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ABSTRACT 14 

 15 
Background: High-throughput amplicon sequencing of marker genes, such as the 16S rRNA gene in 16 
Bacteria and Archaea, provides a wealth of information about the composition of microbial 17 
communities. To quantify differences between samples and draw conclusions about factors affecting 18 
community assembly, dissimilarity indices are typically used. However, results are subject to several 19 
biases and data interpretation can be challenging. The Jaccard and Bray-Curtis indices, which are 20 
often used to quantify taxonomic dissimilarity, are not necessarily the most logical choices. Instead, 21 
we argue that Hill-based indices, which make it possible to systematically investigate the impact of 22 
relative abundance on dissimilarity, should be used for robust analysis of data. In combination with a 23 
null model, mechanisms of microbial community assembly can be analyzed. Here, we also introduce a 24 
new software, qdiv, which enables rapid calculations of Hill-based dissimilarity indices in 25 
combination with null models. 26 
 27 
Results: Using amplicon sequencing data from two experimental systems, aerobic granular sludge 28 
(AGS) reactors and microbial fuel cells (MFC), we show that the choice of dissimilarity index can 29 
have considerable impact on results and conclusions. High dissimilarity between replicates because of 30 
random sampling effects make incidence-based indices less suited for identifying differences between 31 
groups of samples. Determining a consensus table based on count tables generated with different 32 
bioinformatic pipelines reduced the number of low-abundant, potentially spurious amplicon sequence 33 
variants (ASVs) in the data sets, which led to lower dissimilarity between replicates. Analysis with a 34 
combination of Hill-based indices and a null model allowed us to show that different ecological 35 
mechanisms acted on different fractions of the microbial communities in the experimental systems. 36 
 37 
Conclusions: Hill-based indices provide a rational framework for analysis of dissimilarity between 38 
microbial community samples. In combination with a null model, the effects of deterministic and 39 
stochastic community assembly factors on taxa of different relative abundances can be systematically 40 
investigated. Calculations of Hill-based dissimilarity indices in combination with a null model can be 41 
done in qdiv, which is freely available as a Python package (https://github.com/omvatten/qdiv). In 42 
qdiv, a consensus table can also be determined from several count tables generated with different 43 
bioinformatic pipelines. 44 

 45 
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BACKGROUND 49 

Microbial communities drive global cycles of elements and play important roles for human health, 50 
food production, and environmental engineering services such as wastewater treatment. On Earth, 51 
there may be as many as 1012 different microbial species [1] and understanding how communities 52 
assemble, develop, and function is a formidable task. During the last decades, significant progress in 53 
DNA sequencing technology has provided a wealth of information about the diversity of microbial 54 
communities in both natural and engineered environments. Polymerase chain reaction (PCR) 55 
amplification of parts of the 16S rRNA gene followed by high-throughput sequencing using platforms 56 
such as 454 pyrosequencing, Illumina, Ion Torrent PGM, and PacBio has made it possible to probe 57 
millions of sequences in samples. For example, the Illumina MiSeq platform and dual-indexing of 58 
PCR primers allow over 100 samples to be sequenced in parallel at a depth exceeding 10 000 reads 59 
per sample [2, 3]. In addition to the rRNA gene, PCR targeting functional genes, such as the amoA in 60 
ammonia-oxidizing bacteria, can be used to study specific functional groups [4]. 61 
 62 
Interpretation of results from high-throughput amplicon sequencing experiments is, however, 63 
challenging. Varying copy numbers of the target gene, sampling, DNA extraction, PCR amplification, 64 
and sequencing can all lead to biases, which distort the relative proportions of taxa in a sample [5-7]. 65 
For example, Gonzalez et al. [8] showed that taxa with low abundance are typically underrepresented 66 
in PCR-based assays. PCR and sequencing also produce error-containing sequences [9]. Several 67 
computational pipelines can be used to differentiate between correct and erroneous sequence reads. 68 
After quality filtering, the reads are typically clustered into operational taxonomic units (OTUs), 69 
which are formed by grouping sequences that are similar. A similarity threshold of 97% has 70 
commonly been used. Recently, alternative approaches, which instead of OTU-clustering denoise the 71 
reads and derive exact biological sequences, have been developed [10-12]. The denoiser algorithms 72 
use different methods to differentiate between true amplicon sequence variants (ASVs) and errors. 73 
The generated ASVs can differ from each other by as little as one nucleotide, which makes it possible 74 
to investigate microbial diversity at higher resolution [e.g. 13]. Another advantage is that the ASVs 75 
represent true biological entities and can be compared to results from other sequencing runs. In OTU 76 
clustering, the centroid sequences which represent the OTUs, as well as the classification of a read to 77 
an OTU, depend on all the other sequences in the run [14]. Thus, OTU sequences do not have a 78 
meaning outside of the specific context in which they are generated [15].  79 
 80 
Once OTUs or ASVs have been determined, it is often of interest to study compositional differences 81 
between microbial communities in samples collected from different locations or time points (beta 82 
diversity). Indices describing the similarity or difference between sampled communities using a single 83 
number are commonly used. Many dissimilarity indices are available [16, 17]. Some, such as the 84 
Jaccard and Sørensen indices, are incidence-based, which means they do not consider differences in 85 
relative abundance between OTUs/ASVs. Other indices take the relative abundance into account. In 86 
microbial community assays it is difficult to know how much weight should be put on the relative 87 
abundance of individual OTUs/ASVs. On the one hand, we know that the read abundance and the true 88 
relative abundance of microorganisms do not always correlate in PCR-based assays [18]. Rare 89 
OTUs/ASVs often are underrepresented [8] but can play important roles for community function [19]. 90 
It may therefore be tempting to use indices that weigh detected OTUs/ASVs equally. On the other 91 
hand, we know that PCR and sequencing cause errors, which may remain in the dataset after 92 
bioinformatics processing [9, 20]. Microbial communities typically also contain a long tail of 93 
extremely low-abundant taxa and random sampling affects the observed dissimilarity [5]. This view 94 
would favor the use of an index giving higher weight to abundant OTUs/ASVs; and indeed, the Bray-95 
Curtis index, which takes relative abundance into account, is probably the most commonly used 96 
taxonomic dissimilarity index in microbial ecology (equations for the Jaccard and Bray-Curtis indices 97 
are shown in Text S1.1, Additional file 1). The Bray-Curtis index is very sensitive to differences in 98 
relative abundance for the most abundant OTUs/ASVs and a way to amplify the importance of 99 
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differences for low-abundant OTUs/ASVs is to log-transform the count data before calculating the 100 
index [21]. However, a systematic approach for evaluating how relative abundance information affect 101 
observed dissimilarity is lacking for the indices described above. 102 
 103 
There are, however, other indices that deserve more attention. Hill numbers are a set of diversity 104 
indices for which the weight given to the relative abundance of an OTU/ASV can be varied [22]. Hill 105 
numbers, which are also called effective numbers, were originally presented as measures of alpha 106 
diversity, i.e. OTU/ASV diversity within a community [23]. Eq. 1a-b show how Hill numbers are 107 
calculated. The diversity order (q) determines the weight given to the relative abundance of an 108 
OTU/ASV in a community. For example, if q is 0, the relative abundance is not considered; if q is 1, 109 
the OTUs/ASVs are weighted exactly according to their relative abundance; and if q is higher than 1, 110 
more weight is given to OTUs/ASVs having high relative abundance. For a community with S 111 
OTUs/ASVs, all having the same relative abundances (i.e. 1/S), the Hill number is equal to S for all 112 
diversity orders.  113 
 114 

𝐷 = (∑ 𝑝𝑖
𝑞𝑆

𝑖=1 )
1/(1−𝑞)

 
𝑞      (Eq. 1a, if q≠1) 115 

𝐷 = 𝑒𝑥𝑝(− ∑ (𝑝𝑖 ∙ 𝑙𝑛(𝑝𝑖))𝑆
𝑖=1 ) 

1     (Eq. 1b, if q=1) 116 

D is the Hill number, q is the diversity order, S is the total number of OTUs/ASVs, and pi is the 117 
relative abundance of the ith OTU/ASV in the community. 118 
 119 
For two or more communities, Hill numbers can be decomposed into alpha (α), gamma (γ), and beta 120 
(β) components [24]. qDα is the effective number of OTUs/ASVs per community (for a more detailed 121 
definition, see Text S1.2 in Additional file 1), qDγ is the Hill number for the combined communities 122 
(i.e. the regional or pooled community), and qDβ is the ratio between the two (Eq. 2).  123 
 124 

𝐷𝛽 =
𝐷 

𝑞
𝛾

𝐷 
𝑞

𝛼
 

𝑞       (Eq. 2) 125 

 126 
The parameter qDβ represents the effective number of distinct communities. It ranges from one to the 127 
number of communities being compared (N). If qDβ=1, the compared communities are identical to 128 
each other. If qDβ=N, the compared communities are completely distinct and do not share any 129 
OTUs/ASVs with each other. qDβ can be transformed to an overlap or dissimilarity index constrained 130 
between 0 and 1 (dissimilarity=1–overlap) [25]. There are several ways of doing this transformation 131 
[26]. Chao and Chiu [27] describe two classes of overlap indices. The local overlap indices measure 132 
the effective average proportion of OTUs/ASVs in a community shared with the other compared 133 
communities. The regional overlap indices measure the effective proportion of OTUs/ASVs in the 134 
pooled community that are shared between all compared communities. At a diversity order of 0, 135 
which means only the presence/absence of OTUs/ASVs is considered, the local index equals the 136 
Sørensen index and the regional index equals the Jaccard index. Eq. 3a-b show the transformation of 137 
qDβ into the class of local dissimilarity indices (qd). Thus, qd quantifies the effective average 138 
proportion of OTUs/ASVs in a community not shared with the other compared communities. 139 
Throughout the article, we use this local class of indices when we refer to Hill-based dissimilarity. 140 
Further details about the calculations and equations for the class of regional indices can be found in 141 
Text S1.2, Additional file 1. 142 
 143 

𝑑 
𝑞 =

( 𝐷𝛽 
𝑞 )

(1−𝑞)
−1

𝑁(1−𝑞)−1
    (Eq. 3a, if q≠1) 144 

𝑑 
1 =

𝑙𝑛( 𝐷𝛽 
𝑞 )

𝑙𝑛(𝑁)
     (Eq. 3b, if q=1) 145 

qd is the local dissimilarity index of diversity order q and N is the number of communities being 146 
compared. 147 
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 148 
The use of Hill numbers is more common in the macroecological literature, both as measures of alpha 149 
diversity and for partitioning of diversity [28]. For microbial community studies using high-150 
throughput amplicon sequencing, Hill numbers have also been recommended as measures of alpha 151 
diversity [29-31]. However, Hill-based indices are rarely used to quantify beta diversity. In two recent 152 
studies, we used Hill-based dissimilarity indices of specific diversity orders to quantify differences 153 
between microbial communities, giving different weight to the relative abundance of OTUs/ASVs 154 
[32, 33]. In this paper, we will show that examining dissimilarity (qd) for a continuum of diversity 155 
orders is a rational approach to illustrate how OTUs/ASVs with different relative abundances 156 
contribute to the dissimilarity between communities. 157 
 158 
A difficulty with analyzing beta diversity, irrespective of the chosen index, is the interpretation of the 159 
results. We might be interested in determining if deterministic factors select for the same or different 160 
OTUs/ASVs in two sampled habitats or if the distribution of OTUs/ASVs between the habitats is 161 
governed by stochastic factors. The dissimilarity value alone tells us nothing about this. For example, 162 
if two habitats have different areas for microbial growth, the habitat with the larger area will likely 163 
have higher richness (number of detected OTUs/ASVs) because of the taxa-area relationship [34]. 164 
Since alpha- and beta diversity are not independent (Eq. 2), the richness difference will cause a high 165 
observed dissimilarity even if the two habitats select for the same OTUs/ASVs [35, 36]. Null models 166 
are useful in the interpretation of dissimilarity values and allow us to differentiate between different 167 
community assembly mechanisms [36, 37]. A null model introduced by Raup and Crick [38] and 168 
developed by Chase et al. [36] controls for richness differences between samples. Samples with pre-169 
defined numbers of OTUs/ASVs are randomly assembled from a regional pool. The definition of the 170 
regional pool and the randomization scheme will affect the outcome of a null model analysis [39, 40]. 171 
The regional pool could consist of all OTUs/ASVs detected in the samples being compared and could 172 
also include other OTUs/ASVs that could possibly colonize the studied habitat. The randomization 173 
scheme could, e.g., be based on the frequency of samples in which a certain OTU/ASV is found [41] 174 
or the total abundance of reads associated with the OTU/ASV in the regional pool. The random 175 
assembly process is repeated many times and a null distribution for the dissimilarity between the two 176 
samples is generated. This null distribution is then compared to the observed dissimilarity. If the 177 
values are similar, the observed dissimilarity can be explained by stochastic factors. If the observed 178 
dissimilarity is higher or lower than the null expectation, there are likely deterministic factors that 179 
favor different or similar taxa in the two habitats [37]. The Raup-Crick model was originally 180 
developed for incidence-based data [36, 38] and was recently extended to also function with the Bray-181 
Curtis index [41]. In this paper, we further extend the Raup-Crick null model to function with the 182 
whole continuum of Hill-based dissimilarity indices (qd) (Text S1.3, Additional file 1). The index, 183 
here denoted as the Raup-Crick index for diversity order q (qRC), is calculated using Eq. 4. 184 
 185 

𝑅𝐶 
𝑞 =

𝑁[ 𝑑 
𝑞

𝑒𝑥𝑝< 𝑑 
𝑞

𝑜𝑏𝑠]+0.5∙𝑁[ 𝑑 
𝑞

𝑒𝑥𝑝= 𝑑 
𝑞

𝑜𝑏𝑠]

𝑁𝑇𝑂𝑇
  (Eq. 4) 186 

N[qdexp<qdobs] is the number of randomizations in which the dissimilarity between the randomly 187 
assembled samples is less than between the observed samples, N[qdexp=qdobs] is the number of 188 
randomizations in which the dissimilarities are equal, and NTOT is the total number of randomizations. 189 
 190 
The goal of this study is to show how the choice of dissimilarity index impact the results from high-191 
throughput amplicon sequencing experiments. We examine sequencing data from a new experiment 192 
with aerobic granular sludge (AGS) reactors and we re-analyze a previously published data set [32] 193 
from a study with microbial fuel cells (MFCs). To reduce the effects of bioinformatics choices on the 194 
sequencing results, we examine count tables generated with several bioinformatics pipelines and use a 195 
consensus approach to infer a count table that only includes ASVs detected by two different denoiser 196 
pipelines. In the AGS experiment, we test the hypothesis that two bioreactors started from the same 197 
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inoculum and operated under identical conditions for 150 days exhibit the same change in microbial 198 
community composition compared to the inoculum. In the MFC experiment, we test the hypothesis 199 
that microbial communities growing in different habitats within a glucose-fed MFC are more similar 200 
than microbial communities growing in different habitats within an acetate-fed MFC. We show that 201 
the conclusions from an experiment may differ depending on the chosen dissimilarity index. We 202 
propose that a solution to this problem is to analyze community dissimilarity for a span of diversity 203 
orders using Hill-based indices, and we demonstrate that for the whole range of dissimilarity indices, 204 
null models can be used to disentangle community assembly mechanisms. Finally, we introduce a free 205 
software and Python package, qdiv, which enables rapid and simple calculations of the indices and 206 
includes an algorithm for the generation of consensus count tables. Our study focuses on taxonomic 207 
dissimilarity indices. The presented methods could, however, be extended to indices taking 208 
phylogenetic relationships into account. 209 
 210 

RESULTS 211 

 212 
Behavior of Hill-based dissimilarity indices and the 

q
RC null model 213 

Count tables from microbial community surveys typically consist of a few highly abundant 214 
OTUs/ASVs and many low-abundant ones. Using a highly simplified count table (Fig. 1A-B), we 215 
demonstrate how the Hill-based dissimilarity indices behave in comparison to the Jaccard and Bray-216 
Curtis indices, which are more commonly used in microbial community studies. Hill-based 217 
dissimilarity (qd) are shown as functions of the diversity order, q (Fig. 1C-D). Since the Jaccard index 218 
is identical to the regional Hill-based dissimilarity index of diversity order 0 (Text S1.2, Additional 219 
file 1), it is plotted at q equals 0. The Bray-Curtis index is plotted at q equals 1. Bray-Curtis and Hill-220 
based dissimilarity indices are usually not comparable. However, in the special case when two 221 
samples have the same species abundance distribution and a species detected in both samples have the 222 
exact same relative abundance in both samples, the Bray-Curtis dissimilarity is identical to 1d (for 223 
proof, see Text S1.4 in Additional file 1).  224 
 225 
First, let us consider the situation when samples have equal richness, i.e. the same numbers of 226 
detected species (Fig. 1C). Four samples (S0, S1, S2, S3) each have 2 abundant, 4 intermediate, and 8 227 
rare species. Samples S0 and S1 share 1 abundant, 2 intermediate, and 4 rare species. As expected, the 228 
Hill-based dissimilarity (qd) between S0 and S1 is 0.5 for all values of q. Sample S0 and S2 share half 229 
of the rare and intermediate species, but none of the abundant species and consequently qd goes 230 
towards 1 as q increases. Samples S0 and S3 share all intermediate species, but only 1 of the abundant 231 
and 1 of the rare, and consequently we see a valley in the qd vs q curve. In these special cases, both 232 
samples have the same species abundance distribution and a species detected in both samples have the 233 
exact same relative abundance in both samples. Consequently, the Bray-Curtis dissimilarity is 234 
identical to 1d. Sample S4, however, has the same richness as S0 but a different species abundance 235 
distribution, and the Bray-Curtis index is different from 1d. 236 
 237 
Second, let us consider the situation when samples have unequal richness (Fig. 1D). Samples S5-S7 238 
have only two species each. In S5, those two species are the same as the most abundant ones in 239 
sample S0 and consequently, qd decreases with increasing q. In S6, the two species are the same as 240 
two intermediates in S0 and we can see a valley in the curve. In S7, the two species are the same as 241 
two rare ones in S0 and the dissimilarity increases with q. The Bray-Curtis index shows a different 242 
behavior. For S0-S5, Bray-Curtis is equivalent to Hill-based dissimilarity with a low diversity order 243 
(q) of 0.52 and for S0-S6 and S0-S7 it is equivalent to diversity orders (q) much higher than 2. 244 
 245 
Using the qRC null model, we can compare the observed dissimilarity between two samples to the 246 
expected dissimilarity if the two sampled communities had been randomly assembled from a regional 247 
species pool. The qRC values, as calculated in Eq. 4, are constrained between 0 and 1. A value close to 248 
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0 means lower dissimilarity than the null expectation and a value close to 1 means higher dissimilarity 249 
than the null expectation. In Fig. 1E-F, the sample pair S0-S3 is used as an example. For values of q 250 
close to 0, the observed dissimilarity is higher than the null expectation and consequently 0RC is 1. 251 
For higher values of q, the observed dissimilarity is close the null expectation and consequently the 252 
qRC values are intermediate, i.e. neither close to 0 or 1 (Fig. 1F). For this theoretical example, it 253 
means that if we weigh species according to their relative abundance (q≈1), the observed dissimilarity 254 
could be explained by random assembly of the two communities from the regional species pool but if 255 
we give equal weight to all species (q≈0), the observed dissimilarity is higher than we can expect 256 
from a random assembly process. 257 
 258 

 259 
Fig. 1. Behavior of dissimilarity indices with a theoretical data set. (A) Theoretical count table and (B) richness 260 
of each sample. (C) Behavior of dissimilarity indices for samples with equal species abundance distribution, 261 
sharing exactly half of the abundant, intermediate, and rare species (S0-S1), sharing no abundant but half of the 262 
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rare and intermediate species (S0-S2), or sharing all the intermediate species but only half of the rare and 263 
abundant (S0-S3). S0-S4 share all species but have different species abundance distributions. (D) Behavior of 264 
dissimilarity indices for samples having different richness (14 in S0 and 2 in S5-S7). In S0-S5 the shared species 265 
are the same as the most abundant in S0, in S0-S6 the shared species are those of intermediate abundance in S0, 266 
and in S0-S7 the shared species are rare in S0. (E-F) Null model analysis comparing observed dissimilarity to 267 
the null expectation for samples S0-S3. The black line and shaded region in D show the average and standard 268 
deviation for the null expectation based on 99 randomizations. Observed dissimilarity and the null expectation 269 
(E), and qRC values (F) for the Jaccard (squares) and Bray-Curtis (circles) indices are also shown. 270 
 271 
Inferring consensus count tables from the experimental data 272 
The number of low-abundant OTUs/ASVs detected when microbial communities are analyzed using 273 
high-throughput amplicon sequencing can be highly dependent on bioinformatics pipeline [42]. Here, 274 
we compare results using several pipelines operated with different settings and infer a consensus table 275 
based on the output from two denoiser pipelines. Samples collected from two experiments (AGS and 276 

MFC) were sequenced in two separate sequencing runs. The sequences were processed using 277 

DADA2 version 1.10 [43], Deblur version 1.04 [44], USEARCH version 10 [45], and Mothur version 278 
1.41 [46] with various settings, resulting in 11 count tables for each experiment. In USEARCH, we 279 
used both UNOISE to determine ASVs and UPARSE to cluster OTUs (see Text S2.1 in Additional 280 
file 2). There were large differences in the number of detected OTUs/ASVs by different pipelines. 281 
This was mostly caused by large numbers of low-abundant, potentially spurious OTUs/ASVs 282 
appearing when the pipelines were run with relaxed quality filtering thresholds. Despite the large 283 
richness differences, count tables generated with different pipelines generally had similar abundance-284 
based diversity values and evenness. They also showed similar beta diversity patterns and were able 285 
to distinguish between different sample categories in the data sets (see Text S2.3-4 in Additional file 286 
2). 287 
 288 
Denoiser pipelines generate exact ASVs, which represent true biological entities. Thus, an ASV found 289 
with one denoiser pipeline should also be found with another. To filter out potentially spurious ASVs, 290 
information from several pipelines can be combined in a consensus table. A function for generating a 291 
consensus table from an unlimited number of count tables was implemented in qdiv. The consensus 292 
function identifies ASVs that are detected in all compared count tables. For each count table, the 293 
fraction of the reads associated with the set of shared ASVs is calculated. The count table with the 294 
highest fraction is retained, all ASVs not belonging to the shared set are discarded, and the retained 295 
count table with the remaining shared ASVs is returned as the consensus table (for a more detailed 296 
description, see Text S2.2 in Additional file 2). In this study, we inferred a consensus table based on 297 
two count tables generated with DADA2 and UNOISE. For the AGS data set, the DADA2 and 298 
UNOISE count tables had 1768 and 1192 ASVs, respectively. The consensus function identified 919 299 
shared ASVs. The UNOISE count table had 99.7% of its read counts mapped to these shared ASVs 300 
and was retained as the consensus table after being subsetted to the shared ASVs. For the MFC data 301 
set, the DADA2 and UNOISE count tables had 3355 and 3152 ASVs, respectively. The consensus 302 
table was based on the UNOISE table, which had 99.4% of its reads mapped to the 2258 shared 303 
ASVs. The relative abundances of the ASVs detected by the count tables are shown in Fig. 2. The 304 
ASVs that are not retained in the consensus table have low relative abundance spanning from 8·10-6 to 305 
0.05% in the AGS data set and 3·10-6-0.8% in the MFC data set. Before analysis of dissimilarity, the 306 
count tables were rarefied to the number of reads in the smallest sample. This was 278 758 307 
reads/sample in the AGS data set and 33 171 reads/sample in the MFC data set. Further details about 308 
the count tables are shown in Fig. S2.1-10 in Additional file 2. 309 
 310 
The consensus count tables were used to evaluate dissimilarity between replicate samples and test 311 
hypotheses on the experimental data from the AGS and MFC systems. 312 
 313 
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 314 
Fig. 2. Relative abundance (%) of ASVs retained in the consensus tables for the AGS (A) and MFC (B) data 315 
sets. Each ASV in the two input tables, arranged from highest to lowest relative abundance, is shown on the x-316 
axis. The blue lines show the maximum relative abundances of the ASVs in the DADA2 and UNOISE count 317 
tables and the red lines show the cumulative relative abundances. The heatmaps show whether the ASVs were 318 
detected in the DADA2 and UNOISE count tables (light red). If it was detected in both, it was also retained in 319 
the consensus table, which is indicated by dark red color. 320 
 321 
The observed dissimilarity between replicates is affected by the choice of dissimilarity index 322 
Both the AGS and MFC samples contained microbial community replicates, which means that DNA 323 
was extracted in parallel from six aliquots of biomass collected from the same microbial community 324 
(e.g. the same AGS reactor or the same MFC biofilm). The MFC samples also contained one set of 325 
technical replicates, which in this study means that the same DNA extract was processed in six 326 
separate PCR reactions followed by sequencing of the six separate PCR products. 327 
 328 
The diversity order (q) of the dissimilarity index had a strong effect on the dissimilarity between 329 
replicates. The highest dissimilarity was observed for incidence-based indices (0d and Jaccard) and the 330 
dissimilarity typically decreased with increasing diversity order (Fig. 3). Overall, the technical 331 
replicates had lower dissimilarity than the community replicates for diversity order from 0 to 2 (p < 332 
0.05, n=15, Welch’s anova). The consensus table had lower dissimilarity between replicates than the 333 
two count tables used to generate the consensus table at low diversity orders (q < 1) for all seven sets 334 
of community replicates as well as for the technical replicates (see Fig. S2.12 in Additional file 2). 335 
 336 
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 337 
Fig. 3. Dissimilarities between replicates (n=6). (A) A comparison between the community- and technical 338 
replicates for samples from the MFC experiment. (B) Other community replicates from the MFC experiment 339 
and (C) community replicates from the AGS experiment. Hill-based dissimilarity values (qd) are shown as lines. 340 
Jaccard and Bray-Curtis dissimilarities are shown as squares and circles, respectively. Shaded regions and error 341 
bars are standard deviations of pairwise dissimilarities (n=15). The MFC data set had four categories of 342 
samples: acetate-fed biofilms growing on anodes (Ac.anod.), acetate-fed biofilms growing on non-conductive 343 
surfaces (Ac.non-cond.), glucose-fed biofilms growing on anodes (Glu.anod.), and glucose-fed biofilms growing 344 
on non-conductive surfaces (Glu.non-cond.). The AGS data set had three sample categories: the inoculum 345 
(Inoc), reactor 1 (R1), and reactor 2 (R2). The technical replicates were taken from a Glu.anod. sample. 346 
 347 
Random sampling affects the observed dissimilarity between replicates 348 
The high dissimilarity between replicates for low diversity orders could be the result of 349 
undersampling [47]. To examine this effect, we used a simulation. The AGS data set served as a 350 
hypothetical case. Fig. 4A shows the relative abundance distribution of the 919 ASVs found in the 351 
AGS consensus table. Let us assume this represents the true relative abundances of all taxa present in 352 
the investigated microbial community. Five sets of samples with sequencing depths ranging from 353 
10 000 to 3 million reads per samples were obtained from the community. The samples were 354 
generated by random sampling with replacement from the relative abundance distribution. Increasing 355 
sequencing depth led to increasing number of detected ASVs (Fig. 4B). The average pairwise 356 
dissimilarity between six replicate samples is shown in Fig. 4C. The curves have the same shape as 357 
the experimentally observed dissimilarities in Fig. 3. A sequencing depth of 300 000, which is similar 358 
to the actual sequencing depth for the AGS data set (278 758 reads/sample), generated approximately 359 
the same dissimilarity profile as the real data (see Fig. 3C and 4C). The detection of the ASVs 360 
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increased and the dissimilarity between replicates decreased with increasing sequencing depth (Fig. 361 
S2.13, Additional file 2). At a sequencing depth of 3 million reads, 98.5±0.4% of the ASVs were 362 
detected.  363 
 364 

  365 
Fig. 4. Simulation of the effect of sequencing depth on dissimilarity between replicates. (A) Relative abundance 366 
distribution for the microbial community being sampled. (B) ASVs detected in samples having different 367 
sequencing depths. Dark red color indicates that the ASV was detected. Three samples are shown for each 368 
sequencing depth. (C) Average pairwise dissimilarities between replicate samples at each sequencing depth. The 369 
shaded regions show the standard deviations (n=15). Jaccard- and Bray-Curtis dissimilarities are shown as 370 
squares and circles, respectively.  371 
 372 
Effect of the choice of diversity index on observed differences between sample categories 373 
The ability of different dissimilarity indices to distinguish between sample categories in the 374 
experimental data was also tested. The AGS data set was more challenging than the MFC data set 375 
because most taxa were shared between different samples. Therefore, the AGS consensus table with 376 
the three sample categories, the inoculum, reactor 1 (R1), and reactor 2 (R2), was used in the analysis. 377 
The F-statistic is the ratio of between-group variability and within-group variability. Dissimilarity 378 
matrices resulting in the calculation of a high F-statistic are thus better at resolving differences 379 
between sample categories. Dissimilarity matrices generated with the 1d and 2d indices resulted in F-380 
statistics of 2492 and 2969, respectively. The Bray-Curtis index resulted in an F-statistic of 153. The 381 
incidence-based 0d and Jaccard indices resulted in values of 20 and 15, respectively. High 382 
dissimilarity between replicates, which was observed for the incidence-based indices (Fig. 3), would 383 
result in lower F-statistic. Despite large differences in the F-statistic, statistically significant 384 
separation between the three sample categories was found with all dissimilarity indices (permanova, 385 
p=0.001, 999 permutations) (see also Text S2.4 in Additional file 2). A PCoA showing separation 386 
between the sample categories using the 0d index is shown in Fig. S2.11 (Additional file 2). 387 
 388 
The choice of dissimilarity index influence hypothesis testing 389 
 390 
AGS experiment 391 
In the AGS experiment, we hypothesized that R1 and R2 diverged from the inoculum to the same 392 
extent after 150 days of operation since they were operated under identical condition and had similar 393 
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performance. Thus, the dissimilarity between the inoculum and R1 should be the same as between the 394 
inoculum and R2. The results are shown in Fig. 5A. For high diversity orders (q ≥ 0.4), the 395 
dissimilarity between the inoculum and R2 is larger than between the inoculum and R1 and for low 396 
diversity order (q ≤ 0.1), higher dissimilarity is observed between the inoculum and R1 (p < 0.05, 397 
Welch’s anova). However, it should be noted that the magnitude of the difference is small at low 398 
diversity order.  399 
 400 
MFC experiment 401 
In the MFC experiment, we compared microbial communities of electroactive biofilms growing on 402 
anodes with biofilms growing on non-conductive porous separators. We hypothesized that biofilms 403 
growing on conductive and non-conductive surfaces would be more dissimilar to each other in the 404 
acetate-fed MFC than in the glucose-fed MFC. Glucose is a fermentable substrate and fermentative 405 
microorganisms should be able to grow anywhere within the MFCs, leading to a more homogenous 406 
microbial community structure. Acetate, on the other hand, is non-fermentable and the microbial 407 
communities in an acetate-fed MFC are therefore dependent on electron acceptor availability. On the 408 
anode surface, the anode serves as electron acceptor while in other locations within the MFCs, the 409 
microorganisms must use soluble compounds such as oxygen diffusing in through the gas-diffusion 410 
cathode. Microbial communities in different locations of the acetate-fed MFCs should therefore have 411 
different metabolisms, which likely leads to higher dissimilarity than between communities within the 412 
glucose-fed MFCs which, at least partly, could have the same metabolism, namely fermentation [32]. 413 
For high diversity orders, (q ≥ 0.8), there was higher dissimilarity in the acetate-fed MFC than in the 414 
glucose-fed MFC. For low diversity orders (q ≤ 0.6), the glucose-fed MFC had higher dissimilarity (p 415 
< 0.05, Welch’s anova) (Fig. 5B).  416 
 417 

 418 
Fig. 5. (A) Average pairwise dissimilarity between the inoculum and R1, and the inoculum and R2 for the AGS 419 
data set. (B) Average pairwise dissimilarity between the electroactive biofilm growing in the anode and the 420 
biofilm growing on the non-conductive separator in the acetate-fed and glucose-fed MFCs. Shaded regions show 421 
standard deviations. The horizontal bars near the x-axis indicate significant difference in dissimilarity (Welch’s 422 
anova, p < 0.05, n=36). The color of the bar shows which pair has the highest dissimilarity. 423 
 424 
Null model 425 
Null models were used to aid in the interpretation of dissimilarity values. The results from the AGS 426 
experiment is shown in Fig. 6A-C. The dissimilarity between the inoculum and R1 is not significantly 427 
different from the null distribution at any diversity order and consequently qRC is close to 0.5. For the 428 
inoculum and R2, the observed dissimilarity is higher than between the inoculum and R1; however, 429 
the null expectation of random assembly could not be rejected at a significance level of 0.05. 430 
 431 
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For the MFC data set, the results from the null model analysis are shown in Fig. 6D-F. At a diversity 432 
order of 0, the observed dissimilarity is similar to the null expectation and consequently qRC is close 433 
to 0.5. This indicates that if we only care about presence/absence of ASVs, there is a random 434 
distribution between the two biofilm communities. With increasing emphasis on relative abundance, 435 
the dissimilarity between biofilm types is higher than the null distribution. For the acetate-fed MFCs, 436 
the qRC values are close to 1, which means significant compositional differences between the two 437 
communities. For the glucose-fed MFCs, the qRC again drops to lower values at a diversity order 438 
above 1. This means that some of the most abundant ASVs are shared between biofilms growing on 439 
conductive and non-conductive surfaces. This indeed turned out to be the case with a Trichococcus sp. 440 
being highly abundant in both biofilm communities, likely carrying out fermentation in both places 441 
[32]. 442 
 443 

 444 
Figure 6. Null model simulation (199 randomizations). (A-C) Results for the AGS data set. (D-F) Results for 445 
the MFC data set. (A) Dissimilarity between the inoculum and R1 (blue) in comparison to the null distribution 446 
(black). (B) Dissimilarity between the inoculum and R2 (red) in comparison to the null distribution (black). (C) 447 
qRC values for the inoculum-R1 (blue) and inoculum-R2 (red) comparisons. (D) Dissimilarity between biofilms 448 
on anodes and non-conductive surfaces in the acetate-fed MFC (blue) in comparison to the null distribution 449 
(black). (E) Dissimilarity between biofilms on anodes and non-conductive surfaces in the glucose-fed MFC 450 
(red) in comparison to the null distribution (black). (F) qRC values for the biofilm comparisons in the acetate-fed 451 
MFC (blue) and glucose-fed MFC (red). Shaded regions show standard deviations based on all pairwise 452 
comparisons (n=36). 453 



14 
 

 454 

DISCUSSION 455 

 456 
A consensus count table removes many low-abundant ASVs but retains most of the reads  457 
Previous studies comparing bioinformatics pipelines for high-throughput sequencing of marker-genes 458 
have found large differences in alpha diversity estimates [42, 48-51]. We also observed that both the 459 
pipeline and the input parameter values chosen by the user affected the number of inferred 460 
OTUs/ASVs as well as the number of reads mapped to these (see Fig. S2.1-2 in Additional file 2). 461 
With real samples of unknown composition, it is difficult to choose which pipeline and which settings 462 
to use for the analysis. A way to approach the problem of inflated OTU/ASV counts is to infer a 463 
consensus table based on OTUs/ASVs detected using several different pipelines. We have 464 
implemented an algorithm for doing this in qdiv. Running the algorithm with DADA2 and UNOISE 465 
count tables as input resulted in dramatic drops in the ASV count in the consensus tables; however, 466 
most of the reads (99.4-99.7%) were associated with the consensus ASVs. 467 
 468 
Dissimilarity between replicates depends on the diversity order and can be explained by 469 
random sampling effects 470 
High dissimilarity between replicates can make it difficult to use marker-gene amplicon sequencing to 471 
distinguish categories of samples. For example, Bautista-de los Santos et al. [52] studied microbial 472 
communities in drinking water using the Jaccard and Bray-Curtis indices on an OTU table generated 473 
with Mothur. Fewer significant differences between sample categories were observed with the Jaccard 474 
index because of high dissimilarity between replicate samples [52]. We also observed much lower F 475 
statistics for the AGS data set with incidence-based dissimilarity indices, which was caused by higher 476 
dissimilarity between community replicates in relation to dissimilarity between sample categories. 477 
 478 
Dissimilarity between replicates can be caused by many factors associated with sampling, DNA 479 
extraction, PCR, sequencing, and data processing [53]. The comparison between community- and 480 
technical replicates in Fig. 3A suggested that only a relatively small fraction was associated with 481 
sampling and DNA extraction for the case of an MFC biofilm sampled from an anode. The 482 
dissimilarity of replicates was the highest for incidence-based indices and low diversity order (q<1), 483 
which means that low-abundant OTUs/ASVs had a strong influence on the observed dissimilarity. 484 
The species-abundance distribution of microbial communities can contain a long tail of low-abundant 485 
taxa of which only some may be detected in the analyzed samples. This random sampling effect [5, 486 
47], as well as the generation of erroneous OTUs/ASVs during PCR, sequencing and data processing, 487 
cause dissimilarity between replicates. The random sampling effect was shown using a simulation in 488 
Fig. 4, where the simulated dissimilarity between replicates corresponded very well with the 489 
experimentally observed dissimilarity at a sequencing depth of approximately 300 000 reads/sample.  490 
 491 
Previously, Haegeman et al. [31] showed the difficulty of estimating alpha diversity at low diversity 492 
orders (q<1) because even in deeply sequenced samples, we lack information about the tail of low-493 
abundant OTUs/ASVs. In the simulation in Fig. 4, the true dissimilarity was 0 since all samples were 494 
collected from the same hypothetical community. However, the simulated dissimilarity for low 495 
diversity orders (q < 1) was much higher than 0, although it decreased as sample size increased.  496 
 497 
Fig. 3-5 show dissimilarity as a function of diversity order. The mean and standard deviation of 498 
several pairwise comparisons of samples from the compared communities are shown in each figure. 499 
Although we know that the calculated dissimilarities at low diversity order are likely incorrect, the 500 
standard deviations (shaded regions) are generally very small. This means that for a given sample size 501 
(sequencing depth), the calculated dissimilarity is reproducible. It does not mean that the calculated 502 
dissimilarity is a good estimate of the true dissimilarity between the microbial communities from 503 
which the samples were taken. For example, Fig. 4 shows the mean and standard deviation of 15 504 
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pairwise dissimilarity values between six simulated samples. The standard deviation of the simulated 505 
dissimilarity is very small, but the mean is far from the true value. For a sample size of 300 000 reads, 506 
0d was 0.11±0.01. However, in this case we know that the true dissimilarity was 0. 507 
 508 
The dissimilarity between replicates decreased with increasing diversity order until q was 509 
approximately one (Fig. 3). For some samples, most notably the biofilm samples from non-conductive 510 
surfaces in the MFC experiment, the dissimilarity between replicates then increased at higher 511 
diversity order and for the Bray-Curtis index (Fig. 3B). At low diversity order (q<1), the dissimilarity 512 
between replicates could be lowered by generating a consensus table (Fig. S2.12, Additional file 2). 513 
The consensus table excludes many low-abundant and potentially spurious ASVs were from the data 514 
sets. Since low-abundant OTUs/ASVs have a large impact on low diversity order dissimilarity 515 
indices, dropping some of them from the data set leads to reduced dissimilarity. At a high diversity 516 
order (e.g. q=2), the calculated dissimilarity is highly dependent on the relative abundance of the most 517 
abundant OTUs/ASVs in each sample. Small differences in relative abundance values of those 518 
OTUs/ASVs are amplified, which leads to increasing dissimilarity. In the MFC sample, heterogeneity 519 
of the biofilms growing on the non-conductive surfaces may have caused the observed dissimilarity 520 
between community replicates at high diversity order. The 1d index, which weighs OTUs/ASVs 521 
exactly according to their relative abundance in the sample, seems to be a good compromise leading 522 
to low dissimilarity between replicates and hence better possibilities of detecting actual differences 523 
between samples collected from microbial communities exposed to different treatments. 524 
 525 
Hypotheses should be tested for a range of diversity orders to determine the effects of taxa with 526 
different relative abundances 527 
Previous research has shown that Hill numbers are suitable for quantifying alpha diversity in samples 528 
obtained by high-throughput sequencing of marker-genes [29]. For example, Haegeman et al. [31] 529 
analyzed alpha diversity as a function of diversity order and concluded that Hill numbers with q > 1 530 
give robust estimates of alpha diversity. In this study, we show that dissimilarity profiles, which show 531 
the dissimilarity between samples as a function of diversity order (Fig. 5), are highly informative also 532 
in the study of beta diversity. The use of a single dissimilarity index would have given misleading 533 
information for the data sets investigated in this study. In the AGS experiment, incidence-based 534 
indices showed that R1 and R2 were about equally dissimilar to the inoculum. However, at higher 535 
diversity order, there was a clear difference. In the MFC experiment, the incidence-based indices 536 
would have led us to conclude that the dissimilarity between biofilms on conductive and non-537 
conductive surfaces in the acetate-fed MFCs was lower than in the glucose-fed MFCs, contrary to our 538 
hypothesis. However, when we plot dissimilarity as a function of q, we see that when we focus on the 539 
more abundant OTUs/ASVs (q>1), the bioanodes and biofilms in the glucose-fed MFCs are in fact 540 
less dissimilar, in line with our hypothesis. 541 
 542 
Contrary to the commonly used Bray-Curtis index, the Hill-based dissimilarity indices have an 543 
intuitive interpretation. The qd index quantifies the effective average proportion of OTUs/ASVs in one 544 
sample not shared with the other sample [54]. If two samples have S number of equally common 545 
OTUs/ASVs and C of them are shared, the dissimilarity value would be 1-C/S [25]. Thus, the number 546 
itself has a meaning. For example, 0d can be interpreted as the average proportion of all OTUs/ASVs-, 547 
1d as the average proportion of “common” OTUs/ASVs-, and 2d as the average proportion of 548 
“abundant” OTUs/ASVs not shared between two samples. 549 
 550 
The Hill-based dissimilarity indices can also be extended to take relationships between OTUs/ASVs 551 
into account [54]. Using either a phylogenetic tree or a matrix of pairwise distances as input, 552 
phylogenetic- or functional dissimilarity indices can be calculated [26, 55, 56]. As phylogenetically 553 
closely related taxa tend to have similar functional capabilities and habitat preferences [57], 554 
dissimilarity indices that take phylogenetic relatedness into account could, in comparison to 555 
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taxonomic indices, provide more information about functional differences between microbial 556 
communities. 557 
 558 
Null models help us to further interpret the meaning of the dissimilarity values. The data set from the 559 
MFCs show that for a diversity order of 0, the distribution of OTUs/ASVs between the two types of 560 
biofilms is close to the null expectation. This is logical considering that the two biofilms are 561 
physically located close to each other and linked by dispersal. There is, thus, a high likelihood that the 562 
same OTUs/ASVs can be detected in both locations, even if they do not grow in both locations. For 563 
higher diversity order (i.e. q=1) we see a higher dissimilarity than the null expectation, suggesting that 564 
the common OTUs/ASVs are different in the two locations. This could be explained by heterogeneous 565 
selection. The conductive anode surface selects for electroactive microorganisms whereas the non-566 
conductive separator selects for oxygen scavengers. For even higher diversity order (q = 2), the 567 
dissimilarity between the two biofilms in the glucose-fed MFC again approaches the null expectation. 568 
This is logical considering that one of the most abundant taxa in the glucose-fed MFCs was a 569 
fermentative Trichococcus sp., which could grow in both locations [32].   570 
 571 
CONCLUSIONS 572 

• Bioinformatics pipelines ran with different settings resulted in count tables having large 573 
differences in the number of OTUs/ASVs and total reads. A way to minimize the effect of 574 
low-abundant and possibly spurious OTUs/ASVs on the analysis is to generate a consensus 575 
table based on several other count tables generated using different denoising pipelines (e.g. 576 
UNOISE, DADA2, and Deblur). 577 

• Conclusions drawn from experimental data can depend on the chosen dissimilarity index. To 578 
fully understand beta diversity patterns, Hill-based dissimilarity values should be calculated 579 
for several diversity orders (q). Dissimilarity profiles plotting qd as a function of q are 580 
informative. 581 

• Null models, which can be calculated based on all dissimilarity indices, help in the 582 

interpretation of dissimilarity values and give information about community assembly 583 
mechanisms. 584 

• The Python package qdiv, freely available at https://github.com/omvatten/qdiv with 585 
documentation at https://qdiv.readthedocs.io/en/latest/, enables simple calculation of Hill-586 
based dissimilarity indices and associated null models. It can also be used to calculate 587 
consensus count tables. 588 

 589 

METHODS 590 

 591 
Experimental 592 
Samples collected from two separate experiments were analyzed in this study. In the AGS 593 
experiment, granular sludge from a sequencing batch reactor was used to inoculate two new reactors 594 
(R1 and R2). Six samples were collected from the inoculum as well as from each of the two new 595 
reactors after 150 days of operation (Fig. S3.1, Additional file 3). The sets of six are called 596 
community replicates. Reactor R1 and R2 had similar performance over time with total organic 597 
carbon removal >90% and total nitrogen removal of 35.2±14.6% in R1 and 37.0±12.7% in R2. They 598 
also had similar average granule size in the end of the experiment and followed the same trajectory in 599 
terms of suspended solids concentrations in the reactors. 600 
 601 
In the MFC experiment, parallel MFCs were operated with either acetate or glucose as the sole 602 
electron donor [for details, see 32]. Samples were collected from the anode where a biofilm of 603 
electroactive microorganisms oxidized the electron donor and generated electrical current, and from a 604 
non-conductive porous separator where a biofilm oxidized or fermented the electron donor and 605 
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scavenged oxygen (Fig. S3.2 Additional file 3). In one acetate- and one glucose-fed MFC, the 606 
biofilm samples were each cut into six pieces and DNA was extracted and processed separately from 607 
each piece. These samples are called community replicates. The DNA extracted from one of the 608 
anode-attached biofilm samples was also processed in six separate PCR reactions. These samples are 609 
called technical replicates. 610 
 611 
DNA was extracted using the FastDNA Spin Kit for Soil (MP Biomedicals). PCR amplification of the 612 
V4 region of the 16S rRNA gene was carried out with the primer pair 515’F 613 
(GTGBCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT) [58, 59] and the 614 
dual indexing strategy by Kozich et al. [3]. High-throughput sequencing was carried out using the 615 
Illumina MiSeq platform and reagent kit V3 (2x300 bp paired-end sequencing). Further details are 616 
provided in Text S3.1 (Additional file 3). The samples from the AGS and MFC experiments were 617 
processed in two separate sequencing runs. The sequencing results were deposited in the European 618 
Nucleotide Archive with accession numbers PRJEB35721 (AGS data set) and PRJEB26776 (MFC 619 
data set). The specific run accession numbers for each pair of fastq files used in the study and the 620 
corresponding sample identities are shown in Tables S3.1-2 (Additional file 3). 621 
 622 
Bioinformatics 623 
The sequence reads were processed using DADA2 version 1.10 [43], Deblur version 1.04 [44], 624 
USEARCH version 10 [45], and Mothur version 1.41 [46]. The pipelines offer the user various 625 
choices. For example, the stringency of the quality filtering method can typically be varied, and the 626 
reads can often be processed either separately sample-by-sample or in pooled mode. Analysis of 627 
pooled samples requires more computer memory. DADA2 and Deblur generate ASVs whereas 628 
Mothur generate OTUs. USEARCH can either generate ASVs using UNOISE [60] or OTUs using 629 
UPARSE [61]. Several count tables were generated using various input parameter settings in the 630 
pipelines (see Additional file 2). Details about the pipelines are provided at 631 
github.com/omvatten/amplicon_sequencing_pipelines. DADA2 and UNOISE count tables were used 632 
to generate consensus tables consisting of ASVs detected using both pipelines. This was done with a 633 
function implemented in qdiv. 634 
 635 
Software 636 
A software, qdiv, allowing calculation of all the indices and null models mentioned above was 637 
developed in Python3 and is available as a Python package. It makes use of the following Python 638 
packages: pandas [62], numpy [63], matplotlib [64], and python-Levenshtein. The source code for 639 
qdiv is available at https://github.com/omvatten/qdiv. It is available via PyPI and the Anaconda cloud. 640 
 641 
Statistical analysis 642 
To determine statistical significance of the association between different dissimilarity matrices, 643 
Mantel’s permutation test was used [65]. To compare the variability within sample categories to the 644 
variability between samples categories, permanova was used [66]. Both the Mantel test and 645 
permanova were implemented in qdiv. Welch’s anova was carried out using SciPy [67]. 646 
 647 
Null model 648 
In the AGS experiment, we defined all samples from the inoculum, R1, and R2 as the regional pool. 649 
In the MFC experiment, we were interested in the dissimilarity between the anode biofilm and biofilm 650 
growing on a non-conductive surface within the same MFC. Thus, we defined all samples collected 651 
from one specific MFCs as one regional pool. For randomization scheme, we used the frequency 652 
approach, which is the same as in Stegen et al. [41]. Briefly, the number of OTUs/ASVs and reads in 653 
a sample are recorded. The null version of the sample is generated by randomly picking the same 654 
number of OTUs/ASVs from the regional pool. The likelihood of being picked corresponds to the 655 
frequency of samples in which the OTU/ASV is found. The picked OTUs/ASVs are then populated 656 
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with reads so that the total number of reads in the randomly assembled sample equals that of the real 657 
sample. The likelihood for a read of being picked is related to the total number of reads associated 658 
with the OTUs/ASVs in the regional pool. 659 
 660 
It should be noted that the qRC value defined in Eq. 4 is constrained between 0 and 1. If a range 661 
between -1 and 1 is desired, e.g. as in Chase et al. [36], this can be accomplished by subtracting 0.5 662 
from the qRC value, and multiplying by 2. 663 
   664 
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