Knowledge, attitudes, and practices related to clinical practice guidelines and expert consensus statements and relevant reporting specifications among medical journal editors in China—a cross-sectional survey

Yule Li
Peking Union Medical College Hospital

Yaolong Chen (✉ chevidence@lzu.edu.cn)
Lanzhou University

Na Li
Peking Union Medical College Hospital

Yang Liu
Peking Union Medical College Hospital

Jing Sun
Chinese Medical Association

Qi Zhou
Lanzhou University

Feng Qian
Yangzhou University

Research Article

Keywords: Clinical practice guidelines, Expert consensus statements, Reporting specification, Medical education, Medical journal, Evidence-based practice

Posted Date: August 28th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3219916/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Previous research has shown that the quality of clinical practice guidelines (CPGs) and expert consensus statements in China is suboptimal and uneven. However, little is known about the knowledge, attitudes, and practices (KAP) of medical journal editors related to CPGs and expert consensus statements and relevant reporting specifications. This study was intended to investigate the KAP of medical journal editors, to identify the existing problems, and to explore possible solutions.

Methods

An observational study, using a cross-sectional survey, was distributed to medical journal editors in China, during April–July 2022. The study was collected using a self-designed questionnaire about the KAP of medical journal editors related to CPGs and expert consensus statements and relevant reporting specifications. The details about the participants as well as characteristics, knowledge, experiences, and attitudes were recorded. Descriptive statistics were used as appropriate.

Results

A total of 362 participants completed the survey. The majority (71.5%) had high educational attainment. The level of KAP related to the report contents of CPGs and expert consensus statements among the participants was low and limited. Of all the participants, 59.4% responded they were strongly unfamiliar with the RIGHT statement, 49.5% responded they were strongly unfamiliar with AGREE. There was no significant difference between different gender, age, professional title and position (all \(p > 0.05 \)). Similarly, there was no significant difference in the cognition of editors from different editorial departments and sponsors (all \(p > 0.05 \)). Medical journal editors thought that the main influencing factors of the reporting quality of CPGs and expert consensus statements were developing quality (90.6%), writing quality (85.9%), editing quality (75.4%) and reviewing quality (57.4%).

Conclusions

The KAP of medical journal editors related to CPGs and expert consensus statements and relevant reporting specifications in China are limited, low, and unsatisfactory, respectively at present. Factors influencing the reporting quality of CPGs and expert consensus statements were identified in the study. These findings help to develop strategies to improve the reporting quality of CPGs and expert consensus statements, and also provide evidence for the training of medical journal editors in the future.

Introduction

Clinical practice guidelines (CPGs) and expert consensus statements are important medical guidance documents. CPGs are systematically developed statements that help practitioners and patients to determine the appropriate health-care plan for specific clinical circumstances [1, 2]. Expert consensus
decision pathways were created to address gaps in clinical decision-making not addressed in guidelines. Gaps may exist in areas where the available data are insufficient or where the evidence is either new or evolving [3]. Expert consensus decision pathways are thus intended to complement guidelines. However, the objectives are still slightly different. Whereas guidelines are meant to answer general questions about why and how a clinical situation needs to be addressed, expert consensus decision pathways are meant to answer specific questions about how to treat the clinical problem [4]. Expert consensus decision pathways can be a valuable tool to inform and guide clinicians with medical decision-making in areas where rigorous evidence is not available [5].

As the rate of publication of new and sometimes conflicting medical research increases, clinicians rely heavily on CPGs and expert consensus statements to guiding practice. With the standardization of medical treatment and scientific decision-making, CPGs and expert consensus statements play an increasingly important role in guiding clinicians in clinical practice. As important medical guiding documents, high-quality CPGs and expert consensus statements can effectively regulate the medical treatment behaviors of clinical practitioners, improve the quality of medical care, promote evidence-based practice and decrease the overall cost of care, closing the gap between best evidence and clinical practice [2, 6–10]. Studies have shown that because of inadequate adherence to guidelines, preventable harm is the third leading cause of patient death, and one-third of health care spending—estimated at nearly $1 trillion, or $9000 per household—is for therapies that do not improve patients’ health [11].

With the rapid development of medical technology and the methodology of evidence-based medicine, clinical research and systematic review, the number of CPGs and expert consensus statements has also increased rapidly in the last 30 years in China [12]. Up to now, over 1000 CPGs and more than 10,000 expert consensus statements have been published in China [13, 14]. Although there has been some progress in the quality of CPGs in China in the recent years, the overall quality remains significantly below the international average. Yaolong Chen's team evaluated the quality of CPGs published in Chinese journals in 2019, and found that the overall scores in methodological quality and reporting quality were only about half of those of international CPGs [15]. As the number of CPGs and expert consensus statement is growing rapidly, however, the quality is of widely variable and heterogeneous. Factors contributing to the low overall reporting quality include incomplete reports, lack of essential information, lack of scientific and rigorous methods, confusion in the grading of quality of evidence and recommended strength, lack of clarity in recommendations, and low attention to conflicts of interest [12, 15–17]. Therefore, the reporting quality of the GPCs and expert consensus statement has become the major research issues [17–21].

Problems such as unclear recommendations, inconsistent grading of evidence, and unclear description of the responsibilities of different members of the expert group is not clear, will inevitably affect the scientificity and authority of CPGs and expert consensus statement, and be detrimental to their dissemination and implementation. Standardizing the reporting in CPGs and expert consensus statements needs therefore urgently attention.
At present, the cognition degree of developing and reporting specifications related to CPGs and expert consensus statements among medical staff are low, and there are some misunderstandings and perplexities in the cognition [12, 21–23], but there were few studies have pay attention to this subject among medical journal editors. In view of this situation, we decided to conduct this survey, which aims to help to understand the knowledge, attitudes, and practices (KAP) of medical journal editors related to CPGs and expert consensus statements and the relevant reporting specifications in China, and identify the existing problems, explore possible solutions and provide reference for improving the professional ability and quality of editors.

Methods

Study design

Between April 1, 2022 and July 31, 2022, a cross-sectional online survey was conducted using social media platforms WeChat, which was used to distribute the survey link since social media is a valuable tool for conducting this type of data collection [24]. The study population included only registered medical journal editors with CN Serial Numbering and aged 18 years or older, who voluntarily agreed to participate, understood the study's objectives, and provided informed consent. The survey took 10–15 mins to complete and explored demographic details, editors’ KAP related to CPGs and expert consensus statements and relevant reporting specifications for information delivery using open and closed questions.

To reduce the sampling bias, invitations were distributed through multiple medical journal social media platforms (eg, Society of China University Journals, China National Knowledge Infrastructure Digital Publishing) and relevant editors WeChat platforms (eg, Branch of the Journal of Medicine and Health, Journal Editors Alliance, etc.).

This study was reported in compliance with the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) statement [25].

Development of survey instruments

This study was collected using a self-designed questionnaire about the knowledge, attitudes, and practices of editors related to CPGs and expert consensus statements and relevant reporting specifications. The development of the questionnaire was primarily guided by the literature [1, 26–28]. The questionnaire went through three rounds of expert consultation and revision. A seven-day pilot survey was performed to assess the questionnaire’s applicability, and changes were made based on feedback from participating editors and experts. The internal consistency reliability (Cronbach’s α) of the questionnaire was 0.892, the construct validity was 0.726.

The questionnaire was carefully designed, and evaluated and revised before formal use. It is presented in an electronic questionnaire form, created and administered entirely in Chinese language, and consists of
the following six sections: (1) demographic information and characteristics of the editors; (2) KAP of the editors related to the reporting contents of CPGs and expert consensus statements; (3) KAP of editors related to RIGHT (Reporting Items for Practice Guidelines in Healthcare) [26] and AGREE (Appraisal of Guidelines, Research, and Evaluation) statements [27]; and (4) Opinions of editors related to the influencing factors of the reporting quality. A 5-point Likert scale (1 for strongly disagree and 5 for strongly agree) was used for evaluating the editors' knowledge and attitudes.

Data collection

The electronic questionnaire was distributed via the social media platform WeChat. The survey was accessible for 4 months, starting at 1 April and ending 31 July 2022. The participation was completely voluntary and anonymous, and the participants were explicitly informed that the survey data was for research purposes only. Data were collected, stored and analyzed according to the Information security technology—Personal information security specification (GB/T35273-2020, 1 October 2020).

Each returned questionnaire was carefully reviewed for completeness and consistency. Questionnaires with any incomplete responses or suspected errors were excluded from the analysis.

Data analysis

The data were analyzed descriptively. Frequency and percentages were recorded for categorical variables and mean and standard deviation for continuous variables. Kruskal-Wallis H tests was used to compare differences between editors with different characteristics, and journal editorial boards with different types. The level of statistical significance was set at $p < 0.05$. All analyses were performed using the Office Excel 2016 software and statistical software SPSS version 20.0.

Results

A total of 369 responses were obtained from distributing the survey link through social media, of which seven were excluded (five with incomplete information, two with logical contradictions in the responses). Finally, 362 valid questionnaires were included.

Participants’ characteristics

362 editors who participated in the survey came from 25 different province-level regions of China (Anhui, Beijing, Chongqing, Fujian, Gansu, Guangdong, Guangxi, Guizhou, Hebei, Henan, Heilongjiang, Hubei, Hong Kong, Inner Mongolia, Jiangxi, Jiangsu, Jilin, Liaoning, Shanghai, Shaanxi, Shanxi, Shandong, Sichuan, Tianjin, Zhejiang). The majority of respondents came from either north China (32.9%) or East China (22.7%). Table 1 shows the demographic characteristics of the participants.

Of all the editors, 64.4% were female, 71.5% were aged below 50 years, 55.2% had a Master’s degree, 16.3% has Doctor’s degree or above, 48.9% had been engaged in editorship for more than 10 years, 63.5% had intermediate and associate senior professional titles.
Most editorial departments were non-independent (59.4%), they were administrated by the universities, hospitals, associations or societies. The most common sponsors were colleges/universities (40.1%) and associations/societies (37.0%).

The main database that the participants' journals were included (53.6%) was Chinese Science and Technology Paper Citation Database (CSTPCD), followed by A Guide to the Core Journal of China (GCJC 25.7%) and Chinese Science Citation Database (CSCD 24.9%).
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n (%)</th>
<th>Characteristics</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td>Geographical location</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>129(35.6)</td>
<td>North China</td>
<td>119(32.9)</td>
</tr>
<tr>
<td>Female</td>
<td>233(64.4)</td>
<td>Eastern China</td>
<td>82(22.7)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td>Southwest China</td>
<td>47(13.0)</td>
</tr>
<tr>
<td>30</td>
<td>26(7.2)</td>
<td>Northeast China</td>
<td>37(10.2)</td>
</tr>
<tr>
<td>30~39</td>
<td>127(35.1)</td>
<td>South China</td>
<td>31(8.6)</td>
</tr>
<tr>
<td>40~49</td>
<td>106(29.3)</td>
<td>Northwest China</td>
<td>22(6.1)</td>
</tr>
<tr>
<td>≥ 50</td>
<td>103(28.5)</td>
<td>Central China</td>
<td>20(5.5)</td>
</tr>
<tr>
<td>Educational degree</td>
<td></td>
<td>Hong Kong, Macao and Taiwan regions</td>
<td>4(1.1)</td>
</tr>
<tr>
<td>Bachelor</td>
<td>103(28.5)</td>
<td>Non-independent editorial board</td>
<td>215(59.4)</td>
</tr>
<tr>
<td>Master</td>
<td>200(55.2)</td>
<td>Independent editorial board</td>
<td>55(15.2)</td>
</tr>
<tr>
<td>Doctor or above</td>
<td>59(16.3)</td>
<td>Journal press / publishing house</td>
<td>72(19.9)</td>
</tr>
<tr>
<td>Years of editorship</td>
<td></td>
<td>Others</td>
<td>20(55.3)</td>
</tr>
<tr>
<td>5</td>
<td>94(26.0)</td>
<td>Colleges/universities</td>
<td>145(40.1)</td>
</tr>
<tr>
<td>5~9</td>
<td>91(25.1)</td>
<td>Associations/societies</td>
<td>134(37.0)</td>
</tr>
<tr>
<td>≥ 15</td>
<td>105(29.0)</td>
<td>Medical facilities</td>
<td>83(22.9)</td>
</tr>
<tr>
<td>Professional title</td>
<td></td>
<td>Scientific research institutions</td>
<td>63(17.4)</td>
</tr>
<tr>
<td>None</td>
<td>27(7.5)</td>
<td>Others</td>
<td>30(8.3)</td>
</tr>
<tr>
<td>Primary</td>
<td>25(6.9)</td>
<td>GCJC</td>
<td>93(25.7)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>127(35.1)</td>
<td>None</td>
<td>67(18.5)</td>
</tr>
<tr>
<td>Associate senior</td>
<td>103(28.5)</td>
<td>CSTPCD</td>
<td>194(53.6)</td>
</tr>
<tr>
<td>Senior</td>
<td>80(22.1)</td>
<td>GCJC</td>
<td>93(25.7)</td>
</tr>
<tr>
<td>Position of editorship</td>
<td></td>
<td>Included by Database</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>166(45.9)</td>
<td>GCJC</td>
<td>90(24.9)</td>
</tr>
<tr>
<td>Characteristics</td>
<td>n (%)</td>
<td>Characteristics</td>
<td>n (%)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td>Geographical location</td>
<td></td>
</tr>
<tr>
<td>Editorial director /vice editorial director</td>
<td>117(32.3)</td>
<td>SCOPUS</td>
<td>44(12.2)</td>
</tr>
<tr>
<td>Proprieter/vice proprieter</td>
<td>10(2.8)</td>
<td>DOAJ</td>
<td>31(8.6)</td>
</tr>
<tr>
<td>Editor-in-chief/ vice editor-in-chief</td>
<td>12(3.3)</td>
<td>Medline/PubMed</td>
<td>14(3.9)</td>
</tr>
<tr>
<td>Others</td>
<td>57(15.7)</td>
<td>Others</td>
<td>52(14.4)</td>
</tr>
</tbody>
</table>

CSTPCD, Chinese Science and Technology Paper Citation Database; GCJC, A Guide to the Core Journal of China; CSCD, Chinese Science Citation Database; DOAJ, Directory of Open Access Journals

KAP related to the report contents of CPGs and expert consensus statements

The level of KAP related to the report contents of CPGs and expert consensus statements among medical journal editors varies, there is a big difference (Fig. 1). Of the editors, 68.0% strongly or somewhat agreed that the registration number should be reported when the guideline was submitted and published; 86.5% that the protocols should be written before development and should be reported in the CPGs and expert consensus statements; and 86.7% that the development team, including the steering group, the methodology group and the systematic review group, should be presented in the CPG or expert consensus statements. Most (83.4%) of the editors strongly or somewhat agreed that conflicts of interest should be reported; and 87.6% that evidence retrieval should be reported. Eighty-seven percent of the editors agreed that the developing process of the recommendations, such as the method for reaching consensus, should be reported; 82.0% that the review process and the review results should be reported; and 68.5% that the research gaps should be reported.

KAP related to RIGHT and AGREE

Of all the participants, only 13.5% of the respondents were strongly or somewhat familiar with the RIGHT statement, while 59.4% responded they were strongly unfamiliar with it. For AGREE, only 17.7% of the editors responded they were strongly or somewhat familiar with this tool, while 49.5% responded they were strongly unfamiliar with it (Fig. 2). Further analysis showed that there was no significant difference between different gender, age, professional title and position (all \(p > 0.05 \)). Similarly, there was no significant difference in the cognition of editors from different editorial departments and sponsors (all \(p > 0.05 \)).

Opinions related to the influencing factors of reporting quality
Most medical journal editors who participated in the survey were aware of the existing factors affecting the reporting quality of CPGs and expert consensus statements. The main factors are as follows: (1) suboptimal knowledge of relevant reporting specifications among medical journal editors and lack of reference standards and criteria (90.5%); (2) insufficient knowledge related to the methodology and development process of CPGs and expert consensus statements among medical staff, resulting in poor quality of the methodology (85.6%); (3) lack of knowledge of relevant reporting specifications of CPGs and expert consensus statements among drafters, resulting in incomplete and unclear reporting (75.4%); and (4) lack of established relevant reporting specifications and criteria in the journal departments, and lack of rigorous expert review process (57.5%).

Discussion

This study provides an initial descriptive analysis of the KAP of medical journal editors related to CPGs and expert consensus statements and relevant reporting specifications in China. To our knowledge, this is the first descriptive analysis on this subject published to date. The respondents spanned over almost 80% of all province-level administrative areas of China. The survey responses illuminated that the level of KAP of editors related to CPGs and expert consensus statements as well as reporting specifications was generally low and unsatisfactory.

The level of KAP related to the report contents of CPGs and expert consensus statements among medical journal editors was limited. This applies to all domains of the reporting, such as registration, writing protocols, construction of expert group, conflict of interest management and funding, evidence retrieval, evaluation and classification, formation process of recommendations, review process and review results, and research gaps. These contents are important and must be reported, and they are also necessary for review and evaluation of CPGs [26–28].

Editors are gatekeepers of the quality of medical journals, and their knowledge and specialty literacy directly affect the academic quality of the journal. CPGs and expert consensus statements are documents that guide medical practice and establish standards for medical staff to make decisions. Therefore, in order to improve the standardization and comprehensiveness of the reporting contents of CPGs and expert consensus statements in China, it is suggested that editorial departments and editors of medical journals should strengthen their awareness of clear and transparent reporting, attach importance to the editing of CPGs and expert consensus statements, and establish relevant reporting specifications and requirements.

Reporting specifications are guidance documents for the standardization of research and play an important role in improving the quality and transparency of research reports [29]. Guideline reporting specifications can assist the developers to report CPGs and expert consensus statements more comprehensively, clearly and transparently, and facilitate the users’ understanding, evaluation and application of the guidelines [23]. In 2003, the AGREE Collaboration was established to create a generic instrument AGREE to assess the process of guideline development and reporting of this process in the
guideline [30]. In 2009, AGREE was revised, and an updated version, AGREE II, was released (www.agreetrust.org). AGREE II comprises 23 items and a user’s manual, offering guidance to develop, report, and evaluate practice guidelines [27]. In 2013, Chen et al. launched the RIGHT Statement, a reporting tool for practice guidelines in health care, consisting of seven domains and 22 items (http://right-statement.org). The use of RIGHT in the development helps the readers and evaluators by providing a clear and explicit description of the processes and procedures used to develop a guideline, as well as the evidence used to formulate each recommendation [30].

AGREE II and RIGHT are two major instruments for development and reporting of CPGs and expert consensus statements. They play an important role in improving the quality of CPGs and expert consensus statements. However, the survey showed that only 13.5% and 17.7% of the editors were familiar with RIGHT and AGREE II, respectively. And further analysis indicated that there was no significant difference between different gender, age, professional title and position. The findings demonstrate that medical journal editors generally lack the knowledge of standardized reporting specifications such as AGREE II and RIGHT. This means that the editing process of manuscripts will be subjective and essentially based on personal experience, which in turn will inevitably affect the reporting quality of CPGs and expert consensus statements.

AGREE II focuses on the evaluation of methodological quality of the guidelines, while RIGHT focuses on the reporting quality and the development of the guidelines. The RIGHT checklist assists developers of reporting guidelines, supports journal editors and peer reviewers when evaluating submitted guidelines, and helps health-care practitioners to understand and implement guidelines [26, 27]. The RIGHT Working group has developed also several extensions for different types and aspects of reporting guidelines [31–34]. Therefore, editors and publishers should consider bringing the RIGHT checklist into the instructions for authors as a requirement, or integrating the RIGHT checklist into the journal's submission system. This way, authors and drafters can submit their materials as comprehensively as possible at the submission stage. Meanwhile, the journals and publishers should conduct relevant training and knowledge dissemination to enhance the knowledge level of medical journal editors, to promote the quality improvement of published CPGs and expert consensus statements.

CPGs and expert consensus statements can guide the clinical practice, improve the quality of health care, and promote patient health, but all of this is based on the scientific design and methodology, rigorous development, and standardized report. High reporting quality means that the guidelines are written in a clear, unambiguous and well-formatted manner, are easy for users to understand and apply, and provide sufficient detail for readers to judge their reliability [35]. Standardized report helps to enhance the academic quality and authority of CPGs and expert consensus statements, and facilitates their dissemination and implementation. The survey demonstrated that the main influencing factors of the reporting quality can be roughly divided into the following categories: developing quality, writing quality, editing quality and reviewing quality.
Therefore, the training for medical staff should be strengthened, and quality control should be carried out at the source to ensure that the development process is scientific and rigorous, and that the reporting contents are standardized and comprehensive. This is an important measure to enhance the quality of CPGs and expert consensus statements. However, currently, many clinical experts are unfamiliar with the process and requirements before developing CPGs and expert consensus statements [12, 15, 16, 19]. Therefore, as gatekeepers before the publication of CPGs and expert consensus statements, medical journal editors should check the reporting quality strictly and put forward clear comments and suggestions for revision to the authors of manuscripts to refine the contents and assure the reporting is standardized. Meanwhile, rigorous peer review should be conducted, reviewers should be familiar with the developing process and reporting specifications, and participate in the review of CPGs and expert consensus statements with a responsible attitude. The current peer review system is likely to be affected by secondary interests of expert reviewers, who support or criticize manuscripts, or push citations to their works on subjective, non-scientific grounds [36]. Dual or multiple competing affiliations, academic interests, and financial ties of peer reviewers with the pharmaceutical industry are serious threats to the objectivity of experts’ judgments and decisions throughout the peer review process, especially in small professional communities [37]. Therefore, peer reviewers should evaluate the authors’ manuscript carefully, be fair and responsible, suggest more clear suggestions for changes, when required, and explicit disclosures of conflicts of interests. All in all, joint efforts of developers, authors, peer reviewers, and science editors are the guarantee for quality improvement of CPGs and expert consensus statements in medical publications.

Conclusion

In summary, the KAP of the medical journal editors related to CPGs and expert consensus statements and relevant reporting specifications were limited, low, and unsatisfactory. However, the editors recognized the main influencing factors of the reporting quality on CPGs and expert consensus statements. The key to improving the quality of CPGs and expert consensus statements is to improve the scientificity of the development and to report the content in a standardized way. Therefore, it is particularly important to strengthen the knowledge dissemination and training related to developing methods and reporting specifications on CPGs and expert consensus statements. Medical journal departments and relevant organizations should carry out training actively to enhance the knowledge of editors in this field, and journal publishers may consider incorporating the reporting specification (eg, RIGHT) into the instructions for authors, or integrating it into the journal's submission system, to promote its application and to improve the reporting quality of CPGs and expert consensus statements.

Abbreviations

CPGs
clinical practice guidelines
KAP
knowledge, attitudes, and practices
CSTPCD
Chinese Science and Technology Paper Citation Database
GCJC
A Guide to the Core Journal of China
CSCD
Chinese Science Citation Database
DOAJ
Directory of Open Access Journals.

Declarations

Acknowledgments

The support from the Chinese Universities Science and Technology Journal Research Society and the Medical and Health Branch of China Periodicals Association is gratefully acknowledged. Also, the authors wish to thank all the study participants for their tremendous cooperation and support.

Authors’ contributions

Yule Li and Yaolong Chen contributed to the design of the study, and drafted the survey. Yule Li, Na Li, Yang LIU, Jing SUN, Qi Zhou and Feng Qian collected and analyzed the data. Yule Li wrote the draft manuscript. Yaolong Chen revised the manuscript. All authors edited the manuscript, and all authors read and approved the final manuscript.

Competing interests

The authors declare that they have not known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This study was financially supported by the Foundation of Society of China University Journals (grant number: CUJS-YX-2021-1-3).

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Consent for publication

Not applicable.
Ethics approval and consent to participate

The study protocol has been approved by the Commission for Ethics and Integrity of Research of Peking Union Medical College Hospital (K22C2433). All participants consented to participate, and they were informed about the study objectives before completing the questionnaire. All authors, hereby confirm that all methods were performed in accordance with the relevant guidelines and regulations stated in the Declaration of Helsinki.

Author details

1 Editorial office of Medical Journal of Peking Union Medical College Hospital, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
2 Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
3 WHO Collaborating Centre for Guideline Implementation and Knowledge Translation.
4 Editorial office of Intelligent Medicine, Chinese Medical Association, Beijing, China.
5 Editorial office of Journal of Clinical Medicine in Practice, Yangzhou University, Yangzhou, China.

References

Figures
Figure 1

KAP of medical journal editors related to the report contents of CPGs and expert consensus statements

Figure 2

KAP of medical journal editors related to RIGHT and AGREE
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- STROBEchecklist2023730.pdf