroclastic deposits, also reported in Greenland, signal an early volatile-rich explosive phase. The overlying tholeiitic lavas are characterized by a sharp increase in Mg#, from values of ~52 throughout the Lower Lava Formation to >80 in the basal MLF (Fig. 2b-c). The basal lavas are coincident (within dating uncertainties) with the onset of the PETM.

Many of these lavas are highly magnesian (e.g., with MgO = 24%), implying hot liquidus temperatures, and are locally characterized by massive olivine accumulation. They also exhibit high TiO₂ contents (typically 1.5–2.5 wt.%), and enrichment in Light Rare Earth Elements (LREEs), e.g., (La/Yb)ₘ = 2–3, and (Eu/Yb)ₘ > 2.5 (Fig. 2b–c). This unusual pulse of high-Ti magmatism, similar to that of the Jurassic Karoo flood basalts in southern Africa, generated the long-lived (~300 kyr) Skaergaard layered igneous intrusion at 55.75 ± 0.35 Ma (Fig. 1a). Finally, the Upper Lava Formation (Fig. 2b-c) signifies an abrupt shift to low-Ti depleted MORB-like basalts (Fig. 2d–e). Thus, there is evidence that the early (high Mg#) MLF volcanism was both transient (~227 kyr) and chemically anomalous (Fig. 2).

The geochemical compositions of these lavas have been attributed to partial melting of the SCLM during asthenospheric upwelling, a model that is supported by studies of their feeder intrusions. To test this hypothesis further, we applied two models of mantle melting. First, we adopted a non-modal batch melting model of a garnet-lherzolite mantle source, which incorporates SCLM during melting of the SCLM in melting during the late Palaeocene, peaking at the PETM (Fig. 2e), then rapidly declining in intensity prior to full continental breakup. There is possible evidence for this peak in the Palaeocene–Eocene basaltic lavas of the Vangfaldsdalen Formation in central east Greenland. These lavas exhibit Nd, Sr and Pb isotope signatures indicative of an SCLM component. Assimilation of the deep SCLM is particularly important because this zone is metasomatically enriched in carbonates, and is thus a major carbon reservoir.
neath Greenland, as does the occurrence of carbonatite magmatism across the wider NAIP at this time. Therefore, breakup of the North Atlantic craton provided a perfect combination of conditions: the availability of sufficiently thick metasomatized SCLM, analogous to the present-day Tanzanian craton in the East African Rift System; the long-term thermomechanical weakening and erosion of the SCLM by the Iceland plume, broadly analogous to that proposed for the Permo-Triassic Siberian Traps; and the initiation of asthenospheric upwelling that induced vigorous interaction between anomalously hot melt and the weakened SCLM. A key aspect of our hypothesis is that the most extensive period of volcanic CO$_2$ outgassing (~50 Mt C yr$^{-1}$) occurred over a short period (~171–227 kyr), and likely peaked just prior to PETM onset (Fig. 2b-c). While continental rift volcanism is associated with enhanced CO$_2$ fluxes over millions of years, petrological and numerical models suggest that there is an initial short period of deep redox controlled carbonatic to aïllikite melting (i.e., high CO$_2$) that is followed by more widespread metasomatism of the shallower asthenosphere and generation of less CO$_2$-rich melts through decompression melting.

Both the thickness and composition of the NAIP lithospheric mantle make it a viable source of large amounts of carbon from the deep, carbonated SCLM during the PETM. A fundamental aspect of our model is that the occurrence of continental riftting opens a wide area along the incipient ridge to SCLM influence. This contrasts with the end-Permian Siberian Traps, where there is no evidence for large-scale lithospheric stretching during eruption. Indeed, it has been suggested that relics of this SCLM that delaminated during North Atlantic breakup can explain residual enriched ‘EM1’ components present in the Icelandic mantle today. Recent estimates suggest that the SCLM may contain 5–8% CO$_2$, or possibly more. The present-day East African Rift offers a lower bound. Here, lateral advection of SCLM along the craton margins results in an order of magnitude increase in the volcanic CO$_2$ flux compared to the background crustal contribution.

To more accurately quantify the potential influence of rift-related SCLM disturbance, we advance on the approach taken by Sobolev et al. to estimate the most probable carbon release scenarios for the PETM. We performed 10,000 Monte Carlo calculations using CO$_2$ contents ranging from 1–8%, and length-scales of the carbonated SCLM in the narrow melting zone below the nascent ridge crest based on tectonic reconstructions, chemical tomography and lithospheric models (Fig. 2). These calculations suggest that only 4–8% of this zone needs to melt to exceed the requisite >104 Gt C for PETM warming. This is consistent with the modeled 5–8% melting of a garnet-rich lherzolite zone during the PETM (Fig. 2d-e), and earlier estimates that the intrusive feeders of these Ti-rich basalts formed by 4% decompression melting batch melting of fertile, metasomatized lherzolites.

The step change in NAIP magmatic productivity immediately prior to the PETM gave rise to widespread volcanic unrest (Figs. 2, 4). While some volcanic tufts at Rockall Plateau are likely linked to the MLF (especially those with high Mg#), many of these tufts are likely genetically unrelated, but are rather a manifestation of the general increase in mantle melting, and fluxes of magma and volatiles through volcanic centres along the continental shelf at this time. The Rockall sequence places firm constraints on both the timing and duration of this climate-altering phase of volcanism (~171–213 kyr, which is similar to the duration of the lower, high Mg#, part of the MLF). This surge in regional volcanism could explain the wide variability in the composition of tufts belonging to the Danish negative ash series. Indeed, the chemical weathering of extensive tephra blankets may also explain the large decrease in 187Os/188Os observed just prior to PETM onset at Svalbard.

Enhanced melting of the SCLM during continental breakup resulted from an unusual combination of conditions in the NAIP (Fig. 4) and provides a direct mechanism to dramatically increase the outgassing of deep carbon. We have shown that this process reached peak intensity just prior to, and during, the PETM (Fig. 2), satisfying the requirement for a massive surge of 13C-depleted carbon. The melting of SCLM can result in a fivefold increase in volcanic CO$_2$ output, reconciling an apparent major deficit of carbon from ‘background’ ridge and LIP volcanism (see curves S1–S2 on Fig. 3). The mobilization of carbon from the SCLM is consistent with the inferred disruption of the metasomatized lithosphere during breakup of the North Atlantic craton, and the anomalously high CO$_2$ fluxes from SCLM along craton margins during extension.
Our data-driven models of the PETM demonstrably support the proposal that large-scale lithospheric melting can induce global warming \(^{38}\), if the tectonic setting is primed to facilitate intensive volcanic CO\(_2\) degassing (Fig. 4). Our study highlights the critical role that solid Earth degassing plays in driving abrupt shifts in climate, and in promoting fundamental reorganisation of Earth’s surface environment and biosphere.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s12345-111-2222-3.

References

Publisher’s note:

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020
Methods

Calculating seafloor production rates

Seafloor production (SP) rates (Fig. 1d), which were utilised in our volcanic CO₂ flux calculations (see page 10), were calculated using the plate model of Müller et al. (2016). We used the open source python library, pyGPlates (https://www.gplates.org/docs/pygplates/) in order to filter and extract the data from the plate model. For the target time-step (t, in Myr), we broke the complete mid-ocean ridge system into a series of spreading and transform segments in order to isolate the spreading segments (j) where new oceanic crust is formed. This approach has recently become common in analysing tectonic scenarios in ocean basins (46-48,49). At each segment, for each time-step, we extracted the full spreading rate (u, in km/Myr⁻¹) and the length of the spreading segment (L, in km). The full spreading rate was calculated by summing the half spreading rate of each individual flank of each ridge segment, thereby sidestepping any issues pertaining to asymmetric spreading. We did this because, for the purposes of our analysis, we were only interested in the total amount of new seafloor generated. We then took the product of the spreading segment length and full spreading rate to calculate the seafloor production rate (in km²/Myr⁻¹), and then summed the area of all segments per time-step, to obtain a total seafloor production per Myr (equation 1), as follows:

\[SP(t) = \sum_j uL \]

Geochemical analysis of the volcanic tufts

We carried out major, trace and isotopic analysis (variously) on 20 tuff layers sampled from DSDP Site 555 on the Rockall Plateau. X-ray fluorescence (XRF) analyses were carried out in the Grant Institute of Earth Science at the University of Edinburgh, using procedures described in refs. 50,51. Major-element concentrations (Supplementary Table 1) were determined after fusion with a lithium borate flux containing La, Ce, Nd, Ce, Ni, Co, Cr, V, Ba, and Sc) were corrected for matrix effects using alpha coefficients based on major-element concentrations measured at the same time on the powder samples. Matrix corrections were applied to the intensities of the other trace-element lines by using the count rate from the RhKα Compton scatter line as an internal standard. Line-overlap corrections were applied using synthetic standards.

The spectrometer was calibrated against USGS and CRPG geochemical reference standards using the values given by Govindaraju (1994), except that the values of Jochum et al. (1990) were used for Nb and Zr in BCR-1 and BHVO-1. Excellent calibration lines were obtained using these standards. Analytical precision and accuracy are comparable to the values reported in refs. 50,51. Four USGS geostandards were analysed along with the samples and the data from these (Supplementary Table 2) were used to assess accuracy and precision.

Trace element analysis was performed on a representative selection of four of the tuffs using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Samples were homogenised using a unidirectional crushing machine prior to dissolution via a three-stage, mixed acid (HF-HNO₃-HCl) closed-vessel approach. After digestion, samples were dried down prior to resuspension in 2% HNO₃ for analysis, carried out using a Thermo Scientific X-Series-2 at the University of Southampton. Alongside samples, blanks and International standard JA-2 (ref. 56) and Southhampton internal basalt standard BRR-1 (ref. 57) were prepared and analysed (Supplementary Table 4). Recoveries of JA-2 and BRR-1 are shown in Supplementary Table 5.

Finally, we analysed the Nd/144Nd isotope composition of several samples of tuff from Site 555 (Fig. 2a; Supplementary Table 3). Here, ~25 mg of freeze-dried sediment was homogenised using a pestle and mortar prior to leaching in 6M HCl for 2 hours to remove any diageneric, alteration-related material. Samples were then digested via a mixed acid, closed vessel HNO₃-HF approach on a hotplate at 120°C. Digests were then taken to incipient dryness prior to resuspension in 2% HNO₃ for analysis. All acids were sub-boiled to ensure purity and prepared at the University of Southampton. Aliquots were then purified via first cation (AG50-X8 200-400 mesh compressed against a polished tungsten carbide disc in a hydraulic press at 0.6 tons cm⁻². The fused and pressed samples were analysed using a PANalytical PW 2404 automatic X-ray fluorescence spectrometer with a Rh-anode X-ray tube. Trace-element background positions were placed as close as possible to peaks, and long count times were used at both peak and background positions. Where background count rates were measured on either side of the peak, as in most trace-element determinations, the count time was divided between the two positions. Analytical conditions are given in refs. 50,51.
resin) and then reverse phase (LN Spec, Eichrom Industries) chromatography to remove isotopic interferences. All measure- ments were made on a Thermo Fisher Neptune Multi-Collector ICP-MS at the University of Southampton. Mass bias correc- tions were performed using repeat measurements of the stan- dard JNd-1 (ref. 58) with a 143Nd/144Nd value of 0.512115. Nd isotope ratios are presented in this paper using epsilon notation as follows:

\[
\epsilon_{\text{Nd}} = \left(\frac{\text{Nd}_{\text{sample}}}{\text{Nd}_{\text{CHUR}}} \right) - 1 \times 10^4
\]

where \(\text{Nd}_{\text{sample}}/\text{Nd}_{\text{CHUR}}\) is the Nd isotope composition of the chondrite uniform reservoir, with a value of 0.512638 (ref. 59). Precision of \(\text{Nd}_{\text{sample}}/\text{Nd}_{\text{CHUR}}\) (2 SE) was between 0.000005 and 0.00001, corresponding to \(\epsilon_{\text{Nd}}\) precision of between 0.1 and 0.2.

Establishing a chronostratigraphic framework

We established a chronostratigraphic framework for Site 555, on the Rockall Plateau, building on a number of existing constraints at this site (Fig. 1a). The PETM as geochemically defined could not be identified at this site, because of the high proportion of volcanic and siliciclastic material (Fig. 2a), in turn truded at many levels by dolerite dykes and sills with emplacement temperatures likely in the range \(\sim 1000^\circ\) to \(1250^\circ\). Thus, the adjacent sediments likely experienced temperatures \(>650^\circ\) \(\sim 800^\circ\), thermal conditions which are known to seriously affect \(\delta^{13}C\) composition in mudrocks and carbonates. Accordingly, we rely on a combination of radiometric, magnetostratigraphic and paleontological age constraints, in addition to well-defined sedimentation rate estimates. The most reliable radiometric date in this sequence, from an olivine phyric basalt near the Palaeocene-Eocene boundary, yielded a K-Ar age of 54.5 \(\pm 2\) Ma (ref. 61). Although uncertain, this can be narrowed further by considering the distribution of calcareous nanoplankton, including Fasciculithus, which disappears in the mudstones below the hyaloclastites (top NP9), with its last occurrence dated to \(\sim 55.6\) Ma (http://www.mikrotax.org). This suggests that the age of the lava is most likely in the range 56.5–55.6 Ma, supported by the original position of the Palaeocene-Eocene boundary (Fig. 2b). Further, the overlying mudstones interbedded with the tuffs contain the dinoflagellate cyst species, Apectodinium au.

REE melting model

A simple batch melting equation was used in the construction of Figure 2e:

\[
C_L/C_0 = \frac{1}{D + F - PF}
\]

where \(C_0\) is the initial concentration of some element in the mantle source, \(C_L\) is its concentrations in the liquid, \(F\) is the melt fraction, \(D\) is the average distribution coefficient for the mantle phases weighted by their respective mass fractions...
before the onset of melting, and \(P \) is the average distribution coefficient for the mantle phases weighted by their recycling contribution to the melt. We use a peridotite mantle source with a mineralogical composition given by McKenzie and O’Nions (1991): (1) 57.8% olivine, 27.0% orthopyroxene, 11.9% clinopyroxene and 3.3% spinel (spinel lherzolite); (2) 59.8% olivine, 21.1% orthopyroxene, 7.6% clinopyroxene and 11.5% garnet (garnet lherzolite). Partition coefficients (D) vary significantly with pressure, temperature and liquid composition, and this limits the reliability of partial melting models since the choice of values is always somewhat subjective. Here we have attempted to be more objective by using averages of all appropriate published values (Supplementary Table 5; ref. 7). We use the following mantle melting proportions for spinel lherzolite (equation 4; ref. 7) and garnet lherzolite (equation 5; ref. 71):

\[
\text{liquid} = -0.22 \text{ol} + 0.38 \text{opx} + 0.71 \text{cpx} + 0.13 \text{sp}
\]

(4)

where ol is olivine, opx is orthopyroxene, sp is spinel, cpx is clinopyroxene and gt is garnet.

The concentrations of REE in our mantle source (Ce 1.236 ppm, Sm 0.346 ppm, Yb 0.432 ppm) are calculated from the composition of primitive basalt from the Ontong Java Plateau and are thought to be typical of mantle plumes.

Please note that Supplementary Table 6 cites additional references.

Modelling of CO\(_2\) fluxes

We perform a simple Monte Carlo simulation, sampling from probability distributions for six uncertain parameters (Supplementary Tables 7–8) to estimate the probable combined CO\(_2\) emissions from incipient ridge volcanism and active large igneous provinces (LIPs). This enables us to evaluate the relative contributions to carbon release during the PETM due to ridge production and LIP formation. We also calculate the effect of incorporating carbonated SCLM melt in different amounts during enhanced melting along the ridge axis. In our calculations, we assumed a PETM duration of 170 kyr (ref. 15), which is supported by recent astrochronological solutions.

We use Beta distributions to represent uncertainty in the parameters (Supplementary Table 8). The Beta distribution is a continuous distribution over a fixed interval [0, 1], but can be rescaled to any desired range. It is defined by two shape parameters \(\alpha \) and \(\beta \), which can be estimated from the distribution mean (\(\mu \)) and variance (\(\sigma^2 \)):

\[
\alpha = \mu \left(\frac{1 - \mu}{\sigma^2} - 1 \right)
\]

(6)

\[
\beta = \alpha \left(\frac{1}{\mu} - 1 \right)
\]

(7)

where \(\mu \) = the mean, \(\sigma \) = standard deviation, and \(\sigma^2 \) = the variance. To estimate Beta distribution parameters, we use best estimates (from published data and observations) of the minimum, mean and maximum values for each variable (Supplementary Table 8, and discussed below), and apply these to equations 6 and 7 above (using re-scaled values for \(\mu \) and \(\sigma \)). For simplicity we assume that the standard deviation for a given variable is 20% of the range, \(\sigma_r = 0.2 \) (max–min). The inputs to the calculations (sampled, constant and fixed) and outputs are listed in Supplementary Tables 7–8 and the corresponding histograms for each of the sampled variables are shown in Supplementary Fig. 3.

To quantify the CO\(_2\) degassing flux from ridges in the NAIP (i.e., the North Atlantic and the Labrador Sea), we used seafloor production rates parameterised from plate-tectonic reconstructions (see above) for the ridges at 55 Ma—the first time step at which seafloor generation is recorded in the North Atlantic. In these calculations we assumed an oceanic crustal thickness of 6 km, the global average. Only a small fraction of the total amount of CO\(_2\) available in the basaltic oceanic crust is degassed at ridges. To estimate this, we used the ratio between the oceanic crustal productivity (i.e., the total amount of crust formed, which is ~18 km\(^3\) yr\(^{-1}\)) and the estimated CO\(_2\) fluxes from the present-day global ridge system (7 \times 10\(^{11}\) mol yr\(^{-1}\); a middle value of ref. 28). This analysis indicates that about 10% of the CO\(_2\) in the ocean crust is degassed at ridges (see main text), corresponding to the upper 600 m. Thus, in our simulations we used a Beta distribution with a mean value of 10% (i.e., 10% of the total available CO\(_2\) is lost from the crust), and minimum and maximum values of 5% and 15%, respectively.

For the pre-eruptive CO\(_2\) content of basaltic magmas, we used a Beta distribution with a mean value of 0.5 wt%, and minimum and maximum values of 0.2 wt% and 2 wt%, considered reasonable for flood basalts and ocean crust at this time.

To estimate the CO\(_2\) fluxes from LIPs, we used existing eruptive rate estimates for the NAIP. We consider two LIP eruptive rate scenarios: (S1) low flood basalt productivity (0.6 km\(^3\) yr\(^{-1}\)); and (S2) high productivity (2.4 km\(^3\) yr\(^{-1}\); ref. 8). The combined fluxes from incipient ridge volcanism and each of these eruptive scenarios for LIPs are shown as the grey lines on our cumulative distribution functions (Fig. 3). We assumed near-total loss of CO\(_2\) from flood basalt volcanism (mean 95%, minimum 90%, maximum 100% loss), based on observations from fresh basaltic glass in flood basalts that show most of the CO\(_2\) is lost to degassing. Ridge and LIP CO\(_2\) outgassing was calculated using equation 8:

\[
W_{\text{CO}_2\text{Ocean}} = \frac{12}{44} \frac{t_{\text{erupt}}}{10^7} \left(O_{\text{Floss}} \cdot \text{basaltprod} \cdot \text{basalt} \cdot \text{FractCO}_2 \right) + \left(C_{\text{FractLIP}} \cdot \text{LIPprod} \cdot \text{basalt} \cdot \text{FractCO}_2 \right)
\]

(8)

where \(W_{\text{CO}_2\text{Ocean}} \) = total weight of C released from the ocean crust and LIPs; \(t_{\text{erupt}} \) = the duration of extension in years; \(O_{\text{Floss}} \) = fraction of CO\(_2\) lost from the ocean crust; \(\text{basaltprod} \) = volumetric rate of basalt production from the NAIP ridges (see equation 1); \(\text{basalt} \) = density of basalt (3000 kg m\(^{-3}\)); \(\text{FractCO}_2 \) = CO\(_2\) content (weight percent) of basalt, expressed as a fraction;
\(C_{\text{frac},LIP} \) = fraction of LIPs that is fully degassed of CO\(_2\); and
\(\tau_{\text{LIP,prod}} = \text{volumetric rate of basalt production from LIPs}. \)

The combined carbon flux estimates show that outgassing from ridges and LIPs alone are insufficient to trigger PETM warming, unless they are augmented by a transient increase in CO\(_2\) content (as we propose, via the incorporation of carbonated SCLM during mantle melting). To account for this apparent deficit, we estimated the potential influence of SCLM melting contributions, using scenarios S1 and S2 (above) as a baseline (i.e., the background volcanic carbon flux; Fig. 3). During continental extension (as in the early Cenozoic North Atlantic) the deep metasomatized mantle lithosphere is stretched, exhumed, and melted along the length of the newly-formed ridge\(^{39}\). We estimated the total volume of carbonated SCLM (c-SCLM) from the length of the ridge segments active between 56–55 Ma (Fig. 1d), assuming a plausible range of thicknesses and melting widths for this layer (Supplementary Table 8).

The precise thickness of the c-SCLM of the North Atlantic craton at 55 Ma is poorly constrained and is likely to have been spatially heterogeneous, but is considered to lie in the range 10 km (ref.\(^{39}\)) to ~30 km thick (based on chemical tomography of cratonic regions\(^{83}\)). This is broadly consistent with geochemical and tectono-magmatic models of the North Atlantic craton\(^{84,85}\). We assume a mean c-SCLM thickness of 20 km, with minimum and maximum values of 5 and 25 km. We estimated the width of SCLM involved in melting, using petrological-thermomechanical models of lithospheric rupturing processes\(^{39}\).

In cases where the lithosphere is about 200 km thick, the width of the melting zone is most likely to be of the order of 25 km (ref.\(^{39}\)). We therefore used a Beta distribution with a mean width of 25 km and range of 5 to 30 km. SCLM melting occurs on both sides of the stretching lithosphere, doubling the total contribution to CO\(_2\) output. c-SCLM is expected to have a high CO\(_2\) content, of the order 5–8 wt%\(^{37}\), but potentially even higher\(^{37}\). We therefore use a mean value of 5 wt%\(^{37}\), minimum of 1 wt%\(^{37}\) and maximum of 10 wt%\(^{37}\). The total contribution of SCLM melting to fluxes was estimated using equation 9:

\[
W_{\text{CSCLM}} = \frac{l_{\text{CSCLM}} \cdot w_{\text{CSCLM}} \cdot h_{\text{CSCLM}} \cdot \rho_{\text{CSCLM}}}{10^{12}}
\]

where \(W_{\text{CSCLM}} = \text{total weight of carbon in the SCLM (Gt)}; \)
\(l_{\text{CSCLM}} = \text{length of SCLM involved in melting along the North Atlantic mid-ocean ridge system}; \)
\(w_{\text{CSCLM}} = \text{width of the SCLM zone (km)}; \)
\(h_{\text{CSCLM}} = \text{thickness of the SCLM (km)}; \)
\(\rho_{\text{CSCLM}} = \text{density of SCLM (herzolite; 3200 kg m}^{-3}\). A factor of 1/10\(^{12}\)

converts weight from kg to Gt. Finally, we calculated the total weight of carbon (\(W_{\text{Total,C}} \)) produced from the ocean crust, LIPs and enhanced melting of the c-SCLM using equation 10:

\[
W_{\text{Total,C}} = W_{\text{CO2, Ocean}} + F_{\text{CSCLM}} W_{\text{CSCLM}}
\]

where \(F_{\text{CSCLM}} \) is the fraction of c-SCLM melted during extension (calculated with 0.04, 0.05 and 0.08; see Fig. 3).

Please note that additional references are cited in the Supplementary Figures and Tables\(^{86,87,88,89,90,91}\).

Data availability

All data generated or analysed during this study are provided in the online version of this article and in Supplementary Tables 1–8.

Code availability

The numerical modelling codes associated with this paper are available from the corresponding author (Thomas.Gernon@noc.soton.ac.uk) upon reasonable request. The map in Fig. 1a was plotted with open software GMT (under a GNU Lesser General Public License), and the map in Fig. 1b was plotted with open software GPlates (licensed for distribution under a GNU General Public License).

References

Acknowledgements
This study was supported by a Natural Environment Research Council (NERC) grant (NE/R004978/1) to T.G., which also supported T.H. T.G. and T.H. received funding from the Alan Turing Institute, the UK’s national institute for data science and artificial intelligence (EP/N510129/1). J.L. was supported by NERC grant NE/K00543X/1 awarded to M.P. and T.G. T.G. acknowledges the Distinguished Geologists’ Memorial Fund of the Geological Society of London to sample the Rockall tuffs at the IODP Bremen Core Repository (BCR). We are grateful to the staff of the BCR, especially W. Hale, for their assistance, and to M. Cooper, A. Michalik and A. Milton (University of Southampton) for laboratory assistance. R.N.M. was supported by a Key Research Program of the Institute of Geology & Geophysics, CAS, grant (No. IGGCAS-201905). We thank G. Hincks for illustrating the early Cenozoic North Atlantic ridge (Fig. 4).

Author contributions
T.G. conceived the idea, led the study, interpreted the data and prepared the manuscript and figures. T.H. performed the modelling, with input from T.G. R.N.M. assisted with textonic and geodynamic interpretation, and G.F., J.L., R.B. and
M.P. provided support with geochemical analysis and interpretation. G.F. carried out the melt modelling. A.M. calculated the seafloor production rates and provided support with GPlates and pyGPlates. T.G. wrote the manuscript with input from all co-authors.

Competing interests:

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s12345-111-2222-3.

Correspondence and requests for materials should be addressed to T.G.

Peer review information Nature Geoscience thanks [reviewers] for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.
Early Cenozoic tectonic and magmatic evolution of the North Atlantic region.

(a) Map of the present-day North Atlantic region showing the distribution of Palaeocene–Eocene lava flows and intrusives, with dated volcanics denoted by colored symbols.

(b) Plate tectonic reconstruction showing nascent ridge systems developing along the Labrador Sea and North Atlantic.

(c) Ages of the volcanic sections discussed (Up=Upper; VFF=Vandfaldsdalen Fm), defined by radiometric dates, magnetostratigraphy and nannofossil zonation, and corresponding carbon and oxygen isotope records showing the PETM isotope excursions (solid and faint lines show 1 Myr and 20 kyr locally weighted functions, respectively).

(d) Seafloor production rates for the Labrador Sea and North Atlantic, derived from GPlates (Methods), shown alongside the timing of Eocene hyperthermals.

(e) Palaeolatitude of Greenland indicating the onset of ocean crustal production in the North Atlantic and ridge push at 56 Ma.
Figure 2

Palaeocene-Eocene volcanoostratigraphy and geochemistry of the proto-North Atlantic ridge. a, Simplified log of the Rockall ‘Phase 1’ sequence 21 showing lithologies, Mg# (i.e., 100 x molecular MgO/(MgO + FeO), where FeO is assumed to be 0.9FeOT), and eNd (Supplementary Fig. 1). b, Simplified log of the Faroes Basalt Formations 22, with Mg# and (Eu/Yb)n (chondrite-normalized 23); Mg# data are from 22 and (Eu/Yb)n are from 24,25; note the sharp transition to high Mg# (and enriched REE contents) at ca. 56.1 Ma1, which is also observed in c, east Greenland (Milne Land Formation) 22. d, (La/Yb)n vs (Eu/Yb)n of the Faroes and Hold with Hope (HwH) lavas (chondrite-normalized 23) and modeled non-modal batch melting of a lherzolitic mantle source, adopted from 26, showing different degrees of
melting of a garnet lherzolite (green, blue and red curves). e, (Sm/Yb)n vs (Ce/Sm)n and an REE melting model (Methods), showing percentage melt along the top and the relative proportions of garnet- and spinel-lherzolites from 100% gt-lherzolite (red curve) to 100% sp-lherzolite (green curve). Both models indicate that the Faroes Middle Lava Formation (i.e., high Mg# basalts in the lower 500 m of the MLF; see (b), that erupted immediately prior to and during the PETM, experienced the highest degrees of melting of a mantle source containing &10% garnet.

Figure 3

Simulations of volcanic carbon release during the PETM. Results are plotted as cumulative distribution functions (CDFs). The gray lines show the estimated carbon output from ridge volcanism and LIPs alone; with S1 and S2 showing low (0.6 km3 yr x 1) and high (2.4 km3 yr x1) LIP eruption rate scenarios 9, respectively (Supplementary Fig. 3) (see Methods). The coloured lines show the effects of adding 4% to 8% carbonated (c–) SCLM melt along the incipient ridge during breakup. The gray vertical bars denote the carbon output necessary to drive and sustain PETM warming estimated by Gutjahr et al. 14 (labelled G; 10,200–12,200 Gt C), and Haynes & Hönisch 16 (labelled H; 14,900 Gt C).
Volcanic carbon release in the North Atlantic during the PETM. Model stages: 1, progressive thermo-mechanical weakening of the sub-continental lithospheric mantle (SCLM) by the Iceland plume; 2, disruption of the ruptured metasomatized SCLM zone by incipient asthenospheric upwelling; 3, delamination of carbonated fragments of the deep SCLM during lithospheric stretching, which generate the enduring enriched components (‘EM1’) still present in the Icelandic mantle today 41.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformationNGS20210300519.pdf