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Abstract We propose a novel scheme for the all-optical generation of pulse trains
in optical fibers based on the reflection and refraction of pulses at a time boundary,
and the temporal analogue of a laser cavity with gain. Furthermore, this scheme
is shown to provide an original and simple way to measure distributed fiber pa-
rameters. In particular, we put forth an application of the temporal laser to the
distributed sensing of the fiber group-velocity dispersion parameter.

Keywords Nonlinear Optics · Temporal Laser · Nonlinear Fibers · Distributed
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1 Introduction

Optical fibers exhibit multiple effects that modify the characteristics of propa-
gating pulses. The dependence of the refractive index on frequency gives rise to
chromatic dispersion and the wavelength dependence of the group velocity; fiber
attenuation results in the loss of the pulse energy [1]. In addition to these lin-
ear effects, nonlinear effects have been shown to significantly restrict the Shannon
capacity of optical fibers [2].

In particular, the optical Kerr effect, i.e, the dependence of the refractive index
on intensity [1, 3, 4] has been widely studied to prevent its detrimental action in
optical communication systems [5,6], but also lends itself to a vast number of ap-
plications in photonics, such as in frequency conversion [7,8] and supercontinuum
generation [9, 10], to name a few.

One interesting application of the fiber nonlinearity lies on performing analo-
gies with other diverse phenomena whose direct experimental observation might
be difficult to perform. Relevant examples can be found, for instance, in the fiber-
optical analogue of event horizons and black holes [11,12], in the analogy between
electrons and photons in quantum tunneling [13], and in the study of optical rogue
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waves [14], an analogy with an extreme phenomenon widely studied in hydrody-
namics, among others.

In the past years, the temporal analogue of reflection and refraction laws has
attracted the attention of the nonlinear optics community [15–17]. It relies on
the Kerr effect induced by high-intensity pulses propagating in a nonlinear fiber
that play the role of moving refractive-index boundaries [18, 19]. As explained in
the next section, an intense pulse is found to produce a time-dependent refractive
index for another co-propagating low-intensity pulse with a different group velocity.
This basic idea can be used, for instance, to perform the temporal analogy of a
boundary separating two media with different refractive indices. A low-intensity
pulse reaching that boundary is split into two pulses with different group velocities,
resembling the behavior of reflected and refracted pulses. As shown in Ref. [16], the
frequency shift involved in the change of group velocities completes this analogy
by acting as the incident and refracted angles in Snell’s law. This scheme has
been exploited to study different applications such as the splitting of pulses [20],
wavelength conversion, optical delays, and pulse manipulation in the time and
frequency domains [17], the study of plasmonic behavior [21], pulse interference
[20], and many others [18,19, 22,23].

In this work, we propose to extend this analogy of reflection and refraction to
devise a novel scheme of a temporal analogue of a laser. This proposal, portrayed
in Fig 1, relies on a temporal Fabry-Pérot cavity shaped by the Kerr-induced re-
fractive index change, ∆n, prompted by two different high-intensity pulses. Each
pulse acts as a potential barrier for a third low-intensity pulse confined within the
temporal cavity which is periodically reflected at the time boundaries. The trans-
mission coefficient of each barrier depends on the intensity and duration, ∆T , of
the high-intensity pulse. In this particular configuration, one barrier is set to sat-
isfy the total internal reflection (TIR) condition for the low-intensity pulse, while
the second barrier has a nonzero transmission coefficient, leading to the generation
of an output train of pulses with a periodicity related to the cavity length, Tcav.
In order to compensate the energy loss due to the nonzero transmission in the
second barrier, we propose to provide the temporal cavity with a gain mechanism
resembling the active medium in a laser. By proper adjustment of this gain, the
transmission loss can be exactly compensated and thus a constant-amplitude out-
put train of pulses can be achieved. Further, we show this scheme to easily lend
itself to the distributed sensing of fiber and pulse parameters. In particular, we put
forth an example of the application of the temporal cavity to the distributed mea-
surement of the fiber group-velocity dispersion (GVD) parameter [24–26]. Having
accurate data of the GVD parameter along an optical fiber link is critical for
the design of efficient dispersion maps in long-haul networks, for which dispersion
monitoring and compensation is indispensable in order to improve transmission
performance [27–30]. In addition, the knowledge of the spatial variation of the
GVD parameter in fibers is of singular relevance when considering the transmis-
sion of dispersion-managed solitons in ultra-long-haul fiber-optic communication
systems [31–33].

The paper is organized as follows: Section 2 introduces the temporal laser
model. Section 3 shows numerical results on the implementation of the proposed
scheme, and Section 4 discusses the application to the distributed sensing of the
GVD parameter. Finally, in Section 5 we present our conclusions.
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Fig. 1: Schematic diagram of the temporal cavity. The thick barrier acts as a
perfect mirror, while the narrow barrier, of width ∆T , acts as a highly reflective
output mirror. Tcav is the temporal analogue of the cavity length, and ∆n stands
for the refractive index modulation produced by the high-intensity pulses

2 Model description

The temporal analogy of reflection and refraction has already been demonstrated
in media with a time-dependent refractive indices [15–17,34]. As it was mentioned
in the previous section, this can be achieved by means of an intense (pump) pulse
propagating in an optical fiber, where the change in the refraction index is a
consequence of the optical Kerr effect. The propagation of a low-amplitude (signal)
pulse in a pump co-moving frame is modeled by the equation [16,34]

∂A
∂z

+ ∆β1
∂A
∂t

+ i
β2

2

∂2A
∂t2

= iγP (t)A, (1)

where z is the propagation axis, A is the complex envelope of the signal, P (t)
is the pump power (assumed to be constant along z), γ is the fiber nonlinear
coefficient, ∆β1 is the group-velocity mismatch between pump and signal, and β2 is
the GVD parameter. An enlightening case of Eq. 1 is given by P (t) = P0H(t−TB),
where P0 is a constant power, H stands for the Heaviside function and TB is the
temporal analogue of a boundary separating two media with different refractive
indices. A complete analysis of the analogy of reflected and refracted pulses and
the TIR condition can be found in Ref. [16]. However, the analogy provided by
the more general expression in (Eq. 1) and its potential applications has not yet
been exploited to its fullest.

In this work we propose a different pumping scheme with

P (t) = P1H
(

−
2t

Tcav
−

1

2

)

+ P2Π
(

t − Tcav/2

∆T
−

1

2

)

, (2)

where Π is the rectangular function. This modulation of the pump power generates
a temporal analogue of a Fabry-Pérot cavity, which we shall henceforth call a
temporal cavity, as shown schematically in Fig. 1. The Heaviside function effectively
models the wide pulse leading to a change in the refractive index, weighted by P1

and adjusted to produce the TIR of the signal. On the other hand, the rectangular
function of width ∆T acts as a potential barrier, whose transmission coefficient
Tr depends on P2 and ∆T , and can be calculated analytically by the standard
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Fig. 2: (Left) Simulation of the temporal laser in the time and frequency domains
for β2 > 0. Each reflection/refraction produces a frequency shift corresponding to
the change in the group velocity of the signal pulse. Pump configuration (center)
and the frequency-dependent gain for normal and anomalous dispersion regimes
(right)

analysis of a one-dimensional electromagnetic cavity [35] leading to

Tr =
1

|Γ+ + Γ−|2
, (3)

with Γ± = ω±exp(iω±∆T )(1 + ω∓/ωr)/(ω± − ω∓), where the frequencies are
defined as ω± = (−∆β1 ±

√

(∆β1)2 − 2|β2|γP2)/β2, and ωr = −2∆β1/β2. If
0 < Tr < 1 successive transmitted pulses conform a pulse train of period 2Tcav.
However, the amplitude of these pulses is expected to decrease, as the energy of
the original signal pulse is sequentially split at the barrier. In order to obtain a
constant-amplitude output pulse train we require the analogue of an active medium
within the cavity, thus completing the analogy of a temporal laser. The optical gain
can be included in the propagation equation as

∂A
∂z

+ ∆β1
∂A
∂t

+ i
β2

2

∂2A
∂t2

−
ĝ
2

A = iγP (t)A, (4)

where ĝ is the frequency-dependent gain operator, defined as ĝA = F−1 [g(ω)F(A)],
where g(ω) is the gain profile and F stands for the Fourier transform. In a prac-
tical implementation this gain can be realized, for instance, by an external laser
providing Raman gain in the transmission fiber [1]. Furthermore, this gain is re-
quired to have a limited bandwidth ∆ω around the frequency of the reflected
pulse, ωr, as it is explained below. In this way, we can easily estimate the gain
required to compensate for transmission losses, allowing for the generation of a
constant-amplitude output pulse train, by proposing g(ω) = geqΠ((ω − ωr)/∆ω),
where

geq =
∆β1

Tcav
ln

(

1

1 − Tr

)

. (5)

Note that the scheme discussed so far is strictly valid for positive values of the
GVD parameter, i.e., the normal dispersion regime. The temporal laser can also be
achieved in the anomalous dispersion regime by replacing the pump configuration
of Eq. 2 by

P (t) = P1 −
[

P1H
(

−
2t

Tcav
−

1

2

)

+ P2Π
(

t − Tcav/2

∆T
−

1

2

)]

, (6)

as suggested in Ref. [34].
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3 Numerical simulations and validation of the model

In order to observe the dynamics of the proposed model, we perform an illustrating
numerical simulation of Eq. 4 by resorting to the Split-Step Fourier, an algorithm
widely used in the realm of nonlinear fiber optics [1]. Parameters are set to ∆β1 =
0.42 ps/km, β2 = ±21 ps2/km, Tcav = 10 ps, ∆T = 0.25 ps, γP1 = 5.88 m−1,
γP2 = 4.12 m−1, and the fiber length is LD, where LD = T 2

0 /|β2| is the dispersion
length. The input signal is a T0 = 2-ps 0.1-W Gaussian pulse centered at λ =
1550 nm. Figure 2 (left panel) shows simulation results in the time and frequency
domains in the normal dispersion regime. Observe how the evolution of the signal
pulse along propagation mimics the temporal dynamics of a pulse confined within
a Fabry-Pérot cavity. In addition, the nonzero transmission coefficient of the right
barrier allows for the periodical emission of transmitted pulses from the temporal
cavity, in direct analogy with the output mirror of a laser cavity.

Note that since the propagation distance is commensurate with the fiber char-
acteristic dispersion length, the temporal broadening of the output pulses is not
appreciable in Fig. 2. Further, fiber dispersion does not affect the regularity of the
generated pulse train, as each output pulse from the cavity experiences the same
distortion, and pulse broadening depends on the total propagated distance by the
pulse both within and outside the temporal cavity.

The spectrum of signal pulses is also shown in Fig. 2 (left), showcasing the dis-
crete frequency shift associated with the temporal reflection at each time bound-
ary, in agreement with results in Ref. [20]. This singular feature associated with
the reflection at a time boundary suggests a way to design an adequate frequency-
dependent gain, based on the direction-dependent amplification of the signal pulse,
in this case when the signal pulse is traveling towards the thick barrier. This orig-
inal scheme avoids the overlapping of the gain and the transmission in the right
barrier (output), allowing for the simple estimation of Tr given by Eq. 3. Figure 2
(center panel) shows the different pump configurations required for the two disper-
sion regimes, according to Eq. 2 for normal dispersion, and Eq. 6 for anomalous
dispersion, and Fig. 2 (right) shows the corresponding gain frequency band.

Figure 3 displays a comparison between the pulse train at the output end
of the fiber as obtained with and without gain in the temporal cavity, where the
amplitude is normalized to that of the input Gaussian pulse. In the absence of gain
in the temporal cavity, the pulse train displays an expected progressive decrease
of energy due to the periodical splitting at the output barrier. It must be noted
that pulses on the right were emitted at an earlier propagation stage than the
pulses on the left and, as a consequence, they exhibit a larger peak power. On the
other hand, the pulse train obtained with the narrowband gain geq in the temporal
cavity displays a notable periodicity and constant energy per pulse, validating the
estimation made with Eq. 5.

4 Distributed sensing of fiber parameters

The temporal analogue of a laser proposed in this paper can be regarded as a
moving laser cavity propagating in the fiber. From this point of view, the output
pulse train consists of a sequence of pulses generated at different points, zn, equally
distributed along the fiber. As a consequence, each pulse is expected to encase



6 A. Sparapani∗(a)(b) et al.

10 30 50 70 90 110 130
0

0.05

0.1

Time [ps]

N
or
m
al
iz
ed

am
p
li
tu
d
e

g = g(ω) g = 0

Fig. 3: Pulse train generated by the temporal cavity (dashed) and the temporal
laser (solid), obtained at the fiber output. Simulation parameters are the same as
those in Fig. 2 but for a propagation distance of 1.5LD

certain information about the parameters of the fiber at zn, i.e., the point at
which it exited the cavity. This suggests the potential application of the temporal
laser as a scheme capable of performing the distributed sensing of fiber parameters.
As an example, in this section we introduce a simple method to measure variations
in the GVD parameter along the fiber with respect to a nominal value.

Figure 4 (top panel) shows the output pulse train for a fiber with a nominal
GVD parameter of β2 = 21 ps2/km. In this case, the gain estimated with Eq. 5
provides a balance between amplification and losses by transmission, producing an
output pulse train of constant amplitude. In the same figure we show the output
pulse train generated by the same temporal-laser configuration, this time in a fiber
with a slightly different β2. We observe that a small change in the GVD parameter
leads to a change in the transmission coefficient; consequently, the balance between
gain and loss is no longer maintained as geq was set for the nominal value of β2.
For instance, the pulse train obtained in a fiber with a lower GVD parameter
(β2 = 20.5 ps2/ km) shows a progressive increase of the pulse energy, evidencing
an overcompensation of transmission losses. On the other hand, for a higher GVD
parameter (β2 = 21.5 ps2/ km) transmission losses are not compensated by geq,
producing a successive decrease of the pulse energy in the output train. This
way, the increase/decrease of the pulse energy, which can be easily measured,
can be used to detect deviations in the GVD parameter along the fiber. Figure 4
(bottom panel) shows that the energy ratio between two successive pulses can be
univocally associated to a value of β2, for every En+1/En, thus providing a simple
transduction scheme.

Although results shown in Fig. 4 (top panel) correspond to simulations of a
fiber with fixed values of β2, this scheme can be applied to the measurement of
a z-dependent GVD parameter. The value of β2 at the point (zn + zn−1)/2 can
be inferred by computing the ratio between the energy of consecutive pulses in
the output train En/En−1, being En the energy of the pulse generated at zn,
and using the calibration from Fig. 4 (bottom panel). Following this method,
each pulse train can be converted into a discrete z−mapping of the fiber GVD
parameter, whose resolution in z is given by 2Tcav/∆β1, and can thus be designed
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to meet the desired resolution. Note also that since the measured magnitude in this
transduction scheme is the pulse energy, detection can be conveniently performed
with a photodetector of small bandwidth.
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Fig. 4: (Top) Temporal laser output for different values of β2. A constant-amplitude
pulse train is obtained only for the nominal value of β2. (Bottom) Energy ratio
between consecutive output pulses vs. β2. En stands for the energy of the n-th
output pulse

5 Conclusions

In this work we presented a temporal laser model departing from the temporal
analogy of reflection and refraction laws. This proposal consists of a temporal
cavity scheme plus a frequency-selective gain playing the role of the active medium
in a conventional laser. The output pulse train obtained with the temporal laser
was also shown to find applications in the distributed sensing of fiber parameters.
As an enlightening example, we showed the distributed sensing of variations of the
fiber GVD parameter with respect to a nominal value by the direct and simple
measurement of the energy ratio of successive output pulses.
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Figures

Figure 1

Schematic diagram of the temporal cavity. The thick barrier acts as a perfect mirror, while the narrow
barrier, of width ΔT, acts as a highly re ective output mirror. Tcav is the temporal analogue of the cavity
length, and Δn stands for the refractive index modulation produced by the high-intensity pulses

Figure 2

(Left) Simulation of the temporal laser in the time and frequency domains for  β2 > 0. Each
re�ection/refraction produces a frequency shift corresponding to the change in the group velocity of the
signal pulse. Pump con �guration (center) and the frequency-dependent gain for normal and anomalous
dispersion regimes (right)



Figure 3

Pulse train generated by the temporal cavity (dashed) and the temporal laser (solid), obtained at the  ber
output. Simulation parameters are the same as those in Fig. 2 but for a propagation distance of 1:5LD



Figure 4

(Top) Temporal laser output for different values of  β2. A constant-amplitude pulse train is obtained only
for the nominal value of  β2. (Bottom) Energy ratio between consecutive output pulses vs.  β2. En stands
for the energy of the n-th output pulse


