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Introduction 

With ever expanding applications for the use of artificial intelligence (AI) in healthcare, 

interest in its capabilities to analyse and interpret diagnostic tests has increased. AI driven 

approaches to interpretation of diagnostic tests has potential to overcome several current 

limitations on clinician availability, time to diagnosis and diagnostic accuracy. Recently, 

various deep learning algorithms have been shown to mimic human-like or demonstrate 

superhuman performance in analysis of radiological findings.1 In conjunction with AI, 

radiologists are capable of improving sensitivity and specificity as well as minimising inter- 

and intra-observer variability in interpretation. Similar studies have also been in conducted in 

non-radiological diagnostics, including AI-driven analysis of endoscopic, retinal and 

histopathological images.2–4 As studies examining AI driven approaches to diagnostic 

interpretation have become prevalent, systematic reviews have increasingly been published 

to amalgamate and report these results. Given the diversity and heterogeneity of existing AI 

techniques, with further rapid expansion expected, clinicians and policy makers may find it 

difficult to interpret these results and implement these models in their clinical practice. 

Additionally, it is prudent to ensure included studies are of high methodological quality and 

employ rigorous standards of outcome reporting, as they may be influential in altering 

guidelines or prompting significant policy change. On the other hand, poor quality studies 

with a lack of transparent reporting may lead to scepticism within healthcare professionals 

and members of the public therefore leading to unnecessary delays in technological adoption.  

It is therefore imperative that authors of systematic reviews critically appraise literature using 

an evidence-based, validated quality assessment tool to enable adequate comparison 

between studies. 

 

The most commonly used tool for the methodological assessment of secondary research 

studies remains the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool. 

QUADAS was developed in 2003 and updated in 2011. The original tool comprised of fourteen 

items on patient selection and spectrum, reference standard, presence of various biases, test 

execution, study withdrawals and indeterminate results.5 The updated version was modified 

to categorise the questions into four key domains: (i) patient selection, (ii) index test, (iii) 

reference standard and (iv) flow and timing, with each domain assessed for biases and the 

first three also assessed for applicability.6 However, the applicability of QUADAS for AI specific 

studies is unknown. These studies differ methodologically from conventional trials and consist 

of distinctive features, techniques and a different entity of analytical challenges. Given the 

differences in study design and outcome reporting, the areas of potential bias are also likely 

to differ substantially. However, despite these assumptions, there have been no formal 

studies examining the adherence and suitability of QUADAS in this genre of studies.   

Moreover, there has not been a similar evaluation with respect to emerging AI centred quality 

appraisal tools, such as the Radiomics Quality Score (RQS), which was specifically designed 

for studies reporting on algorithm-based extraction of features from medical images.7 

 



Therefore, the primary aim of this meta-research study is to evaluate adherence of QUADAS 

within systematic reviews of AI-based diagnostic accuracy. The secondary aims include (i) 

assessing the applicability of QUADAS for AI-based diagnostic accuracy studies, (ii) identifying 

other tools for methodological quality assessment and (iii) identifying key features that an AI 

specific quality assessment tool should incorporate. 

 

Materials and Methods 

 

Search strategy 

An electronic search was conducted for studies in accordance with the Preferred Reporting 

Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to identify systematic 

reviews reporting on diagnostic accuracy studies in AI studies (Figure 1).8 MEDLINE was 

searched from January 2000 – December 2020 using a mixture of keywords and MeSH terms. 

The search strategy consisted of systematic reviews related to artificial intelligence (artificial 

intelligence, machine learning and deep learning) and diagnostic accuracy. 

 

Study selection 

Two independent reviewers screened titles and abstracts for initial inclusion. Studies were 

included if they meet the following inclusion criteria: (1) systematic review (2) reporting on 

diagnostic accuracy in AI studies. Commentary articles, conference extracts and narrative 

reviews were excluded. Studies either examining prognostication or reporting on AI/ML to 

predict the presence of disease were also excluded. Two reviewers (SJ and VS) independently 

screened titles and abstracts for potential inclusion. All potential abstracts were subjected to 

full-text review by two independent reviewers. Disagreements were resolved through 

discussion with a third independent reviewer (HA).  

  

Data extraction 

Data was extracted onto a standardised proforma by two independent reviewers (VS and SJ). 

Study characteristics extracted were study author, year, institution, country, journal and 

journal impact factor. Data was collected on use of QUADAS and/or other quality assessment 

tools, quality assessment tool adherence, modifications to pre-existing tools, use of multiple 

tools to improve applicability to AI specific studies and any limitations pertaining to quality 

assessment expressed by study authors. 

 

Studies were classified into four clinical categories based upon the type of sample evaluated 

and upon the diagnostic task: (a) axial medical imaging, (b) non-axial medical imaging, (c) 

histopathological digital records (digital pathology) and (d) photographic images. 

 

Key AI-related extraction items were identified through examination of recently developed AI 

extensions to existing quality assessment tools. A consensus was reached amongst authors to 

ascertain vital items.  



 

Quality Assessment 

The AMSTAR 2 (A MeaSurement Tool to Assess systematic Reviews) was employed to 

evaluate the quality of included studies (Supplementary Table 1).9 

 



Figure 1: PRISMA Guidelines 

 

 

  

Records identified through 

database searching 

(n = 135) 

S
cr

e
e

n
in

g
 

In
cl

u
d

e
d

 
E

li
g

ib
il

it
y

 
Id

e
n

ti
fi

ca
ti

o
n

 

Additional records identified 

through other sources 

(n = 0) 

Records after duplicates removed 

(n = 135) 

Records screened 

(n = 135) 

Records excluded 

(n = 76) 

Full-text articles assessed 

for eligibility 

(n = 59) 
Full-text articles excluded, with 

reasons 

(n = 9) 

 

Not utilising artificial 

intelligence based tools 

(n=2) 

 

Algorithms not focused on 

diagnostication 

(n= 3) 

 

Only describes methodologies 

of algorithms and not diagnostic 

accuracy 

(n= 4) 

 

Investigation type not provided 

(n=2) 

 

Studies included in 

qualitative synthesis 

(n = 48) 

Studies included in 

quantitative synthesis 

(n = 48) 



Results  

The search yielded 135 papers, of which 49 met the eligibility criteria (Figure 1). Three papers 

were excluded upon full-text review as the systematic reviews focussed upon prediction 

models. Two papers were excluded due to a lack of focus on artificial intelligence-based 

diagnostics. Four studies were excluded as they solely discussed the types and methodologies 

of AI based tools. One study was excluded as it did not specify imaging type. 

 

Study Characteristics 

A total of 1110 studies were included across all 48 systematic reviews, with an average of 23 

studies within each systematic review (range: 2 – 111 studies). The full study characteristics 

are provided in Tables 1 to 4. Twenty-three reviews analysed axial imaging, nine analysed 

non-axial imaging, three analysed digital pathology , two analysed electrocardiograms and 

fifteen analysed photographic images. Of these photographic images, six analysed endoscopic 

images, four analysed skin lesions and five analysed fundus photography or optical coherence 

tomography.  

 

The most common artificial intelligence techniques used within the studies comprising the 

systematic reviews include support vector machines and artificial neural networks, 

specifically convolutional neural networks. 

 

Quality Assessment 

36 reviews (75% of studies) undertook a form of quality assessment, of which 27 utilised the 

QUADAS-2 tool. Further breakdown of quality assessment by study category is detailed 

below. 

 

Diagnostic Accuracy of AI in Axial Imaging 

23 systematic reviews comprising 621 studies reported on the application of AI models to 

diagnostic axial imaging (Table 1). Of the 23 studies, 14 performed quality assessment with 7 

reporting use of the QUADAS tool (Table 5). One study utilised RQS and another study utilised 

the RQS in addition to QUADAS. Other quality assessment tools used include MINORS (n=3), 

the Newcastle-Ottawa Score (n=2) and the Jadad Score (n=2).  

 

Out of the seven studies employing QUADAS, five studies completely reported risk of bias and 

applicability as per the QUADAS guidelines whilst one study only reported on risk of bias. One 

study provided QUADAS ratings given by each of the study authors; but did not provide a 

consensus table.10 

 

Four studies modified the existing quality assessment tools to improve suitability and 

applicability of the tool. Cho et al. tailored the QUADAS tool by applying select signalling 

questions from CLAIM (Checklist for Artificial Intelligence in Medical Imaging).11 Pellegrini and 

colleagues reported difficulties in finding a suitable quality assessment tool for machine 



learning diagnostic accuracy reviews and selectively applied items in the QUADAS tool to 

widen study inclusion.12 One study modified the MINORS checklist whilst another study used 

a modified version of the MINORS checklist in addition to TRIPOD.13,14 

 

Figure 2: Pie charts demonstrating the risk of bias amongst axial imaging studies, as 

assessed through QUADAS
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Table 1: Systematic Reviews of Artificial Intelligence Based Diagnostic Accuracy Studies in Axial Imaging 

Author Specialty 
Included 

Studies 
Input Variables Diagnosis 

Nayantara 202015 Hepatology 25 CT Liver lesions 

Cho 202011 Oncology 12 MRI Cerebral metastases 

Crombé 202016 Oncology 52 CT, CT-PET, MRI, US Sarcoma 

Kunze 202017 Musculoskeletal 11 MRI ACL and/or meniscal tears 

Groot 202014 Musculoskeletal 14 MRI, X-Rays, US 

X-Ray: Fracture detection and/or classification 

MRI: meniscal/ligament tears, tuberculous vs pyogenic spondylitis 

US: lateral epicondylitis 

Steardo Jr 202024 Psychiatry 22 fMRI Schizophrenia 

Ninatti 202029 Oncology 24 CT, PET-CT Molecular therapy targets 

Ursprung 202010 Oncology 57 CT, MRI Renal cell carcinoma 

Halder 202036 Respiratory Medicine 45 CT  Lung nodules 

Li 201939 Respiratory Medicine 26 CT  Lung nodule detection and/or classification 

Azer 201938 Hepatology / Oncology 11 CT, MRI, US, Pathology slides Hepatocellular carcinoma, liver masses 

Jo 201941 Neurology 16 MRI, PET, CSF Alzheimer’s disease 

Moon 201940 Psychiatry 43 sMRI, fMRI Autism spectrum disorder 

Sarmento 202043 Neurology 8 CT or MRI Stroke 

Filippis 201945 Psychiatry 35 sMRI, fMRI Schizophrenia 

Langerhuizen 201913 Musculoskeletal 10 CT, X-Rays Fracture detection and/or classification 

Pellegrini 201812 Neurology 111 MRI, CT Mild cognitive impairment, dementia  

Pehrson 201947 Respiratory Medicine 19 CT Lung nodule 

Bruin 201954 Psychiatry 12 sMRI, fMRI Obsessive compulsive disorder 

McCarthy 201852 Neurology 28 MRI Frontotemporal dementia 

Nguyen 201851 Neurology / Oncology 8 MRI Differentiate glioblastoma and primary CNS lymphoma 

Senders 201855 Neurosurgery 14 CT, MRI, history, age, gender Intracranial masses, tumours 

Smith 201756 Musculoskeletal 18 sMRI, fMRI Musculoskeletal pain 

  



Table 2: Systematic Reviews of Artificial Intelligence Based Diagnostic Accuracy Studies in Non-Axial Imaging 

Author Specialty 
Included 

Studies 
Input Variables Diagnosis 

Li 202021 Respiratory Medicine 15 Chest X-Ray Pneumonia 

Xu 202020 Oncology / Endocrinology 19 US Malignant thyroid nodules 

Yang 202026 Musculoskeletal 9 X-Rays Fractures 

Groot 202014 Musculoskeletal 14 MRI, X-Rays, US 

X-Ray: Fracture detection and/or classification 

MRI: meniscal/ligament tears, tuberculous vs pyogenic spondylitis 

US: lateral epicondylitis 

Li 202030 Oncology 10 US Malignant breast masses 

Azer 201938 Hepatology / Oncology 11 CT, MRI, US, Pathology slides Hepatocellular carcinoma, liver masses 

Harris 201942 Respiratory Medicine 53 Chest X-Ray Tuberculosis 

Zhao 201944 Endocrinology 5 Ultrasound Thyroid nodules 

Langerhuizen 201913 Musculoskeletal 10 X-Rays, CT Fracture detection and/or classification 

 

Table 3: Systematic Reviews of Artificial Intelligence Based Diagnostic Accuracy Studies in Photographic Images 

Author Specialty 
Included 

Studies 
Input Variables Diagnosis 

Bang 202018 Gastroenterology 8 Endoscopic images H. Pylori infection 

Mohan 202022 Gastroenterology 9 Endoscopic images Gastrointestinal ulcers/haemorrhage 

Hassan 202025 Gastroenterology 5 Colonoscopic images Polyps 

Lui 202034 Gastroenterology 18 Colonoscopy images Polyps 

Lui 202027 Gastroenterology 23 Endoscopic images Neoplastic lesions, Barrett’s oesophagus, squamous oesophagus, H. Pylori status 

Wang 202028 Ophthalmology 24 Fundus photography Diabetic Retinopathy 

Soffer 202031 Gastroenterology 10 Wireless Capsule Endoscopic images Detection of ulcers, polyps, bleeding, angioectasia 

Islam 202032 Ophthalmology 31 Fundus photography Retinal vessel segmentation 

Islam 202035 Ophthalmology 23 Fundus photography Diabetic retinopathy 

Murtagh 202037 Ophthalmology 23 OCT, Fundus photography Glaucoma 

Nielsen 201946 Ophthalmology 11 Fundus photography Diabetic Retinopathy 

Marka 201948 Dermatology / Oncology 39 Images of skin lesions Non-melanoma skin cancer 

Ruffano 201849 Dermatology / Oncology 42 Images of skin lesions Non-melanoma skin cancer 

Chuchu 201850 Dermatology / Oncology 2 Images of skin lesions Melanoma 

Rajpara 200958 Dermatology / Oncology 30 Images of skin lesions Melanoma 

 



Table 4: Systematic Reviews of Artificial Intelligence Based Diagnostic Accuracy Studies in Pathology Images 

Author Specialty 
Included 

Studies 
Input Variables Diagnosis 

Azam 202019 Pathology 25 Histology samples 
Varied - dysplasia, malignancy, challenging diagnoses, identification of small 

objects, miscellaneous 

Mahmood 202023 Oncology / ENT/ Maxfax 11 Histology samples Malignant head and neck lesions 

Azer 201938 Hepatology / Oncology 11 CT, MRI, US, Pathology slides Hepatocellular carcinoma, liver masses 

  



 

Table 5: Quality Assessment and Adherence to QUADAS in Systematic Reviews of Diagnostic Accuracy of Artificial Intelligence in Axial Imaging  

Study Input Variables 

Quality 

Assessment 

Performed 

QUADAS 

Used 

Modifications to Existing 

Tools 
Other Tools Used QUADAS Results Reported 

Nayantara 2020 CT  No - - - - 

Halder 2020 CT  No - - - - 

Azer 2019 
CT, MRI, US, 

Pathology slides 
No - - - - 

Li 2019 CT  No - - - - 

Jo 2019 MRI, PET, CSF No - - - - 

Sarmento 2019 CT, MRI No - - - - 

Pehrson 2019 CT No - - - - 

Bruin 2019 sMRI, fMRI No - - - - 

Senders 2018 
CT, MRI 

History/age/gender 
No - - - - 

Langerhuizen 2019 X-Rays, CT Yes No Yes – modified MINORS MINORS - 

Smith 2017 sMRI, fMRI Yes No No 
Newcastle-Ottawa 

Scale 
- 

Crombe 2020 CT, MRI, US Yes No No Radiomics Quality Score - 

Kunze 2020 MRI Yes No No MINORS - 

Groot 2020 MRI, X-Rays, US Yes No Yes – modified MINORS MINORS, TRIPOD - 

Steardo Jr 2020 fMRI Yes No No Jadad - 

Filippis 2019 sMRI, fMRI Yes No No Jadad - 

Ninatti 2020 CT, PET-CT Yes Yes No TRIPOD Yes 

Cho 2020 MRI Yes Yes 
Yes – modified QUADAS using 

CLAIM 
CLAIM checklist for AI Yes 

McCarthy 2018 MRI Yes Yes No No Yes 

Moon 2019 sMRI, fMRI Yes Yes No No Yes 

Pellegrini 2018 MRI, CT Yes Yes 

Yes –  only used QUADAS 

criteria authors deemed 

applicable 

No Yes 

Nguyen 2018 MRI Yes Yes No No Yes (only for bias) 

Ursprung 2019 CT, MRI Yes Yes No Radiomics Quality Score Yes (multiple raters; no consensus) 



Among the 115 studies across six systematic reviews, the patient selection was deemed to 

pose the highest or most unclear risk of bias. 54 of 115 studies (47%) were considered to 

have an unclear risk and 16 studies (14%) were classified as high risk of bias (Figure 2). A 

high proportion of studies were also considered to pose an unclear risk in the index test 

domain. 81% of studies had a low risk of bias in the reference standard domain with the 

remainder representing an unclear risk. Concern regarding applicability was generally low 

for most studies across all five reviews with 78.5%, 87.9% and 93.5% of studies having low 

concerns of applicability in the patient selection, index test and reference standard 

domains, respectively. 

 

Diagnostic Accuracy of AI in Non-axial Imaging 

 

9 systematic reviews comprising 146 studies reported on the application of AI models to non-

axial imaging comprising X-Rays or Ultrasounds (Table 2). Three reviews additionally included 

studies that also reported on axial imaging. 

 

Of the nine systematic reviews, seven performed quality assessment with five utilising 

QUADAS (Table 6). The remaining two studies utilised modified versions of the MINORS tools, 

with one of the studies also utilising TRIPOD as reported under Axial Imaging. 

 

Table 6: Quality Assessment and Adherence to QUADAS in Systematic Reviews of Diagnostic Accuracy of Artificial 

Intelligence in Non-Axial Imaging 

Study Modality 
Quality 

Assessment 

QUADAS 

Used 

Modifications 

to Existing 

Tools 

Other Tools Used 

QUADAS 

Results 

Reported 

Li 2020 Chest X-Ray No - - - - 

Azer 2019 
CT, MRI, US, 

Pathology slides 
No - - - - 

Langerhuizen 2019 X-Rays, CT Yes No Yes Modified MINORS - 

Groot 2020 MRI, X-Rays, US Yes No 
Yes (modified 

MINORS) 

TRIPOD + 

modified MINORS 
- 

Xu 2020 US Yes Yes No No Yes 

Yang 2020 X-Rays Yes Yes No No Yes 

Li 2020 US Yes Yes No No Yes 

Harris 2019 Chest X-Ray Yes Yes No No Yes 

Zhao 2019 US Yes Yes No No Yes 

 

Among the 89 studies across five systematic reviews, the index test domain posed the highest 

risk of bias whilst the patient selection domain posed the most unclear risk of bias (Figure 3). 

Concern regarding applicability was generally low for most studies across all five reviews with 

79.1%, 79.1% and 90.7% of studies having low concerns of applicability in the patient 

selection, index test and reference standard domains, respectively. 

  



Figure 3: Pie charts demonstrating the risk of bias amongst non-axial imaging studies, as 

assessed through QUADAS 

 

Diagnostic Accuracy of AI in Photographic Images 

 

Fifteen systematic reviews comprising 316 studies reported on the application of AI to photo-

based diagnostics (Table 3). This consisted of images of skin lesions (n=4), endoscopic images 

(n=6), and fundus photography or optical coherence tomography (n=5). 

 

Of the fifteen systematic reviews, thirteen performed quality assessment with eleven utilising 

QUADAS (Table 7). One study did not report any details on QUADAS whilst another did not 

report on applicability concerns and only risk of bias. The remaining two studies utilised the 

Cochrane Risk of Bias Tool and modified version of the Newcastle-Ottawa scale. In addition, 

Ruffano et al. and Chuchu et al. adapted the QUADAS tool specifically for non-melanoma skin 

cancer and melanoma respectively with definitions and thresholds specified by consensus for 

low and high-risk for bias.  

Patient Selection - Non-Axial Imaging

Low High Unclear

Reference Standard - Non-Axial Imaging

Low High Unclear

Index Test - Non-Axial Imaging

Low High Unclear

Flow & Timing - Non-Axial Imaging

Low High Unclear



 

Among the 231 studies across 11 systematic reviews, the patient selection domain contained 

the highest risk of bias whilst the flow and timing domain posed the most unclear risk of bias 

(Figure 4). Concern regarding applicability was high or unclear in the patient selection domain 

for the majority of studies with 54.8% of studies reporting high or unclear applicability 

concerns. Concerns of applicability were lower in the index test and reference standard 

domain with 67.5% of studies reporting low concerns in the index test domain and 53.8% in 

the reference standard domain. 

 

Table 7: Quality Assessment and Adherence to QUADAS in Systematic Reviews of Diagnostic Accuracy of Artificial 

Intelligence in Photographic Images 

Study Modality 
Quality 

Assessment 

QUADAS 

Used 

Modifications to 

Existing Tools 

Other 

Tools Used 

QUADAS Results 

Reported 

Mohan 2020 Endoscopic images No - - - - 

Rajpara 2009 Images of skin lesions No - - - - 

Hassan 2020 

Real-time computer-

aided detection 

colonoscopy 

Yes No No 

Cochrane 

Risk Bias 

Tool 

- 

Murtagh 2020 
OCT/Fundus 

photophraphy 
Yes No 

Yes - modified 

Newcastle-

Ottawa Scale 

Newcastle-

Ottawa 

Scale 

- 

Bang 2020 Endoscopic images Yes Yes No  Yes 

Lui 2020 Endoscopic images Yes Yes No  Yes 

Wang 2020 Fundus photography Yes Yes No  Yes 

Soffer 2020 
Wireless capsule 

endoscopy 
Yes Yes No  Yes - but not for 

applicability 

Islam 2020 Fundus photography Yes Yes No  Yes 

Lui 2020 Colonoscopy Yes Yes No  Yes 

Islam 2020 Fundus photography Yes Yes No  Yes 

Nielsen 2019 Fundus photography Yes Yes No  Yes 

Marka 2019 Images of skin lesions Yes Yes No  Yes 

Ruffano 2018 Images of skin lesions Yes Yes 

Yes - modified for 

non-melanoma 

skin cancers 

 Yes 

Chuchu 2018 Images of skin lesions Yes Yes 
Yes - modified for 

melanoma 
 Yes 

 

Diagnostic Accuracy of AI in Pathology 

 

Three systematic reviews comprising 47 studies reported on the application of AI to 

pathology. One review examined pathology slides in addition to imaging (Table 4). 

 

Two reviews performed quality assessment utilising QUADAS (Table 8). Mahmood et al a 

tailored QUADAS-2 tool. Only one review provided a tabular display of QUADAS assessment 

in the recommended format19 and reported low risk of bias among the majority of included 

studies across all domains (Patient Selection: 64% of studies low risk; Index Test: 80% low risk; 



Reference Standard: 92% low risk; Flow and Timing: 84% low risk) and low concerns regarding 

applicability.  

 

 
Figure 4: Pie charts demonstrating the risk of bias amongst photographic images studies, as 

assessed through QUADAS 

 

Table 8: Quality Assessment and Adherence to QUADAS in Systematic Reviews of Diagnostic Accuracy of Artificial 

Intelligence in Pathology 

Study Modality 
Quality 

assessment? 
QUADAS? Modifications 

Other Tools 

Used 
Table  

Azam 2020 
Histology 

samples 
Yes Yes No No Yes 

Mahmood 

2020 

Histology 

samples 
Yes Yes 

Yes – modified 

QUADAS 
No No 

Azer 2019 
Histology 

samples 
No No No No No 

 

 

Flow & Timing - Photographic

Low High Unclear

Index Test - Photographic

Low High Unclear

Reference Standard - Photographic

Low High Unclear

Patient Selection - Photographic 

Low High Unclear



Perceived Limitations 

 

13 studies reported an inability to provide systematic quality assessment or evaluate certain 

biases as a limitation in their study (Supplementary Table 2). Specifically, these included 

concerns around size and quality of the dataset, including its real-world clinical applicability; 

for example including a whole tissue section instead of a portion of interest only23 and 

providing samples from multiple centres across different demographic populations to 

improve generalisability of the model. Appropriate separation of data set into training, 

validation and test sets without overlap was also highlighted as an area needing evaluation, 

as overlap between datasets would lead to higher accuracy rates. Eight reviews modified or 

tailored pre-existing quality assessment tools to customise it to the methodologies and types 

of studies as reported above. 

 

 

  



Discussion 

This study demonstrates that formal quality appraisal and risk of bias assessment is not 

uniformly applied in AI-based diagnostic accuracy systematic reviews. Despite being 

considered a prerequisite, only 75% of studies performed any form of quality assessment; 

with 56% of reviews opting for the QUADAS tool. Despite the most commonly used tool in 

this field, the use of both new and modified tools (e.g. RQS tool) suggests that the current 

instruments are poorly suited for AI centred diagnostic accuracy studies. 

 

In the patient selection domain, 113 studies (26.7% of studies) were deemed high risk and an 

additional 30.7% of studies were deemed to be of unclear risk of bias (n=130). This risk was 

greatest in studies reporting on photographic images, where 35% of studies were at high risk 

of bias (Figure 5). Factors leading to high risk of bias in patient selection include poor patient 

sampling technique as well as inappropriate exclusion of data on a patient or feature level. As 

AI algorithms rely on previously seen data to identify patterns and generate results, the 

accuracy of the algorithm will be directly related to the accuracy of the input data. 

Consequently, artefacts, inaccuracies or biases in input data can be perpetuated and 

augmented by the model and under-representation of certain factors or demographics may 

result in inferior algorithm performance.59 Therefore, inappropriate representation of patient 

demographics or socioeconomic factors may also manifest in the algorithm output as 

discriminate results. This type of bias may be aggravated in photographic images where 

utilising images or data derived from a specific demographic may create blind spots in the AI 

algorithm amplifying racial biases.60 For example, employing an AI model to detect 

dermatological abnormalities on dark skin resulted in higher rates of missed diagnoses further 

increasing the disparity in diagnosis.61,62  

 

In addition to a lack of diversity within the input data, there are several other sources of AI-

specific biases including historical bias, representation bias, evaluation bias, aggregation bias, 

population bias and sampling bias which are discussed in detail by Mehrabi et al and 

Simpson’s Paradox, detailed further below.63 Evaluation bias pertains to the use of 

inappropriate benchmarks for evaluation of the algorithm. Representation bias arises from 

misdefining and consequently mis-sampling the population. For example, amongst algorithms 

trained on United States data, the majority overwhelmingly featured data from New York, 

Massachusetts and California and included little to no data on the remainder of the country.64 

These states do not represent the United States as a whole, and have considerable differences 

in socioeconomic, educational, racial and cultural characteristics, resulting in a lack of 

generalisability of the algorithm to the remainder of the country. Historical biases refer to 

pre-existing biases in the input data. Of note, historical biases may be further perpetuated 

and amplified by AI algorithms. Additionally, using a proxy that appears to correlate with the 

outcome of interest may be a significant source of bias. For example, a study of risk-based 

payment algorithms utilising healthcare costs as a proxy for health needs was found to falsely 

conclude Black patients were healthier than similarly comorbid White patients, despite the 



algorithm specifically excluding data on race. Owing to inequal access to care, health-related 

spending was similar for a White patient and a Black patient with more severe illness, and 

utilising cost as proxy therefore created racial biases.65 Other concerns include the methods 

around use of AI outputs in clinical practice and improper implementation can lead to implicit 

biases. 

 

Additionally, AI-based diagnostics require rigorous datasets representative of real-world 

characteristics to produce reliable and generalisable diagnostic results. Therefore, 

inappropriate exclusion of participants and/or features can affect the interpretation of AI 

results in a more significant way compared to conventional analysis and contribute to bias in 

patient selection. Excluding pathologies that may be similar in characteristics or have 

overlapping features to the diagnoses of interest may lead to overestimation of the 

algorithm’s diagnostic accuracy as well as low generalisability and clinical utility of the 

algorithm. For example, exclusion of patients with inflammatory bowel disease when 

determining diagnostic accuracy of colonoscopic detection of polyps reduces the ability of the 

algorithm to discriminate between benign polyps and more serious pathologies.66 Another 

example includes medical photographs where images may be more likely to be excluded due 

to poor quality. Excluding blurry or out-of-focus images may lead to falsely elevated 

diagnostic accuracy rates and also does not reflect real-world situations thereby reducing 

study applicability and clinical value. Finally, in comparison to conventional index tests which 

require description of sampling methods on a patient only, AI models also require the 

description of sampling input level data67; insufficient description of this may have led to 

considerable studies presenting an unclear risk of bias.  

 

Within the index test domain, both axial and non-axial imaging studies had a high risk of bias. 

The index test domain pertains to the development and validation of the AI algorithm and 

interpretation of the generated output. First, distributional shifts between the training, 

validation and testing datasets can result in the algorithm producing incorrect results with 

confidence. These shifts can also lead to inaccurate conclusions about the precision of the 

algorithm if the algorithm is tested inappropriately on a patient cohort for which it was not 

trained.68 Secondly, overlapping datasets can overestimate diagnostic accuracy in comparison 

to using external validation data. Thirdly, given the heterogenous nature of large datasets 

utilised for AI, there is increased possibility of confounding factors amongst the data. If the 

model does not appropriately address these causal relations between different factors (i.e., 

subgroups within the dataset as a result of these confounding factors), this can lead to 

Simpson’s Paradox, which arises from aggregated analysis of heterogenous data comprised of 

multiple subgroups - separating the dataset into different groups based on the confounding 

variables provides a different result compared to analysing all the data together.63 Finally, the 

size of the dataset is particularly important for AI models as small datasets are more likely to 

provide lower diagnostic accuracy and also result in poor generalisability of the results.69 

Additionally, a lack of exposure to multiple manifestations of a pathology can result in the 



‘Frame Problem’ whereby seemingly obvious diagnoses may be missed by the model simply 

due to a inexperience. Specific signalling questions addressing these potential areas of 

concern may be useful in identifying and characterising sources of bias and determining 

generalisability of the AI model. 

 

48 studies (11.4%) posed a high risk of bias in the reference standard domain. Though non-

axial imaging studies appeared to be disproportionately at higher risk of bias in this domain, 

all studies resulted from one systematic review.42 Though overall low risk, this domain 

contains several potential sources of bias for AI-specific studies of diagnostic accuracy. 

Determination of an appropriate reference standard, or ‘ground truth’ for training of models, 

requires consideration of the best available evidence and may involve amalgamating clinical, 

radiological and laboratory data.69 Comparison of AI against a human reference standard can 

be utilised if it is considered the gold standard though should be avoided as a sole reference 

standard if an alternative test providing higher sensitivity and specificity is feasible. For 

example, 32 of 33 studies in the systematic review by Harris et al. were deemed to be at high 

risk of bias primarily due to the reference standard comprising human interpretation of the 

chest x-ray without use of sputum culture confirmation.42 Where comparison is against a 

human reference standard, the number of operators, their experience and presence of 

interobserver variability should be clearly detailed. Ideally, the reference standard should 

include multiple annotations from different experts to reduce subjectivity and account for 

interobserver variability.23 This is particularly important in the context of AI given its potential 

capabilities in detecting disease more accurately than human operators.1 Furthermore, AI 

may also be capable of detecting subtle changes indicative of a diagnosis through recognition 

of patterns not detectable by human operators, for example deriving cardiovascular risk from 

retinal images, identification of individuals with atrial fibrillation from their ECGs taken during 

sinus rhythm and identifying stromal features associated with breast cancer survival.70–72 

Therefore, a combination of investigations including repeat tests undertaken at different time 

points may be required as a reference standard, particularly as a greater number of 

prospective studies emerge. 

 

  



Figure 5: Summary of Risk of Bias Across the QUADAS Domains  

 

 

Finally, the flow and timing domain considers interval between the index test and reference 

standard, similarities in reference standard evaluation amongst all patients and inclusion of 

all patients in the final analysis. Within this domain, studies performed reasonably well with 

only 37 studies (8.8%) recorded as high risk of bias. However, methodologies relating to study 

flow and standards of timing vary in AI-based studies representing a different risk of bias. For 

example, neuropsychiatric studies utilising AI have been able to detect the presence of early 

cognitive changes or aid diagnosis of psychiatric disorders through identification of otherwise 

indiscernible changes in structural or functional neuroimaging.24,40,54 In mild or initial stages 

of disease, AI may actually be more discriminant than the reference standard in identifying 

early variations or subtle patterns.24,41 Therefore, the timing of the reference standard in 

relation to the index test is imperative and may need to be scheduled at a later date to ensure 

the diagnosis reflected by the reference standard is accurate. Furthermore, use of different 

reference standard between positive and negative cases may pose further challenges in AI-

based studies. For example, histology confirmation is often utilised as part of the reference 

standard for confirming malignancy but obtaining biopsies from clearly benign lesions poses 

ethical and practical challenges, thereby necessitating the use of alternative confirmatory 

tests.48 However, utilising vastly different reference standards such as follow-up alone in 

comparison to histology may result in verification bias i.e. false negatives may actually be 

classed as true negatives and inflate estimates of accuracy. In these cases where an 

alternative reference standard is required, utilising an investigation with high negative 

predictive value such as clinical follow-up with a PET scan to rule out malignancy may be 

suitable.73 However in AI-based studies, additional considerations have to be given for 

similarities between the ground truth used to train the model and the reference standard 
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used to validate and test the model. If there are considerable disparities between the two, 

the model may be erroneously be deemed inadequate. 

 

Perceived limitations of current quality assessment tools highlight the need for an AI-specific 

guideline to evaluate diagnostic accuracy studies. Algorithm and input data quality, real-world 

clinical applicability and algorithm generalisability are important sources of bias that need to 

be addressed in an adapted AI-specific tool. Quality assessment tools similar to QUADAS are 

currently being modified to match the evolving landscape of research. For example, STARD 

(Standards for Reporting of Diagnostic Accuracy Studies), is currently being extended to 

develop the STARD-AI guidelines to specifically appraise AI based diagnostic accuracy 

studies.67 Additionally, AI extensions to TRIPOD (Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis) and CONSORT (Consolidated 

Standards of Reporting Trials) have been published, and SPIRIT-AI (Standard Protocol Items: 

Recommendations for Interventional Trials) is in progress.74–76  

 

Conclusions 

This review demonstrates incomplete uptake of quality assessment tools in AI centred 

diagnostic accuracy reviews and highlights variations in AI-specific methodological aspects 

and reporting across all domains of QUADAS in particular. These factors include 

generalisability and diversity in patient selection, development of training, validation and 

testing datasets, as well as definition and evaluation of the reference standard and 

comparison with human performance. When evaluating study quality, potential biases and 

applicability of AI diagnostic accuracy studies, it is imperative that systematic reviews 

consider these factors. Whilst the QUADAS-2 tool explicitly recognises the difficulty in 

developing a tool generalisable to all studies across all specialties and topics and proposes 

the author modifies the signalling questions as needed, it is essential to further define these 

questions for AI studies given complexities in methodology.  

 

Inadequate reporting may create barriers to clinical implementation of AI-based diagnostic 

tools and also result in a lack of reproducibility, thereby leading to an inability to validate 

models in other geographical or demographical areas and hindering wider use in clinical 

practice. Inherent methodological differences in AI-based tools together with the 

consequences of inadequate reporting of studies and low adherence to QUADAS in these 

systematic reviews highlights the need for an AI specific framework. We propose the creation 

of a QUADAS-AI extension emulating the successful development of AI extensions to other 

quality assessment tools.67,74,75 QUADAS-AI and STARD-AI may be employed in parallel to 

harmonise evaluation of diagnostic accuracy studies. The adoption of a robust and accepted 

instrument to assess the quality of primary diagnostic accuracy AI studies for integration 

within a systematic review can offer an evidence-base to safely translate AI tools into a real 

world setting that can maximise the benefits of AI for the future of medical diagnostics and 

care.  
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PRISMA Guidelines
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Pie charts demonstrating the risk of bias amongst axial imaging studies, as assessed through QUADAS
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Pie charts demonstrating the risk of bias amongst non-axial imaging studies, as assessed through
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Pie charts demonstrating the risk of bias amongst photographic images studies, as assessed through
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Figure 5

Summary of Risk of Bias Across the QUADAS Domains
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