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Abstract
Background: Fatal opioid-involved overdose rates increased precipitously from 5.0 per 100,000 population
to 33.5 in Massachusetts between 1999 and 2022.

Methods: We use spatial rate smoothing techniques to identify persistent opioid overdose fatality clusters
at the ZIP Code Tabulation Area (ZCTA) level. Rate smoothing techniques were effective in reducing
variance common with zero-in�ated rates locations where population counts are low such as rural and
suburban areas which were affected by the epidemic in Massachusetts such as Worcester, Fall River, New
Bedford, and Wareham. We use Getis-Ord hotspot analyses with the smoothed incidence rates to identify
locations of persistent risk from 2011-2021. We constructed measures of the socio-built environment and
potentially inappropriate prescribing (PIP) using principal components analysis (PCA). The resulting
measures were used as covariates in autologistic, zero-in�ated Poisson, negative binomial and Conditional
Autoregression (CAR) Bayesian regression models to predict if a ZCTA was part of an opioid-involved
smoothed hotspot cluster for fatal overdose rates as well as the number of times that it was part of a
hotspot.

Results: Persistent hotspot clusters in Massachusetts had higher mean percentages of Black and Hispanic
residents, and residents experiencing poverty. PCA helped in identifying unique socio-environmental factors,
such as poverty and minority presence by combining socioeconomic, built environment and prescription
variables that were highly correlated with each other. Fatal opioid-involved overdose hotspots were found to
be signi�cantly more likely to be ZCTA with high poverty levels and high percentages of people from
minoritized populations. Regressions models that corrected for spatial autocorrelation were necessary to
avoid model misspeci�cation.

Conclusion: Conducting spatially robust analyses may help inform policies to identify community-level
risks for opioid-involved overdose deaths. The results can help inform policy makers and planners about
locations of persistent risk.

Introduction
The opioid overdose crisis continues as one of the most signi�cant public health challenges of the past two
decades in the US. Between 1999 and 2019, the national age-adjusted opioid-involved overdose death rate
increased from 2.9 per 100,000 population to 15.5 per 100,000.1 Rates have increased steeply during the
COVID-19 pandemic. In 2020, the rate climbed to 21.4 per 100,000 and to 24.7 per 100,000 in 2021.2

Commonly understood drivers of the overdose crisis include drug supply and demand side pressures.
Supply-side drivers have evolved over multiple waves, from prescription opioids, to heroin, to illicitly
manufactured fentanyl.3,4 Demand side drivers include deindustrialization and concentrated poverty, pain
arising from work-related injuries,4 income inequality,5 and added stress, isolation, and economic
disadvantage connected to the COVID-19 pandemic.6,7
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More studies have begun to consider the association between drug use, opioid-related mortality, and the
built-environment, de�ned by Ezell and colleagues as "the purposeful creation and spatial arrangement of
housing, sidewalks, roadways, retail and institutional buildings, public transit, and green spaces.” 8–10

Research has already suggested that the built environment in�uences health and health behaviors,11,
including substance use,8,9,12 and opioid-related mortality.10 For example, analgesic opioid-involved
overdose fatalities were found more likely to occur in “fragmented” neighborhoods than higher-income
neighborhoods in New York City.13 Chichester et al. found that bus stops and public schools were
associated with increased risk of opioid overdose in rural areas of an Alabama county and that inpatient
treatment centers, transitional living facilities, express loan establishments, and liquor vendors were
associated with increased opioid overdose risk in urban areas of the same county.14 Inequality and racial
composition of neighborhoods have also been associated with increased opioid mortality.15,16

The connection between substance use and built environment variables (access to public restrooms,
access to pharmacies, and driving distance to services, de�ned in our study as fast-food restaurants, gas
stations, and highway exits) are also important. Public restrooms are associated with people who inject
drugs (PWID) because many people (one study estimates 48%) use drugs in these spaces.8,17,18

Pharmacies represent an important access variable for several reasons. During the initial wave of the
overdose crisis, pharmaceutical prescriptions, either legitimate, diverted, or potentially inappropriate, fed the
opioid supply.3,16,19 In addition, naloxone (a medication to reverse an opioid overdose) is available at
pharmacies without a prescription,20,21 although this provision may vary by neighborhood socio-
demographic levels.22 For example, prescription opioid poisoning increased more in postal codes with
greater pharmacy density in California.23 Road access to services may mediate several factors related to
substance use, such as access to meeting places to buy illicit substances, as well as access to harm
reduction services such as syringe services programs.8

Over the past two decades, the Massachusetts’s opioid-involved mortality rate has often been higher than
the national rate and, at times, twice as high.24 The most recent data released by the Massachusetts
Department of Public Health indicated that the provisional opioid-involved mortality rate reached a new
high of 33.5 per 100,000 population in 2022.25 Studies focusing on the overdose crisis in Massachusetts
have addressed several intersections of the built environment and opioid overdose. A spatial analysis of
potentially inappropriate prescribing (PIP) identi�ed several overdose and PIP clusters, but did not �nd a
signi�cant overlap between the two.19 Other research �ndings include the identi�cation of one rural county
in Massachusetts with both good access to harm reduction measures and high overdose rates,26 and that a
majority of overdose deaths in the state occurred at home between 2015-2017.27 A recent study of opioid-
related deaths in Massachusetts incorporated psychosocial, economic, built environment, and health-
related variables using multilevel mixed-effects regression models, and found that none of the built
environment variables had a statistically signi�cant association with opioid-related mortality.28

While these studies across the US and within Massachusetts have contributed importantly to our
understanding of mediating factors between substance use and the built environment, many often fail to
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use spatial statistical methods that properly account for excess zero counts for overdose outcomes and
spatial autocorrelation, two of the most common confounding factors in spatial epidemiology.29 With
spatial analysis of rare events, such as overdose deaths, the distribution of death counts is often “zero-
in�ated” (i.e., a large number of locations have no deaths while a few locations have many). Several
methods have been used to address this issue, including use of: small area estimation techniques;30 a rate
smoothing technique to examine characteristics of prescription opioid poisoning; smoothing rates in ZCTAs
with small populations; and Empirical Bayes smoothing in rural Illinois.31–34 These methods include data
from adjacent spatial units to re�ne the estimates for locations that have low populations. Two models
that account for both spatial autocorrelation and for excess zeros include zero-in�ated Poisson regression
models,35,36 such as the Besag-York-Mollie (BYM) model,37 and a Bayesian hierarchical space–time
misalignment Poisson model.23,38

The problem of excess zeros skewing true counts and rates exists in Massachusetts analyses because the
geographical distribution of opioid overdose deaths in Massachusetts spans urban, suburban, and sparsely
populated rural areas that are likely to have very low or zero counts. To date, we are only aware of a few
studies of opioid-involved overdose deaths using Massachusetts data that have employed techniques that
account for the zero-in�ation and spatial autocorrelation at smaller spatial units (such as the ZCTA level)39

but these techniques could greatly help in precisely understanding geographic variation in overdose
mortality across Massachusetts.

The goal of our study was to identify fatal overdose clusters as well as socioeconomic and built
environment factors associated with opioid-related overdose rates in Massachusetts from 2011 to 2021
accounting for spatial autocorrelation and for zero-in�ated rates. We aimed to: 1) address the issue of zero-
in�ated opioid-involved overdose death rates by comparing three spatial methods (raw rates, Empirical
Bayes, and Empirical Bayes Spatial); 2) utilize the three rate types to identify statistically signi�cant fatal
opioid overdose clusters in Massachusetts between 2011 and 2021; 3) derive socio-environmental and
pharmacological variables using PCA in those clusters; and 4) model community-level factors associated
with overdose mortality rates using autologistic regression models to predict if a ZCTA was part of a
hotspot and then zero-in�ated regression models the predict how many times it was part of a hotspot
during the time period while accounting for spatial autocorrelation of the outcome (Fig. 1).

Data and Methods
Data Sources. We obtained fatal opioid-related overdose data by address of residence for decedents
between 2011 and 2021, and by address of recorded death for 2015 to 2021, from the Massachusetts
Registry of Vital Records and Statistics (RVRS).40 These data included sociodemographic characteristics of
decedents, including sex, race, ethnicity, and age at the time of death. We obtained opioid prescription data
from the Massachusetts Prescription Monitoring Program (MA PMP), aggregated at the ZCTA level.41 We
obtained address level data for services (gas stations, fast food restaurants, pharmacies), and “access to
infrastructure” measures (highway exits, major roads) from Data Axle and from MassGIS.42,43 We obtained
pharmacy addresses from the Massachusetts Board of Registration in Pharmacy.21 Finally, we compiled
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population level sociodemographic data, at the ZCTA level, from the American Community Survey (ACS)
2011–2015 and the 2017–2021 5-year estimates for people aged ≥ 10 years.44

Outcome. Whether and the number of times a ZCTA was within fatal overdose hotspot cluster based on
annual rates between 2011 and 2021. We calculated the Getis-Ord hotspots for each year between 2011
and 2021 for smoothed rates using the Empirical Bayes and Spatial Empirical Bayes rates at the ZCTA
level.45 We used 2011–2015 population estimates for the years 2011–2017 and 2017–2021 population
estimates for the later years included in our study: 2017–2021.

Covariates. PIP measures were aggregated by ZCTA. We de�ned PIP measures, obtained from the
Massachusetts PMP, based on the following criteria, established through our previous research, for the
years 2011–2017 at the ZCTA scale: high MME ( > = 90), co-prescribing of benzodiazepines and opioids,
poly-pharmacy opioid prescription �lls, multiple provider episodes (i.e., doctor shopping), >=3 cash
purchases of opioid prescriptions and opioid prescriptions without a pain diagnosis.

Socioeconomic Measures. We selected socioeconomic measures from the ACS at the ZCTA-level based on
the literature and our previous research.19,46,47 Poverty as percentage of households living below the
poverty threshold as de�ned by the 2011–2015 and 2017–2021 �ve-year ACS estimates. We also included
median age, and population percentages by race and ethnicity for White, Black, Asian, American Indian and
Alaskan Native, and Hispanic communities.

Built Environment Measures. We compiled built environment measures based on the literature and our
previous research.19,46,47 Speci�cally, we selected gas stations and fast-food restaurant locations as a
proxy for access to public restrooms, locations where overdoses often occur.17,18,42,48,49 We used pharmacy
addresses to analyze the spatial distribution of access to sources of over-the-counter naloxone.21 We
compiled highway exits and major roads from state of Massachusetts GIS agency (MassGIS) as a proxy
for access to services. For each ZCTA we calculated the mean distance to the nearest exit, major road,
pharmacy, fast food restaurant, and gas station from the centroid of the ZCTA. We also calculated the
average gas station density for each ZCTA.

Methods
Figure 1 provides an overview of the data and methods used in this paper.

Death Rate Mapping. Using ArcGIS Pro 3.1 (ESRI, Redlands, CA) we created descriptive and maps of raw
and smoothed overdose death rates at the ZCTA level across the state.

Spatial smoothing techniques. Smoothing techniques work by detrending the overdose rate within target
polygons (ZCTAs), by using data from neighboring polygons thus allowing for the calculation of a local
average overdose measure that is less susceptible to variation due to outlier values. We employed two
spatial smoothing techniques to derive more stable estimates for spatial measures (fatal overdose rates).
These included: 1) an Empirical Bayes Method; and, 2) an Empirical Bayes Spatial method.50–52
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The Empirical Bayes (EB) smoothing for rate calculations relies on calculating a weighted average of the
raw rate for each ZCTA and the state average, with weights proportional to the underlying population at
risk. Therefore, ZCTAs with a small population at risk will tend to have their rates adjusted considerably,
while rates for ZCTAs with larger populations at risk will not change much. The second method was Spatial
EB smoothing, which is like EB smoothing, except that the reference rate is computed for a group of
neighboring ZCTAs that share a boundary (i.e., queen’s contiguity) with each individual ZCTA, rather than
taking the same overall reference rate for all ZCTAs. We used GeoDa to calculate EB and Spatial EB
smoothed rates.51,53 We then used the Getis-Ord Gi* hotspot statistic to identify and map clusters (i.e.,
ZCTAs with high overdose rates surrounded by ZCTAs with high rates).51 Each hotspot identi�ed is
statistically signi�cant at the p < 0.05 level. This was calculated in the software GeoDa. For estimating the
Getis-Ord clusters, we used the queen’s criterion to de�ne our spatial weights matrix.

Principal Components Analysis (PCA). To avoid multicollinearity amongst the PIP, access, and
socioeconomic variables due to signi�cant cross correlation, we used PCA with a Varimax rotation to
extract new variables that summarized the covariance in the PIP, socioeconomic, and access variables. PCA
is a dimension reduction technique that is commonly used to reduce the number of variables used in
analyses while preserving the information from them. We used a cut point of 0.25 for the included factor
loadings as recommended in other studies.54 The psych and dplyr packages in R were used for PCA and
data management [https://personality-project.org/r/psych/, 2023].

Statistical Modeling. We estimated logistic regressions with an autologistic term to predict if a ZCTA was in
a hotspot (0/1) as identi�ed by the Getis-Ord Gi* statistic as the outcome and the components derived from
the PCA as the explanatory variables. We assessed potential multicollinearity among explanatory variables
through variance in�ation factors (VIF) in the regressions and did not �nd multicollinearity to be an issue in
the �nal models since it was below 2.5.55 To address potential misestimation of parameters and error
terms in logistic regression results due to spatial dependency, an autologistic term was used to correct for
spatial dependence.51,56,57 The logistic and autologistic models were estimated in R using the spatialeco
package. We used negative binomial, zero-in�ation, and Conditional Auto Regression (CAR) Bayes Poisson
models to predict the number of times the ZCTA was located in a hotspot as identi�ed by the smoothing
methods in the 11 years between 2011–2021. The negative binomial and zero in�ation models are suitable
when the outcome is a count. CAR models corrected for spatial dependency of the outcome in a Bayesian
framework. The PCA components were the explanatory variables for these models. The packages
CARBayes, MASS, and pscl were used to estimate these models in R.

Results
Using rate smoothing techniques resulted in lower variances in the rate of overdose deaths because the
denominator was expanded to compensate for lower population in rural and suburban ZCTAs (Fig. 2). This
was especially useful in identifying high incidence ZCTAs surrounding Spring�eld, Fall River, and New
Bedford, which show high death rates in 2021 based on the smoothed data that are not evident in maps of
the raw rates for the same year.
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Comparing the results from Getis-Ord analyses with the calculated rates, the smoothed rates allowed us to
identify statistically signi�cant hotspot clusters of overdose rates. Figure 3 shows that the impact varied
over time. For example, in 2011 the smoothed rates identi�ed clusters in the Boston area, in addition to the
area south of Worcester, Fall River, New Bedford, and Cape Cod (Fig. 3). Likewise, in 2014, using the raw
rate alone resulted in fewer and more scattered clusters (38) than the spatial EB methods, which identi�ed
74 ZCTAs as hotspots. The EB and spatial EB methods also depicted more geographic variability,
facilitating identi�cation of clusters near Plymouth in the southeast and Haverhill in the northeast. In 2017,
the numbers of clusters identi�ed based on the raw rates was the lowest (32) when compared to the ZCTA
clusters identi�ed based on rates that relied on smoothing techniques (44). The hotspot results suggested
that overdose deaths persisted in Worcester, Fall River, and Boston. By 2020, the number of identi�ed
hotspots using raw rates was still 32 but, using smoothing techniques, the number of identi�ed ZCTA in
hotspot clusters was 75 in 2020 and 80 in 2021. Figure 4 highlights the locations that were persistent
hotspots, with the most notable ongoing clusters in Worcester, New Bedford, Fall River, and Wareham. A
corridor along Interstates 95 and 495, from Everett, north of Boston, to Fall River, in southeastern
Massachusetts, is notable as an area of persistent hotspots, as is the area of southwestern Massachusetts,
close to Spring�eld, and the Greater Worcester Area.

We compared sociodemographic and built environment access variables in the statistically signi�cant
ZCTA hotspot clusters, which illuminated important differences in sociodemographic factors. In ZCTAs that
were always identi�ed as hotspots, the mean percentages of the population living in poverty, and residents
who were non-Hispanic Black or Hispanic, were higher than in ZCTAs that never appeared on fatal overdose
hotspots (Table 1). In terms of built environment access variables, decedents in hotspots were closer to
major roads and highway exits. Both cold spots and hotspots had similar gas station density and proximity
to fast food restaurants and pharmacies.
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Table 1
Mean (SD) of demographic and built environment variables by number of years in which a ZIP Code

tabulation area (ZCTA) was within a smoothed rate Getis-Ord hotspot*
Number
of
years

ZCTA
Count

Poverty
percentage

White
Percentage

Black
Percentage

Hispanic
Percentage

Male
Percentage

Median
Age
(years)

0 259 8.1 (9.3) 87.8 (12.8) 3.5 (8.2) 4.1 (4.3) 48.9 (6) 43.1
(8.6)

1 107 8.5 (6.5) 91.8 (9.8) 2.3 (3.6) 4.6 (8.2) 49 (9.5) 44
(10.5)

2 65 10.2 (7.7) 86.2 (17.9) 4.5 (10) 7.1 (12.6) 47.7 (6.9) 43.1
(8.4)

3 29 14.1 (10.5) 80.8 (22.3) 7.8 (13.8) 9 (11.1) 50.2 (4.4) 40.5
(7.4)

4 29 15.4 (13.8) 80.3 (18.6) 6.6 (8.6) 16.7 (22.8) 48.5 (3.1) 43.1
(10.2)

5 10 16.1 (15.2) 73.7 (22.7) 10 (11.7) 25.5 (30.8) 49.9 (4) 38.8 (9)

6 11 13.8 (12.1) 78.1 (20.4) 7.4 (8.4) 11.4 (11.9) 48.1 (2.3) 38.9
(5.9)

7 10 16.8 (6.9 77.4 (16.7) 6.8 (5.2) 13.5 (13) 48.2 (1.6) 38.5 (4)

8 6 20 (10.6) 73 (24.6) 8.2 (9.1) 15.7 (17.1) 47.6 (2.4) 41 (5.2)

9 6 23.8 (16.5) 75.3 (14.5) 10.9 (7.8) 22.3 (19.9) 48.6 (3.6) 33.7
(8.5)

10 2 12.6 (2.5) 85.3 (15.3) 0.6 (0.8) 1.1 (1.6) 45.6 (5.7) 50 (3.3)

11 1 26.8 (0) 83.6 (0) 3.8 (0) 11.3 (0) 47.1 (0) 37.2 (0)

    Distance**
Gas
station

Distance
fast food
restaurant

Distance
Pharmacy

Distance
Highway
exit

Gas
station
density***

Distance
major
road

0 259 425.5
(1264.6)

1709.2
(5133.3)

1317.6
(2562.3)

7425.2
(13933.3)

3846.1
(6296.1)

1524.6
(4923.9)

1 107 526.1
(1544.2)

1691.1
(2965.3)

1817.4
(2931.7)

12137.1
(15700.4)

2804.2
(5978.1)

1135.5
(2570.2)

2 65 495.5
(1530.9)

1434
(3395.6)

1299.1
(2686.7)

8266.3
(12663.2)

5784.4
(9050.3)

472.8
(1330.4)

*Empirical Bayes (EB) rate smoothed and spatial EB smoothed rates

**All distances in meters.

***Density per square mile at the ZCTA level.

Abbreviations: SD = standard deviation, ZCTA = ZIP Code Tabulation Area
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Number
of
years

ZCTA
Count

Poverty
percentage

White
Percentage

Black
Percentage

Hispanic
Percentage

Male
Percentage

Median
Age
(years)

3 29 428.3
(1461)

1767.2
(3252.3)

2317.8
(3328.2)

9051.7
(9233.7)

6135.7
(8952.2)

636
(1419.3)

4 29 315
(1078.3)

455.1
(1388.6)

476.7
(1360.2)

10951
(14367.3)

7665
(6327.8)

630.4
(1778.4)

5 10 98.8
(312.3)

169.4
(505.7)

185.8
(395.5)

9867.1
(17194)

9357.1
(6495.3)

661.1
(1488.3)

6 11 0 (0) 37.8 (125.3) 17.6 (58.5) 2728
(3627.6)

7209.1
(5305.1)

242.4
(727.3)

7 10 0 (0) 0 (0) 0 (0) 1549
(2011.8)

5336.1
(2484.6)

600.2
(1410.5)

8 6 0 (0) 0 (0) 6.8 (16.6) 1758.4
(2733.8)

5135.9
(2607.4)

1314.5
(2239)

9 6 0 (0) 14.6 (35.7) 168.9
(380.4)

1407.2
(3304.6)

7719.5
(4536.7)

1023.1
(2506.1)

10 2 11.8 (16.6) 1089.5
(1540.8)

170.3
(240.8)

2750
(3889)

5384.2
(3482.8)

22.7
(32.2)

11 1 0 (0) 0 (0) 0 (0) 0 (0) 6655.5 (0) 0 (0)

*Empirical Bayes (EB) rate smoothed and spatial EB smoothed rates

**All distances in meters.

***Density per square mile at the ZCTA level.

Abbreviations: SD = standard deviation, ZCTA = ZIP Code Tabulation Area

Because many of the prescription, socioeconomic and access variables were highly correlated with each
other, we derived composite variables using PCA. The results of the PCA suggested that the four
components we used in this analysis explained about 62% of the variance (Table 2). The loadings on the
�rst PCA component suggested that it was a measure of potentially inappropriate prescribing because it
had a positive loading (indicating positive correlation) with all the PIP measures. This component had high
scores in the central parts of the state along Interstate 90 and along interstate 95 in the south (Fig. 5). The
second component was correlated with poverty, non-Hispanic Black, American Indian and Alaska Native
(AIAN) and Hispanic population percentages and we refer to it as the “poverty and minority” component.
Locations that had high values for the poverty and minority component were found across Massachusetts
in locations like Worcester, Spring�eld, New Bedford, Fall River, and in the southern neighborhoods of
Boston within the Dorchester neighborhood (Fig. 5).
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Table 2
Principal Components Analysis using a Varimax rotation: Loadings of the opioid prescription,

socioeconomic, and infrastructure variables for the �rst four components

  RC1: Potentially
inappropriate prescribing
(PIP)

RC2: Minority
and Poverty

RC3: Poor
Infrastructure

RC4:
Rurality

Percent living in Poverty   0.75    

White Percentage   -0.80   0.46

Black Percentage   0.74    

AIAN Percentage   0.82   0.32

Hispanic Percentage   0.40    

Asian Percentage       -0.85

Male Percentage     0.25  

Median Age -0.38 -0.48   0.40

Mean Distance to Gas
Station

    0.86  

Mean Distance to Fast food
restaurant

    0.61  

Mean Distance to Pharmacy     0.87  

Mean Distance to Highway
Exit

      0.40

Mean Distance to Major
Road

       

Mean Gas Station Density   0.49   -0.60

Opioid prescriptions without
a pain diagnosis (Rate)

0.83      

>=3 cash purchases of
opioid prescriptions (Rate)

0.95      

Poly-pharmacy opioid
prescription �lls (Rate)

0.98      

Multiple prescriber (Rate) 0.91      

Co-prescribing of
benzodiazepines and opioids
(Rate)

0.95      

Proportion Variance
explained

24 16 11 10

Abbreviations: RC = Rotated Component; AI/AN = American Indian/Alaskan Native
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  RC1: Potentially
inappropriate prescribing
(PIP)

RC2: Minority
and Poverty

RC3: Poor
Infrastructure

RC4:
Rurality

Cumulative variance
explained

24 40 52 62

Abbreviations: RC = Rotated Component; AI/AN = American Indian/Alaskan Native

The third component, which we termed “poor infrastructure,” was related to being relatively far from fast
food restaurants, pharmacies, and gas stations. The ZCTAs with high values for the poor infrastructure
component were located not only in high poverty locations such as urban neighborhoods in Boston,
Worcester, New Bedford, and Spring�eld, but also in the more rural areas of Western Massachusetts, and on
Cape Cod and the Islands (Fig. 5).

The fourth component, which we referred to as “rurality” loaded positively on White resident percentage,
median age, and distance to a highway while it loaded negatively on percentage Asian, and mean gas
station density. As can be seen in Fig. 5, high scores for the rurality component are more likely in western
Massachusetts and Cape Cod and low scores are in urban areas within and near urban neighborhoods in
Boston, Spring�eld, New Bedford, and Worcester. 

We used these four derived components as explanatory variables to predict whether a ZCTA was a hotspot
or not (derived from the Getis-Ord Gi* statistic on the smoothed death rate) for each year from 2011 to 2021
using logistic, autologistic and CAR Bayesian regressions (Table 3). We include only signi�cant coe�cients
from the autologistic and CAR Bayesian regressions in Table 3 for brevity. The results of the autologistic as
well as CAR Bayes logistic model, both of which corrected for signi�cant spatial dependencies, suggested
that for most years between 2011 and 2021, fatal opioid-involved overdose hotspot ZCTA were more likely
to have a high minority and poverty component. The odds ratio, which indicates the factor by which the
probability of being part of a hotspot is likely to increase based on a unit change in each predictor,
controlling for additional model correlates of the posterior quantities reported by the CAR Bayes model in
the credible interval were lowest in 2012 between [2.13–4.47], rising to between [4.1–51.9] in 2021. In the
autologistic model, the minority and poverty component was signi�cant from 2012-14 and then more
recently 2018–2021 with the 95% con�dence intervals of [1.2–1.9] in 2012 and [1.3–2.10] in 2021. The PIP
component was signi�cant only for two years (2014 and 2018) in the CAR Bayesian model suggesting
higher odds in 2014 but an opposite effect in 2018. The poor infrastructure and rural component, when
signi�cant, had a protective effect in that ZCTAs with high scores on these variables were less likely to be in
hotspots just like the rurality component. The odds ratio on the poor infrastructure component varied from
a high of [0.29–0.89] in 2021 to lower effects in 2011 of [0-0.06] in 2018. The 95% con�dence intervals for
the rurality component odds ratio varied from a lower range more recently in 2019 [0.05–0.67] to a wider
range of odds [0.07–0.99] in 2014.
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Table 3
Signi�cant coe�cients with p = 0.05 (autologistic model) and within the 95% credible interval (for Bayesian

model) associated with a ZCTA appearing within a Getis-Ord hotspot cluster in Massachusetts, 2011–
2021.

Year Number
of ZCTA
hotspots

Autologistic Model CAR Leroux Bayes Logistic
Model

Signi�cant Coe�cient
Odds Ratio (p = 0.05)

Auto-

covariate

Rho
squared

Mean of Signi�cant
Coe�cients Odds Ratio

RC1 RC2 RC3 RC4 RC1 RC2 RC3 RC4

2011 72 - - 0.3 - 6.9 0.51 0.05 - 0.01 -

2012 82 - 1.51 - - 6.8 0.53 - 2.2 - -

2013 70 - 1.35 - - 5.9 0.41 - 4.05 0.15 -

2014 74 - 1.45 0.47 0.72 8.1 0.54 6.3 5.4 0.01 0.1

2015 67 - - 0.65 - 6.5 0.49 - 4.5 0.07 0.19

2016 39 - - 0.43 0.70 7.1 0.31 - - 0.03 0.08

2017 44 - - 0.44 - 8.2 0.34 - 5.9 0.02 0.06

2018 82 - 1.60 0.41 - 7.1 0.66 0.02 57.7 0.01 -

2019 74 - 1.65 - - 6.2 0.57   12.2 0.1 0.05

2020 75 - 1.52 - - 6.8 0.52 - 59.9 0.02 -

2021 80 - 1.66 - - 6.5 0.52 - 41.9 0.62 -

N 535  

RC1: Potentially inappropriate prescribing; RC2: Minority Poverty; RC3: Poor Infrastructure; RC4: Rurality

CAR = Conditional Autoregression

The negative binomial, zero-in�ated and CAR Bayesian models predicting the number of times a ZCTA was
a hotspot had a positive and signi�cant coe�cient for the poverty and minority component suggesting that
ZCTAs with high scores on this component such as ZCTAs in Worcester, Spring�eld, New Bedford, Brockton,
Boston, and Fall River were more likely to have been a persistent hotspot over the 11-year period. The odds
ratio con�dence intervals are shown in Table 4 for the negative binomial and zero-in�ated model. They vary
from [1.1–1.5] in 95% credible intervals for the CAR Bayesian model. The negative coe�cient for the poor
infrastructure component was not signi�cant once spatial dependency was accounted for in the CAR Bayes
model (Table 4).
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Table 4
Negative Binomial, Zero-in�ated Poisson regression and CAR Bayesian Poisson regression coe�cients
predicting the number of times the ZCTA was within a Getis-Ord hotspot cluster, Massachusetts, 2011–

2021.

  Negative
Binomial

  Zero in�ation CAR Leroux model
(Poisson)

  Coeff Std
Error

Conf Interval
(Odds)

Coeff Std
Error

Conf
Interval

Mean 2.50% 97.50%

Intercept 0.25 0.06 1.1, 1.46 0.26 0.06 1.1, 1.47 -0.42 -0.58 -0.28

RC1 0.10 0.05 0.00, 1.22 0.09 0.09 0.91,
1.31

0.07 -0.07 0.21

RC2 0.37* 0.06 1.29, 1.61 0.37* 0.06 1.28,
1.31

0.29* 0.17 0.41

RC3 -0.15* 0.07 0.75, 0.99 -0.14* 0.07 0.76, 1 -0.15 -0.31 0.01

RC4 0.13 0.06 0.99, 1.29 0.13 0.07 0.99, 1.3 -0.14 -0.32 0.04

AIC 1724.90 1702.70  

BIC 1699.20 1736.90  

*Coe�cients that are signi�cant at p value of 0.05 are boldfaced as are the Bayesian coe�cients that
are within the 95% credible interval

RC1: Potentially inappropriate prescribing; RC2: Minority Poverty; RC3: Poor Infrastructure; RC4: Rurality

Discussion
We identi�ed overdose clusters using rate smoothing techniques and found persistent and signi�cant
hotspots in Massachusetts. We estimated PCA components to account for multicollinearity while
incorporating opioid prescription, socio-environmental and built environment variables; and we corrected for
spatial autocorrelation in our models in the presence of spatial dependency in both the location of hotspots
and their persistence over the study period. Using PCA, we identi�ed four unique components: PIP
regression coe�cient 1 (RC1), Minority and Poverty (RC2), Poor infrastructure (RC3), and Rurality (RC4) in
predicting both presence and persistence of hotspots. In the autologistic models predicting if a ZCTA was a
hotspot, we found our poverty and minority presence factor (RC1), was a signi�cant predictor of a hotspot
in most years. In predicting the count of the number of times a ZCTA was a hotspot, we found that the
poverty and minority presence factor (RC1) was again a signi�cant predictor. Many studies use
socioeconomic, opioid prescription and access variables, but by using our approach of combining them
and accounting for spatial autocorrelation, which is inevitable in spatial analytic studies, we better highlight
the role that location plays in persistent hotspots of opioid decedents.

Zero in�ation of disease rates is common in spatial epidemiological studies, which has resulted in several
techniques to address this issue.30–38,58 We chose EB, and EB spatial smoothing methods, which reduce
variance resulting in better estimates of hotspots in ZCTAs that have relatively low population counts.
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These rate smoothing techniques offer considerable promise in identifying regional clusters of persistent
risk for fatal overdoses in Massachusetts. Our application of the EB methods supports the use of this
technique as a method to detect patterns at smaller spatial scales in which zero-in�ation is an issue.33

The results of the autologistic, and the CAR Bayes models demonstrate the importance of correcting for
spatial autocorrelation in regressions. For example, in the model predicting the number of times a ZCTA
was a hotspot the zero in�ation and negative binomial models suggested that poor infrastructure (RC3)
had a protective effect and rurality had a signi�cant risk but the CAR model suggests that poverty and
minority was the most signi�cant predictor. Our results may also indicate that other research, which has
identi�ed rurality as an important risk factor for fatal overdose,59 are not as important as poverty and
minority presence in a ZCTA in predicting hotspots in Massachusetts especially in more recent years.
Recent studies have also noted the role of poverty and race in predicting opioid incidence in other states.
15,60

Our hotspot cluster analysis found that hotspots were comprised of higher percentages of Black, AIAN and
Hispanic populations, as well as higher percentages of people living in poverty.61 In 2011-2015, the
overdose epidemic in Massachusetts and elsewhere was characterized in the media as affecting people
who were middle income and non-Hispanic White as part of the “deaths of despair” narrative.59,62–65 The
role of poverty in opioid-involved overdoses in minority people who use drugs (PWUD) should be surveilled
carefully as opioid overdoses continue to rise in these groups.66,67

Our �ndings about the persistence of hotspots in New Bedford, Fall River and along the I-95 corridor as well
as in Worcester and the protective effect suggested by poor infrastructure in the models, suggests that
proximity to highways may have played a role in supplying opioids. This �nding suggests that other
measures of built environment and access to opioid supply may be important to incorporate into future
analyses as reported in other studies.15,68

Our �ndings have several limitations. For privacy reasons, the prescribing data and the census data in this
study were only available at the ZCTA scale and, therefore, our results are subject to ecological fallacy.
Models that are at the individual level may show different relationships than our �ndings, which were
aggregated. Also, the associations that we identi�ed may only be applicable to Massachusetts. Several
laws and regulations were enacted in the state during the opioid overdose epidemic that may not be
generalizable to other states. In 2019, for instance, the Governor of Massachusetts enacted a law that
allowed no more than a seven-day supply of prescribed opioids (with certain exceptions), which, along with
other policies, resulted in a notable decline in the number of opioid prescriptions dispensed.69 The PIP data
were obtained from the MA PMP, and they are also subject to ecological fallacy due to aggregation at the
ZCTA level.

Conclusion
We employed a range of spatial analytical and statistical modeling approaches to better understand the
opioid overdose crisis in Massachusetts and improve targeting of public health interventions. Smoothing
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methods allowed us to derive more stable estimates for spatial measures and enhanced our understanding
of spatial clustering patterns related to fatal opioid-involved overdoses. We recommend using EB and EB
smoothing methods for zero-in�ated rates especially for spatial analysis and spatial model estimation.
PCA facilitated a better understanding of unique community-level spatial and socioeconomic variables that
contribute to overdose mortality patterns. By using the components that combined several socioeconomic,
built environment and prescription variables in the regression models which also accounted for spatial
autocorrelation, we were able to characterize the biggest contributing factors to overdose-related deaths in
Massachusetts. Future research should investigate access, poverty and minority variables and their
potential proxies. Many factors impact the cascade of opioid use, opioid use disorder, and opioid-involved
death and by identifying factors at the beginning of the cascade, as we have done here, we can inform
policies to intervene early in the cascade and prevent opioid-involved deaths.
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Figure 1

Flow diagram visualizing data and methods described in this paper. Note: PIP is potentially inappropriate
opioid prescribing. ACS represents data from the US Census Bureau’s American Community Survey. Data
Axle was used to for built environmental variables such as gas stations and pharmacies; MassGIS is the
Massachusetts State GIS Data provider; Getis Ord statistics generate hotspots and cold spot statistics
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Figure 2

Fatal opioid overdose rate quintiles in 2021 in Massachusetts by ZIP Code Tabulation Area (ZCTA): 2a)
Raw rate; 2b) Empirical Bayes (EB) smoothed rates; 2c) Spatial EB smoothed rates 2d) Reference map. This
comparison of maps displaying raw and smoothed overdoserates highlights that identi�cation of local
hotspots is easier in the EB smoothed rate maps than in the raw rate map’s patchwork of high and low
values.
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Figure 3

Fatal opioid overdose Getis-Ord hotspot and coldspot clusters (p<0.05) for 2011, 2014, 2017 and 2021: 3a)
Raw, 3b) Empirical Bayes (EB) smoothed, 3c) spatial EB smoothed death rates by ZIP Code Tabulation Area
(ZCTA), Massachusetts.
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Figure 4

Number of times (i.e., years) the ZCTA was a Getis-Ord hotspot cluster between 2011-2021 using Empirical
Bayes (EB) spatial smoothing.
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Figure 5

Principal Components Analysis scores mapped in quintiles for Massachusetts by Zip Code Tabulation Area
(ZCTA): 4a) RC1: potentially inappropriate prescribing (PIP) with highway lines; 4b) RC2: Poverty and
minority; 4c) RC3: Poor infrastructure 4d) RC4: Rurality.


