Appendix 1: Details of the kNN using hypothetical example
In this hypothetical example there are three subjects q, r and s for which estimates of alcohol consumption were collected (e.g., number of drinks per day) on three different days (d) during pregnancy. However, for another subject (p) information is missing for the third day. Figure 2 shows this example. As a first step, data from each of these four subjects, can be mapped to d - 1 dimensional space using data for, in this case, the two days for which all four of them have data. In Figure 2, subjects p, q, r and s are mapped to the two-dimensional space for which all four subjects have data and are labeled points p′, q′, r′ and s′, respectively. In this example, since subject r had 3 drinks on day one and 2 drinks on day two, it is mapped to point (3, 2) in 2-dimensional space (shown as point (3, 2, 0) in the figure). To find the degree of similarity between the drinking habits of subject p and another subject, e.g. subject r, we connect p′ and r′ to the origin O and measure the angle between p′O and r′O. The smaller the angle, the greater the similarity. In Figure 2, the angle between p′O and q′O is zero which means that p and q have exactly the same drinking pattern, in that both consumed three times more drinks on day 1 than on day 2. The angle between p′O and r′O is larger than that between p′O and q′O which means that r is less similar to p than q is to p. On the other hand, the angle between p′O and r′O is smaller than that between p′O and s′O meaning that r is more similar to p than s is to p. Based on these angular distances the algorithm defines the nearest neighbors of subject p. For any given value of k (> 0), the k nearest neighbors of p are those k subjects in the dataset that form the k smallest set of angles with p. Those are the k subjects that have drinking patterns most similar to that of p and are most useful in imputing its missing data values.   However, in practice, it is computationally complex to calculate an angle and we can use the cosine as a good approximation. The cosine of an angle is computed as follows. If both p and r have drinking data for h different days given by  and , respectively, where 1 ≤ h ≤ d, then the cosine distance between them is given by the following expression.

The smaller the angle between two subjects, the larger the cosine distance between them provided all angles lie between  and  which is always true in our case because drinking data (regardless the employed estimator) are lower bounded to zero (i.e., number of drinks per day). That means, the k nearest neighbors of p are those k subjects in the data set that have the k largest cosine distances from p.
Once the k nearest neighbors of p are identified, the weighted average of the drinking data of these neighbors for the day for which p’s drinking data are missing is taken as the best estimate of the missing data. The obtained average represents k-NN’s prediction of the number of drinks subject p had on the h-ith missing. The weight given to each neighbor, e.g. r, is of the form , where  is a scaling factor and  is a distance factor. We set , where  and  represent the Euclidean distance (i.e., the straight-line distance) of p′ and r′, respectively, from the origin. The scaling adjustment is needed because though p and r may have similar drinking patterns, one may be a heavier/lighter drinker than the other. For example, in Figure 2, p and q have the same drinking pattern, but p is still a heavier drinker (precisely, twice as heavy) than q. We set  to the square of the cosine distance between p and r. This distance factor assures that the neighbors nearer to p have more influence on the predicted value than the ones further away from it. 

