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Abstract 1 

 2 

Mass spectrometry-based methods can provide a global expression profile and structural readout of 3 

proteins in complex systems. Preserving the in vivo conformation of proteins in their innate state is 4 

challenging during proteomic experiments. Here, we introduce an approach using perfusion of reagents to 5 

create a whole animal in vivo protein footprinting method that adds dimethyl labels to exposed lysine 6 

residues on intact proteins to maintain information on protein conformations. When this approach was used 7 

to measure dynamic structural changes during Alzheimer’s disease (AD) progression in a mouse model, 8 

we detected 433 proteins that underwent structural changes attributed to AD, independent of aging, across 9 

7 tissues. We identified structural changes of co-expressed proteins and linked the communities of these 10 

proteins to their biological functions. Our findings show that structural alterations of proteins precede 11 

changes in expression, thereby showing the value of in vivo protein conformation measurement. Our 12 

method represents a new strategy for untangling mechanisms of proteostasis dysfunction caused by protein 13 

misfolding. In vivo whole-animal footprinting should have broad applicability for discovering conformational 14 

changes in systemic diseases and therapeutic interventions.   15 



 

 1 

Introduction 1 

 2 

The proper functioning of cellular machinery depends on the ability to maintain the functional structures of 3 

proteins. Proper folding of proteins is necessary to engage with partners in complexes and to perform 4 

catalytic activities. Protein folds or shapes can be measured by powerful, high-resolution ex vivo techniques 5 

such as X-ray crystallography, NMR, and Cyro-electron microscopy (Cyro-EM).1, 2,3, 4 Cyro-EM can be used 6 

to analyze large protein complexes if they are extracted from cells or are produced recombinantly prior to 7 

deposition on the grid and frozen.5,6, 7 Multiplexed Ion Beam imaging (MIBI) and ion beam tomography are 8 

capable of imaging cells and tissues, but they are not explicitly used to study the structure of proteins and 9 

protein complexes. Modeling algorithms can generate protein structures from ex-vivo protein cross-linking 10 

data, while in vivo cross-linking analyses generate protein-protein interaction data. Thus, because no 11 

methods are available to determine the high-resolution structures of proteins in vivo, we are still limited in 12 

our ability to elucidate the structures of proteins in the cellular milieu.  13 

Protein “footprinting” methods were developed to probe the folding and interactions of proteins 14 

(such as epitope sites in antigens) using protease restriction or covalent labeling to identify exposed regions 15 

of proteins.8 The data generated in protein footprinting experiments is often low resolution, but the potential 16 

scale of experiments has made it an attractive method. In 2010 West et al. showed proteome-scale 17 

footprinting in S. cerevisiae to determine off target binding of rapamycin9. A variety of protein labeling 18 

methods have been developed that provide low resolution ex vivo structural information about proteins.10, 19 
11,12,13,5 Picotti and colleagues developed a limited proteolysis method to map ligand binding and protein 20 

folding in cell lysates and biofluids.14,15,5, 16
 In 2015 Espino et al. used lasers to activate hydroxy radicals in 21 

vivo to label proteins, providing the first attempt to footprint an intact cell.17 Their approach has now been 22 

extended to the transparent worm C. elegans, which was chosen so the laser beam could penetrate the 23 

worm.18  24 

 Bamberger et al. developed Covalent Protein Painting (CPP), a chemical approach for quantitative 25 

protein footprinting to measure in vivo changes to protein conformations on a proteome scale.19 In CPP 26 

formaldehyde, a chemical that rapidly permeates through cells and tissues, is used to label proteins by 27 

forming a Schiff’s base at solvent exposed lysine residues. These unstable intermediates are converted to 28 

dimethyl labels by reduction with cyanoborohydride. After lysis of cells or tissue, denaturation and digestion 29 

of proteins, a second labeling with a different “weight” reagent is performed to label inaccessible amino acid 30 

residues. By using heavy and light isotope versions of the reagents, a quantitative measure of lysine 31 

accessibility can be obtained. Using this method, Bamberger et al. probed the conformational changes of 32 

a proteome from postmortem brain tissue to reveal structural changes and altered protein-protein 33 

interactions in the brain tissue of AD patients.19 In another study, Bamberger et al. measured the altered 34 

conformations of proteins in 60 cancer cell lines (NCI60).20 Because the CPP protein labeling method 35 

begins with the widely used formaldehyde fixation step for in vivo dimethyl labeling it should be extensible 36 

to whole animal labeling to study models of disease. 37 

Methods to measure alterations of protein conformations in vivo are needed to study diseases 38 

caused by protein misfolding that create loss or gain of function disruptions to biological processes, 39 

including Alzheimer’s disease, a common misfolding disease that is characterized by plaques of amyloid-40 

beta and tangles of tau proteins. As observed by Bamberger et al., late-stage neurodegenerative diseases 41 

in humans are characterized by the misfolding of many additional proteins, suggesting that there is a 42 

generalized failing of proteostasis.19 Techniques that allow in vivo measurement of protein folding would be 43 

a powerful tool for the study of these misfolding diseases. 44 

 Here, we used AD as a model to test our hypothesis that the global measurement of structural 45 

changes of proteins in tissues can be used to understand changes in their biological functionality during 46 

progression of protein misfolding diseases. We reasoned that it is important to capture proteins in their 47 

innate states to preserve the complex cellular milieu without the protein degradation that might occur during 48 

extraction and homogenization of organs. In this study, we introduce a method to probe the dynamic 49 

changes in protein structures in vivo, applying CPP for an animal model. This is the first in vivo study of 50 

structural changes of proteins in progressing AD on a proteome-wide scale in mouse tissue. We identified 51 

proteins whose structures were altered in co-expressed protein communities across 7 types of mouse tissue, 52 

which helps us understand the role of spatially altered proteins in various biological processes. 53 

  54 
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MATERIALS AND METHODS 55 

 56 

Animals/Tissue collection 57 

Female mice (APP(NL-F))21 were purchased from RIKEN Brain Science Institute and female C57BL/6 were 58 

obtained from The Scripps Research Institute breeding colony. Mice were housed in plastic cages located 59 

inside a temperature- and humidity-controlled animal colony and were maintained on a standard cycle (a 60 

12 h day/night cycle). Animal facilities were AAALAC (Association for Assessment and Accreditation of 61 

Laboratory Animal Care) approved, and protocols were in accordance with the IACUC (Institutional Animal 62 

Care and Use Committee). Mice were sacrificed at 6, 9, 12, and 15 months of age.  63 

 64 

First dimethyl-labeling and tissue collections 65 

Mice were anesthetized by inhalation of 1% isoflurane. Chests of the anesthetized mice were opened by 66 

cutting the ribcage. The left heart ventricle was punctured with a perfusion needle and a small cut was 67 

made in the right atrium to allow outflow of the perfusion solutions. Blood components were washed away 68 

with prewarmed pH 7.4 phosphate-buffered saline (PBS) for 10 min. The mice were perfused with 20 mL 69 

of fixation solution (1% CD2O) at a flow rate of 2.0 mL/min. Immediately afterward, 40 mL of the solution for 70 

the first light-dimethylation reaction (0.3 mM NaBH3CN, 1% CD2O in pH 7.4 PBS) was added at a flow rate 71 

of 2.0 mL/min. Organs were quickly excised and cut into 50 mg of tissue blocks. The tissue blocks were 72 

incubated in the same labeling solution (0.3 mM NaBH3CN, 1% CD2O in pH 7.4 PBS) for 10 min, and then 73 

the reaction was quenched by immersing the tissue blocks in 50 mM ammonium bicarbonate (ABC) solution 74 

for 5 min. 75 

 76 

Tissue homogenization and protein extraction 77 

Tissue blocks were placed in 100 µL of 20 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 78 

(HEPES) pH 7.4 and were homogenized with a pestle until no chunks were visible. The tissue samples 79 

were sonicated for 10 cycles (pulse-on 5 sec, pulse-off 3 sec, amplify 30%) and then homogenates were 80 

clarified by centrifugation at 8,000 g at 4 °C for 30 min. Protein precipitation was performed by adding 81 

400 µL of 100% methanol, 100 µL of 100% chloroform and 300 µL of water to the sample. After vortexing 82 

vigorously, the samples were centrifuged at 8,000 g at 4°C for 30 min. The large aqueous layer was 83 

discarded. The samples were washed by adding 800 µL of 100% methanol and vortexing vigorously. After 84 

centrifugation at 8,000 g at 4 °C for 30 min, the supernatant was removed. The methanol washing step was 85 

repeated 3 times. Methanol was removed and the pellet was air-dried. The pellet was dissolved in 100 µL 86 

of 1% sodium deoxycholate (SDC) in 20 mM HEPES pH 7.4. The protein concentration was determined 87 

with a BCA protein Assay kit following the instructions from the vendor (23225, Thermo Scientific). 88 

 89 

Proteolysis of labeled proteins with chymotrypsin 90 

Aliquots of tissue samples that contained 200 ug of proteins were adjusted to 80 µL with 1% SDC in 20 mM 91 

HEPES pH 7.4. The proteins were reduced with 10 mM TCEP (Tris(2-carboxyethyl)phosphine 92 

hydrochloride) and 1% SDC in 20 mM HEPES pH 7.4 at 60°C for 60 min on a shaker. Reduced proteins 93 

were alkylated with 20 mM IAA (iodoacetamide) for 30 min at 25°C in the dark. Denatured proteins were 94 

digested with chymotrypsin (Promega) at 1:100 (enzyme:substrate(w:w)) at 37°C for 16 hr. Samples were 95 

acidified with formic acid to a final concentration of 1%. The sample was centrifuged at 8,000 g at 4°C for 96 

30 min and the supernatant was transferred to a new tube. The sample was centrifuged again at 8,000 g 97 

at 4°C for 30 min to collect the clean sample and the supernatant was transferred to a new tube. 98 

 99 

Second dimethyl-labeling and desalting 100 
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Pierce C18 spin tips (87784, ThermoFisher) were used for the second dimethyl-labeling step and desalting. 101 

A multipipette and a 96-well plate were used to prepare multiple samples in one batch. The C18 tips were 102 

activated by aspirating and dispensing 100 µL each of 100% methanol and 100% acetonitrile (ACN). After 103 

the C18 tips were washed with 100 µL of 0.1% formic acid, the samples were loaded onto the C18 tips by 104 

aspiration. To clean the samples bound to C18 tips, 100 µL of 0.1% formic acid was aspirated and 105 

dispensed, and the pH was adjusted by aspirating 20 mM HEPES pH 7.4. Peptides bound to the C18 tips 106 

were dimethyl-labeled by aspirating 1% formaldehyde (13CD3O), 0.3 mM Sodium cyanoborodeuteride 107 

(NaBD3CN) and the saturated tips were incubated for 15 min at 25°C. The reaction was quenched by 108 

aspirating 50 mM ABC and incubating for 10 min at 25°C. After washing C18 tips with 0.1% formic acid, the 109 

labeled peptides were eluted with 100 µL of 40% ACN in 0.1% formic acid followed by 100 µL of 60% ACN 110 

in 0.1% formic acid. The eluted peptides were lyophilized. 111 

 112 

Strong cation exchange (SCX) fractionation of peptides 113 

SCX fractionation was conducted with commercial spin columns (90008, ThermoFisher Scientific). The pH 114 

of the sample was reduced by adding 800 µL of 30% ACN in 0.1% formic acid. The spin column was 115 

equilibrated by adding 400 µL of 30% ACN in 0.1% formic acid. It was then centrifuged at 1,000 g for 5 min, 116 

and the flow-through solution was discarded. The sample was loaded on the spin column and was 117 

centrifuged at 1,000 g for 3 min. Flow-through was stored for LC-MS/MS analysis. The peptides were eluted 118 

with consecutive 200 µL aliquots of elution buffer containing 10 mM, 30 mM, 50 mM, 70 mM 100 mM, 119 

150 mM and 300 mM of ammonium acetate. All elution buffer aliquots contained 0.1% formic acid and 30% 120 

ACN. 121 

 122 

LC-MS/MS analysis 123 

Samples were loaded onto EvoTips following the manufacturer’s protocol. The samples were run on an 124 

Evosep One (Evosep) coupled to a timsTOF Pro (Bruker Daltonics). Samples were separated on BEH 125 

1.7 μm C18 beads (Waters) packed in a 15 cm × 150 μm inner diameter column with an integrated tip 126 

(pulled in-house) using the 30 SPD (samples per day) method. Mobile phases A and B were 0.1% formic 127 

acid in water and 0.1% formic acid in acetonitrile, respectively. MS data was acquired in PASEF mode with 128 

one MS1 survey TIMS-MS and PASEF MS/MS scans acquired per 1.1 s acquisition cycle. Ion accumulation 129 

and ramp time in the dual TIMS analyzer was set to 100 ms each and the ion mobility range spanned from 130 

1/K0 = 0.6 Vs/cm2 to 1.6 Vs/cm2. Precursor ions for MS/MS analysis were isolated with a 2 Th window for 131 

m/z < 700 and 3 Th for m/z > 700 with a total m/z range from 100 to1700. The collision energy was lowered 132 

linearly as a function of increasing mobility starting from 59 eV at 1/K0 = 1.6 VS/cm2 to 20 eV at 133 

1/K0 = 0.6 Vs/cm2. Singly charged precursor ions were excluded with a polygon filter, and precursors for 134 

MS/MS were picked at an intensity threshold of 2,500, target value of 20,000 and with an active exclusion 135 

of 24 s. 136 

 137 

Peptide identification and quantification 138 

Raw files were searched against mouse proteins from Swiss-Prot-Uniprot database (retrieved 03/13/2022, 139 

51,076 entries) containing canonical and isoform sequences, using MSFragger (version 17.1) in the 140 

FragPipe pipeline with mass calibration and parameter optimization enabled.22 Philosopher was used to 141 

filter all peptide-spectrum matches. Quantification analysis was performed with IonQuant. The parameter 142 

setting of chymotrypsin allowed for two missed cleavage sites and the minimal required peptide length was 143 

set to six amino acids. Dimethyl peptide pairs were identified using variable modifications of light (Δ mass: 144 

32.0564) and heavy labeling (Δ mass: 36.0757) of lysine, oxidation of methionine (Δ mass: 15.9949), fixed 145 

modification of heavy dimethylation (Δ mass: 36.0757) on N-terminus and the carbamidomethylation of 146 

cysteine (Δ mass 57.0214). Precursor tolerance was set to 50 ppm and fragment tolerance was set to 50 147 

ppm. Isotope error was set to 0/1/2. The minimum number of fragment peaks required to include a PSM 148 

(peptide-spectrum match) in modeling was set to two, and the minimum number required to report the 149 
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match was four. The top 150 most intense peaks were considered, and a minimum of 15 fragment peaks 150 

were required to search a spectrum. The data were also searched against a decoy database and protein 151 

identifications were accepted at 1% peptide false discovery rate (FDR). All identified peptides were heavy-152 

dimethylated on N-terminus. 153 

 154 

Determination of accessibility of lysine sites 155 

Each peptide with a lysine site should be either light- or heavy-dimethylated, depending on the accessibility 156 

of lysine site. The difference in intensity of the peptides labeled in the first isobaric labeling step versus the 157 

second yields a relative abundance ratio R.23 The R value represents the proportion of the peptide in which 158 

a specific lysine site was accessible for dimethylation and is independent of the overall protein amount in 159 

the sample.19 The relative accessibility of a lysine residue for dimethylation is assessed by the value of 160 

accessibility; Accessibility (%) = R/(1+R) × 100. 161 

 162 

k-Nearest Neighbor (kNN) Imputation 163 

Missing values were imputed by kNN machine learning method using the VIM package in R.24, 25 The kNN 164 

method assumes a relationship between spot volume patterns of groups of proteins. The kNN method 165 

impute missing values by selecting spots with spot volume patterns similar to the spot of interest.26 A 166 

weighted average of values from the k most similar spots is used as an estimate for the missing value. The 167 

contribution of each spot is weighted by its similarity determined as the Euclidean distance. The optimum 168 

number of k-neighbors must be determined empirically. 169 

 170 

Weighted correlation network analysis (WGCNA) 171 

A weighted protein co-expression network was built using the value of protein abundance from 172 

blockwiseModules WGCNA function.27 Construction of weighted gene co-expression networks was 173 

conducted independently for each of 7 tissue datasets. The soft thresholding powers were determined with 174 

the R function pickSoftThreshold.28 To pick an appropriate soft-thresholding power for network construction, 175 

the value of power was raised to 50. The chosen values were the smallest threshold that resulted in a scale-176 

free R2 fit of 0.75 and the networks were created by calculating the component-wise minimum values for 177 

topologic overlap. Soft threshold powers varied across seven tissues as follows: 22 for brain, 16 for heart, 178 

kidney, 12 for liver, muscle and spleen, and 26 for thymus. BlockwiseModule function was run with the 179 

following parameters: TOMType = "signed", maxBlockSize = 5000, mergeCutHeight = 0.1, verbose = 3. 180 

Module eigenprotiens (MEs) were calculated the correlation between the traits of AD (AD vs. NC). Multiple 181 

comparisons were accounted for by FDR correction across modules, and the P-values for the modules 182 

were reported. 183 

 184 

Statistical analysis 185 

Differentially expressed proteins and altered accessibilities (%) between pairs of different age groups (6, 9, 186 

12, and 15 months) in AD or between different pathological conditions (AD and NC) per age were found 187 

using Mann-Whitney tests independently. Kruskal-Wallis was used to simultaneously compare the 188 

accessibilities among four age groups (6, 9, 12, and 15 months) or among three age groups (6, 9, and 12 189 

months or 9, 12, and 15 months) in AD. These comparisons were tested with Kruskal-Wallis followed by 190 

Bonferroni’s comparison post hoc test independently. The criterion for significance was a P-value less than 191 

0.05. 192 

 193 

Enrichment of Gene ontology (GO) and protein-protein interaction analysis 194 
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GO analysis was performed with ClueGO (a plug-in in Cytoscape) to identify the significant biological 195 

functions of the proteins in the WGCNA module.29 Protein-protein networks were detected using Metascape 196 

and the following databases: STRING, BioGrid, InWeb_IM, OmniPath.30-32 The resultant network contained 197 

the subset of proteins that form physical interactions with at least one other list member, the confidence 198 

cutoff of physical interaction was set to medium (0.5) or strong (0.7). Visualization of the protein-protein 199 

interaction network was performed on the Cytoscape combining STRING.  200 

 201 

Complex modeling with AlphaFold2-multimer 202 

We used AlphaFold2-multimer to predict the protein-protein interaction motif of each complex. AlphaFold2-203 

multimer modeling was performed with ColabFold.33 Input multiple sequence alignment (MSA) features 204 

were generated by local ColabFold using the “MMseqs2 (Uniref + Environmental)” MSA mode. By default, 205 

the constructed MSAs contain both unpaired (per-chain) and paired sequences. AlphaFold2-multimer was 206 

run with one or several options from the following list: model type = alphafold2_multimer v3, num 207 

recycles = 3, recycle early stop tolerance = 0.5, max msa = auto, num seeds = 1. The models were ranked 208 

by confidence score, and rank 1 was selected as the most accurate model. The distance between two 209 

lysine residues was calculated using PyMOL2 version 2.5 (Schrödinger, LLC).  210 
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Results 211 

 212 

A comprehensive structural information readout platform for proteome across mouse organs 213 

Our primary goal was to reveal how in vivo alterations of protein conformations across tissues were 214 

associated with physiological disturbances that characterize Alzheimer’s disease (AD). To prevent protein 215 

degradation in response to external stimuli, it was necessary to capture the innate folding state in vivo. 216 

Here, we developed a method to in vivo dimethyl label the body-wide proteome of an intact mouse prior to 217 

organ harvest. Our method involved sequentially diffusing labeling reagents through blood vessels 218 

throughout whole body so that proteins surfaces were light-dimethylated [(CHD2)2] in vivo. The process is 219 

fast enough to capture protein structures in a nearly innate state. After harvest and homogenization of each 220 

tissue and lysis of the cells, proteins were denatured and proteolyzed with chymotrypsin followed by labeling 221 

of the newly exposed lysine sites with heavy-dimethyl [(13CD3)2] tags (Figure 1A). The accessibility of each 222 

lysine site was determined from the ratio of the intensity of light-labeled peptide vs. the sum of intensities 223 

of the light- and heavy-labeled peptides. We systematically investigated the structural changes in the 224 

proteomes of 7 tissues in an AD mouse model ranging in age from 6 to 15 months, as well as in normal 225 

control (NC) mice to exclude the effects of aging. 226 

 A total of 43,014 dimethyl-labeled peptides that mapped to 5,217 proteins across all tissues were 227 

identified at a peptide false discovery rate (FDR) of < 1% (Figure 1B and 1C). Among the labeled peptides, 228 

1,219 labeled peptides that mapped to 498 proteins were identified in all 7 tissues, whereas 24,026 labeled 229 

peptides that mapped to 4,952 proteins were tissue-specific (Figure 1B). Likewise, the highest proportion 230 

of labeled proteins were tissue-specific (37.3% (n = 1,947)), whereas labeled proteins that were identified 231 

in all 7 tissues comprised 11.1% (n = 578) of all labeled proteins (Figure 1C). 232 

We next sought to examine the reproducibility of the in vivo CPP method for each mouse tissue. 233 

We evaluated the correlations of the accessibility between biological replicates for each age, then averaged 234 

these correlations. We found the highest R values for NC (0.842) and AD (0.782) in brain, whereas thymus 235 

showed the lowest correlation, 0.549 for NC and 0.505 for AD (Figure 1D-G, Table S1). Correlations 236 

averaged across all ages in all 7 tissues showed a correlation in accessibility, with R values of 0.668 and 237 

0.649 for NC and AD, respectively. Because we observed strong correlations of the biological replicates 238 

regardless of anatomical source or pathological conditions of the tissue, we concluded that perfusion-based 239 

dimethyl-labeling was reliable. Also, we noticed that correlations of accessibility were higher within the same 240 

tissues, even in the presence of different pathological conditions, compared to those observed between 241 

different tissues at the same age. 242 

 243 

Dimethylation pattern encoding tissue-specific protein conformation 244 

With an aim of identifying the tissue-specific perturbations caused by disease, we examined to what extent 245 

protein conformation is driven by tissue by comparing which proteins were dimethylated across tissues. Of 246 

a total of 23,039 peptides detected in the brain, 39.0% of peptides (n = 8,974) harbored lysine sites, and 247 

8,758 of the 8,974 peptides were labeled with light- or heavy-dimethyl modifications (or both) (Figure 2A). 248 

Of a total of 4,295 detected proteins in brain, 2,565 (59.7%) proteins were modified with dimethyl. Among 249 

the 8,974 lysine-containing peptides, 8,368 were light-dimethyl labeled through perfusion, indicating a high 250 

labeling efficiency (93.2%), while 606 peptides (6.8%) were not labeled with light-dimethyl tags (Figure 2B). 251 

Among the 606 peptides that were not light-dimethylated, 390 were solely heavy-dimethylated and 216 252 

were not labeled with either light- or heavy-dimethyl tags. Heart showed the highest efficiency of light-253 

dimethylation, 10,745 peptides (97.5%) of 11,018 K-containing peptides. We presume that the high light-254 

labeling efficiency of heart is due to the extended time that reagent remained in heart before being circulated 255 

to other organs. Labeling efficiency was high and consistent across all organs, ranging from 91.5% in 256 

muscle to 97.5% in heart, with a standard deviation for all organs of 2.3%. The average of the first labeling 257 

efficiency in all 7 tissues was 94.8%. Thus, we confirmed that the first labeling via perfusion was efficient, 258 

which provided a valid basis for subsequent comparisons cross tissues. 259 

 We then plotted the dimethylation pattern in each tissue. The liver had the second highest number 260 

of identified labeled peptides (n = 14,962) but the highest number of tissue-specific labeled peptides (n = 261 

4,321), accounting for 18% of all 24,026 tissue-specific labeled peptides (Figure 2C and 2D). The kidney 262 

had the lowest number (11.1%, n = 2,664) of labeled tissue-specific peptides but ranked third lowest in the 263 

number of labeled tissue-specific proteins (11.1%, n = 216) (Figure 2F). Muscle-specific proteins 264 

represented a small proportion (2.7%, n = 53) of tissue-specific proteins out of a total of 1,947 (Figure 2E 265 
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and 2F). However, the presence of highly abundant proteins in muscle may have affected the identification 266 

of lower abundance proteins. The top 100 muscle proteins accounted for 78.6% of all identified muscle 267 

proteins, while the top 100 proteins in the kidney and heart accounted for 37.8% and 57.5% of the identified 268 

proteins, respectively (Figure S1A). Myosin regulatory light chain 11 (Mylpf), the most abundant protein in 269 

muscle, contributed 11.3% of the total muscle protein mass, and the top 12 proteins in muscle represented 270 

more than half of the mass of the top 100 proteins (Figure S1B). In conclusion, the labeling data provides 271 

tissue-specific protein information, which is valuable for understanding the physiological changes 272 

associated with disease in each tissue.  273 

 274 

Variability of the conformational changes among 7 tissues 275 

We used labeled peptides that were detected in all seven tissues to quantitatively measure the structural 276 

differences in proteins. To minimize the effect of tissue-biased accessibility, we used quantile-normalized 277 

values for comparison across tissues (Figure S2). We sought to identify patterns of changes in accessibility 278 

that occur specifically for AD in proteins from 6mo to 15mo. To achieve this, we tested for differences over 279 

time between NC and AD using spline model from 6 to 15 months for each labeled peptide (Figure 3A). 280 

Brain tissue was the most structurally affected by AD, with 686 peptides in AD brain showing significantly 281 

different patterns of accessibility compared to NC from 6 to 15 months (Figure 3B). In heart, kidney, and 282 

thymus, fewer than 25 peptides showed significantly different patterns of change in AD relative to NC. There 283 

were no labeled peptides that exhibited significant different patterns in accessibility across all organs from 284 

6 months to 15 months. However, a total of 10 labeled peptides consistently showed significantly different 285 

patterns in accessibility across four different organs each in the AD model. To examine the conformational 286 

changes of proteins specifically impacted by AD, we corrected for the confounding effect of age by dividing 287 

the individual accessibility of AD by the accessibility of its corresponding sequence of NC, resulting in a 288 

metric referred to as "fold-change" in this study. We evaluated the variability in structural changes 289 

depending on tissues relative to the brain using 10 peptides that showed distinct patterns of change in 290 

accessibility in AD from those in NC in four tissues (Figure 3C-F, Table S2). At the early stage of AD (6 291 

months), the biggest conformational discrepancy due to AD was observed between the liver and brain. The 292 

lysine site of TAKGLF (Eno1) was not only more accessible in AD liver than in AD brain, but also more 293 

accessible in AD liver than in NC liver. As AD progressed, AD-specific structural changes in muscle and 294 

spleen were greater than those in brain when the fold-change between each tissue and the brain was 295 

compared. (Figure 3G-H). A functional enrichment analysis of the 10 proteins retrieved KEGG pathways 296 

associated with metabolism, glycolysis, and the TCA cycle (Figure 3I). For only 5 (51-67 amino acid (AA) 297 

of Atp5f1d, 469-479 AA of Dpysl2, 48-57 AA of Eno1, 1472-1483 AA of Flna, and 277-284 AA of Ppp2cb) 298 

out of 1219 peptides detected commonly in the 7 tissues, the accessibility patterns in all 7 tissues during 299 

AD progression were not significantly different from those during normal aging, and no significant difference 300 

in accessibility was observed across the 7 tissues under each condition (4-ages, disease). This indicates 301 

that the regions corresponding to these 5 peptides were not affected by AD in all 7 tissues. As expected, 302 

this investigation confirms that the effects of AD are most significantly observed in brain tissue, but by 303 

quantifying conformational changes of proteins across all tissues, we found tissue-specific variations 304 

associated with AD. 305 

 306 

 307 

Conformations of proteins in the brain are changing as AD progresses 308 

Proteomic investigations into AD pathology have primarily relied on the analysis of differential protein 309 

expression. Bing et al. profiled the differentially expressed proteins and identified the protein networks that 310 

are affected during AD progression.34 Co-expressed proteins and altered protein expression in human brain 311 

tissue of asymptomatic and symptomatic AD patients were reported by Nicholas et al.35 Savas et al. 312 

measured protein expression in several mouse models of AD using quantitative mass spectrometry.36 313 

Despite extensive proteomic studies on AD and some footprinting studies on AD related proteins there have 314 

been no comprehensive in vivo studies of protein structures as AD progresses.19, 37-39   315 

 To uncover the changes in the 3D structure of brain proteins, we focused on 780 proteins, which 316 

are known to be expressed in the brain based on the Human Protein Atlas database 317 

(https://www.proteinatlas.org) and were also found to be dimethyl-labeled in our brain dataset. To identify 318 

lysine sites that change significantly in accessibility during the progression of AD and which also differ from 319 

NC, we used statistical methods to test the accessibility of 3,456 peptides corresponding to 780 proteins. 320 

First, a Kruskal-Wallis test was used to simultaneously compare lysine site accessibility among the four age 321 
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groups (6, 9, 12, and 15 months) of AD (P-value ≤ 0.05), and then Mann-Whitney was used to compare 322 

lysine site accessibility between AD and NC per age (P-value ≤ 0.05). Of the 3,456 peptides that were 323 

tested, 83 peptides corresponding to 62 proteins showed a significant difference in accessibility in all tests. 324 

These results suggest that the accessibility of these peptides changed consistently during the progression 325 

of Alzheimer's disease, and that they simultaneously diverged from the NC, thus indicating that the 326 

structural changes observed in the AD samples were not induced by aging (Figure 4A, 4B). Four pairs of 327 

peptides that shared lysine sites provided validation for the measured changes: APVISAEKAY and 328 

APVISAEKAYHEQL for Tuba1, HPEQLITGKEDAANNY and ITGKEDAANNY for Tuba1, QVVLVEPKTAW 329 

and QYQVVLVEPKTAW for Cnp, and RYLSEVASGENKQTTVSNSQQAY and 330 

SEVASGENKQTTVSNSQQAY for Ywhab. Many lysine sites showed a tendency to become inaccessible 331 

as aging progressed in both the NC and AD groups. However, the lysine sites in the AD group were found 332 

to be more inaccessible than those in the NC group. This suggests that the conformation of proteins in AD 333 

may be altered by the physiological changes associated with the disease. For example, 2',3'-cyclic-334 

nucleotide 3'-phosphodiesterase (Cnp), which is associated with neuronal cells and glial cells,40 was found 335 

to be enriched in the brain. When compared to the average expression levels in other tissues, the increase 336 

in expression levels of Cnp in the brain ranged from 13.4- to 23.9-fold in the NC and from 17.0- to 27.7-fold 337 

in the AD across four age groups (Figure 4C). The accessibility of 2 peptides of Cnp showed a decrease 338 

pattern in progressing AD but remained unchanged in the aging NC (Figure 4D and 4E). Of the 62 proteins 339 

that showed a significant difference in accessibility, 60 proteins (excluding two brain-specific proteins) 340 

exhibited a range of enrichment factor from 0.13-fold (Eef2) to 1,232-fold (Tuba1b) when compared to their 341 

expression in other tissues (Figure 4F). Specifically, on average, 51 of these proteins were expressed at 342 

higher levels in the brain than in other tissues, while 9 proteins were expressed at lower levels in the brain 343 

than in other tissues. Expression of a total 60 proteins was also enriched 21.7-fold in NC and 20-fold in AD 344 

on average, but no tendency in expression was observed in either aging or AD status.  345 

 These results suggest that the structural information obtained through the accessibility of lysine 346 

sites can complement protein expression data by revealing changes that are not fully characterized by 347 

protein expression levels alone. This method provides an approach to collect both protein expression and 348 

structural information to gain a more comprehensive understanding of the changes that occur in a proteome 349 

during the progression of a disease. 350 

 351 

Differential structural changes of tightly regulated proteins 352 

We hypothesized that the changes in protein expression could accompany structural changes to proteins, 353 

which may suggest alterations to their physiological function. To evaluate our hypothesis, we initially 354 

analyzed the abundance of proteins in tightly co-regulated protein networks by modularizing them into 355 

protein communities using a WGCNA algorithm.28 WGCNA was applied to the dataset of each tissue; 4,295 356 

proteins in brain, 3,074 proteins in heart, 4,186 proteins in kidney, 4,298 proteins in liver, 1,721 proteins in 357 

muscle, 4,800 proteins in spleen, 4,159 proteins in thymus were used to build protein co-expression 358 

networks. No outliers were detected after all samples were hierarchically clustered using average distance 359 

and Pearson’s method. For brain, the lowest soft threshold power was 22, with an R2 of more than 0.75. 360 

This network consisted of 17 modules of proteins related by their co-expression across control and disease 361 

tissues based on the TOM-based dissimilarity, after merging the modules with dissimilarity (Figure S3A and 362 

S3B). The WGCNA analysis also divided the protein data sets into 14, 17, 13, 10, 12 and 10 modules for 363 

heart, kidney, liver, muscle, spleen and thymus, respectively (Figure S4A-G). 364 

 We evaluated the correlation of the co-expressed proteins with Alzheimer's disease (AD) by 365 

comparing the co-expression of proteins in AD and NC within each module, irrespective of age. Correlation 366 

of coefficient R > 0.4 and P-value < 0.05 were set as the criteria for significant correlation for the AD trait. 367 

We found that only a limited number of protein communities were significantly correlated with the AD trait, 368 

with one module (M3) in the brain showing a correlation of 0.41, two modules (M11 and M14) in the kidney 369 

showing correlations of 0.43 and 0.44, two modules (M2 and M5) in the muscle showing correlations of 370 

0.44 and 0.46, and one module (M4) in the spleen showing a correlation of 0.44. No modules in other 371 

tissues showed a significant correlation with the AD trait. (Figure 5A). We also assessed whether the 372 

direction and strength of the association between each module and the AD trait remained consistent 373 

(positive or negative) following the subdivision of the samples into four age groups (Figure S4A-G). Strong 374 

correlations were observed at a certain age in a few modules, while in most modules, the direction of 375 

correlation was inconsistent across the four age groups. For example, when samples from all age groups 376 

were included, a high correlation was observed for module 3 (M3) of brain (R = 0.41) (Figure 5A and 5B). 377 
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Following that, the samples were divided by age. M3 proteins from the 9-month samples were found to be 378 

highly negatively correlated with a value of R = 0.82. At 12 and 15 months, samples were also negatively 379 

correlated, with R values of 0.42 and 0.72, respectively. In contrast, M3 proteins from the 6-month samples 380 

showed a positive correlation with a value of R = 0.4 (Figure S4). The direction of association between the 381 

protein abundance-based module and the AD trait was found to fluctuate during the progression of AD. 382 

Therefore, we focused on the proteins in modules displaying significant correlations with the AD trait across 383 

all samples to investigate the conformational changes of the co-regulated proteins. 384 

 We investigated the conformational changes of the co-regulated proteins from the 4 types of 385 

tissues (brain, kidney, muscle, and spleen) that showed the significantly correlated modules based on 386 

WGCNA. To examine whether the conformational changes of proteins were specifically impacted by AD, 387 

the labeled peptides were clustered based on the fold-change of the accessibility during the progression of 388 

AD using the K-means clustering algorithm. The number of clusters was determined via an optimization 389 

algorithm (Figure S5). For the brain, the 481 labeled peptides that were mapped onto 174 proteins 390 

constituting M3 were clustered into two clusters (Figure 5C). Accessibility of the lysine sites of 268 peptides 391 

(123 proteins) in cluster 1 showed a steadily decreasing pattern, with a slight decrease during early AD 392 

development (6-9 months), a dramatic decrease from 9 to 12 months, and a slight decrease again during 393 

the late stage of AD development from 12 to 15 months (Figure 5D). This suggests that beginning at 9 394 

months, the lysine sites included in cluster 1 were significantly sterically inaccessible due to AD. On the 395 

other hand, lysine sites of 213 peptides (113 proteins) in cluster 2 showed relatively stable accessibility 396 

during AD development (Figure 5E). Of 174 proteins in M3, 62 have 2 or more peptides included in both 397 

cluster 1 and cluster 2, and all labeled peptides of each of 61 and 51 proteins were exclusively included in 398 

cluster 1 and cluster 2, respectively (Figure S6). Twenty peptides that mapped to Map1a were identified 399 

most often in M3 proteins (Figure S7), and 5 of 20 peptides were hidden as AD progressed, but 15 lysine 400 

sites were spatially stable (Figure 5F). Subsequently, 19- and 14-labeled peptides were mapped to Pkg1 401 

and Mdh1, respectively, and the peptides included in cluster 1 exhibited a consistently decreasing pattern 402 

of accessibility. The lysine sites of the peptides of Psat1, Mag, and Plp1, which are highly expressed in 403 

neuronal cells and were included in 62 brain proteins that constituted M3, became inaccessible during 404 

progression of AD (Figure 5G-I). The datasets from kidney, muscle, and spleen were processed separately 405 

to reveal the AD-induced spatial changes of proteins (Figure S8). Collectively, our findings suggest that the 406 

steric changes of proteins occur concurrently with changes in co-expression of proteins as AD progresses. 407 

 408 

Biological functions of protein communities whose conformational changes precede expression 409 

changes  410 

We sought to uncover how the network undergoing conformational changes was related to biological 411 

functions, particularly those involved in neurodegenerative diseases. To achieve this, we examined the 412 

interactions of these proteins and their functional implications. In this analysis, we used proteins that had 413 

shown altered patterns of accessibility fold-change via K-means clustering. For instance, the proteins that 414 

were included in cluster 1 were used for the brain dataset.  415 

 We investigated how changes in the structure and expression of proteins could affect the 416 

progression of Alzheimer's disease by examining the pathways and biological functions they are involved 417 

in. We performed the analysis for the enrichment network on Metascape (metascape.org), considering the 418 

inter-term similarity and intra-term redundancy in the enriched terms.30 This analysis represented an 419 

enriched term as a node connecting other nodes considering Kappa similarities. A total of 113 significantly 420 

enriched terms were grouped into 20 clusters based on their similarities and redundancies in the brain 421 

dataset (Figure S9 and Table S3). Fifteen proteins (Gnas, Mdh1, Ogdh, Pgk1, Ppp1cb, Slc1a3, Sod2, 422 

Taldo1, Sdha, Oxct1, Ndufa8, Epm2aip1, Aldh1l1, Etfa, and Ugp2) were enriched in “generation of 423 

precursor metabolites and energy” (node-107) with the most significantly enriched having a P-value of 424 

1.78*10-9. “Energy derivation by oxidation of organic compounds” (node-1) was also enriched significantly, 425 

but was similar to node 107 with kappa score of more than 0.3. It has been demonstrated that an 426 

abnormality of carbon and energy metabolism occurs in neurodegenerative disease since neurons require 427 

large amounts of energy to maintain their normal activity, and metabolic decline of the brain contributes to 428 

cognitive impairment.41, 42 Interestingly, we discovered that structural changes preceded the expression 429 

changes in both protein communities “generation of precursor metabolites and energy” and “carbon 430 

metabolism” (node-96) (Figure 6A-B, 6D-E and Figure S10). Protein expressions in node-107 and node-96 431 

increased in AD but remained stable in NC during aging. Expression fold-change increased significantly at 432 
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15 months, whereas accessibility fold-change decreased significantly from 12 months. We also noted that 433 

“metal ion homeostasis” (node-108) was significantly enriched with 12 proteins (Ank1, Calb1, Calb2, Gnas, 434 

Itpr1, Prkcb, Slc12a4, Slc1a3, Sod2, Vapb, Fis1, Immt). The homeostasis of metal ions is also known to be 435 

essential to maintain the normal function of brain, and abnormally elevated iron in brain is recognized to 436 

induce cell death and be a cause of several neurodegenerative diseases including AD.43, 44 Zinc also has 437 

an essential role in protein binding for enzymatic activity or to modulate synaptic transmission, and 438 

abnormal levels of zinc have been reported to be implicated in AD.45, 46 The enriched proteins in metal ion 439 

homeostasis showed an increased but insignificant pattern of expression, while a significantly decreased 440 

pattern in accessibility was observed from 9 months (Figure 6C, 6F and Figure S10). 441 

 Next, we used the STRING database to identify 45 out of 123 proteins included in cluster 1 that 442 

interacted directly with each other through 30 edges. Of these, 39 proteins were associated with either 443 

brain-related terms or the enriched terms in which proteins showed conformational changes preceding the 444 

expression change (node-97, node-107, and node-108) (Figure 7A, Table S4). We noted that Plp1 and Mag, 445 

which were associated with central nervous system and abnormal nervous system and were also known to 446 

be located in extracellular space, interacted directly with each other. Alphafold2-Multimer47-49 was utilized 447 

to predict the complex structure of Mag and Plp1. It showed that the two alpha carbons of the lysine residues 448 

FSKNYQDY of Plp1 and YFNSPYPKNYPPVVF of Mag were located within 13.9 Å (Figure 7B). Since 449 

protein-protein interactions can occur if proteins exist within 20 Å of each other,50 it is possible that these 450 

adjacent peptides bind with each other. FSKNYQDY showed a greater decrease in accessibility in AD than 451 

in NC (Figure 7C), and YFNSPYPKNYPPVVF exhibited a similar accessibility in AD and NC at 6 months, 452 

but the lysine sites became inaccessible during AD progression, whereas no difference was observed in 453 

NC (Figure 7D). 454 

 In addition to the brain, it has been reported that the peripheral system plays a role in amyloid-β 455 

clearance. Approximately 40%–60% of brain-derived amyloid-β is transported across the blood-brain-456 

barrier into the peripheral system for clearance, although the involved periphery and the mechanisms 457 

remain unclear.51 Spleen is composed of a variety of immune cells (with 7-8% of all cells being 458 

monocyte/macrophage) and has a role in blood filter and immunological functions. In addition, the spleen 459 

monocytes/macrophages are reported to be involved in clearing amyloid beta.52 Still, the physiological 460 

mechanisms underlying the association between the peripheral organs and AD remain unknown. In the 461 

ontology network of the spleen dataset, we noted “carbon metabolism” (node-147) and “neutrophil 462 

degranulation” (node-151). In these communities of proteins, the lysine sites in AD became exposed during 463 

progressing AD, while the accessibility in NC remained stable from 6 months to 15 months (Figure S11A-464 

B). No significant change in the expression of proteins was observed for proteins of carbon metabolism 465 

(Figure S11D), but by 15 months the expression of proteins in neutrophil degranulation differed significantly 466 

from the expression at 12 months (Figure S11C). The results from the other tissues are shown in the 467 

supplementary data (Figure S12-S13 and Table S5-S8). Collectively, the results presented here provide 468 

compelling evidence of a relationship between conformational changes and protein expression, thereby 469 

highlighting the significant impact of organ-specific alterations of biological function during the progression 470 

of AD.  471 
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Discussion 472 

This study elucidated the AD-associated conformational changes in the proteomes of seven tissues in mice. 473 

We used the AD mouse model (APPNL-F), which expresses APP at wild-type levels while producing elevated 474 

pathogenic Aβ through an APP knock-in approach. This model reduces the risk of artificial phenomena that 475 

might be observed with an APP overexpressed mouse model and enhances the interpretability of the 476 

results.21 We found co-regulated proteins whose accessibility changed in 4 of 7 tissues, and we connected 477 

the structural protein differences in progressing AD compared to normal aging of unaffected mice to 478 

possible alterations in their biological functions. Whole animal perfusion was used to deliver reagents to 479 

comprehensively dimethyl label mouse organs with minimal intervention such as organ excision, tissue 480 

homogenization, and protein extraction that could denature or alter proteins. Our quantitative method for 481 

accessibility measurement determines the relative fraction of inaccessible over accessible for each lysine 482 

site. Changes in accessibility can be interpreted as a change in protein folding or a change in interaction 483 

with another molecule and thus can be a surrogate for protein conformation changes between different 484 

conditions.  485 

 In this study, we focused on changes in proteins of the brain. Amyloid beta is a well-known protein 486 

that accumulates as plaques in the brain and serves as a marker of AD, but we were not able to detect 487 

structural changes of amyloid beta. We quantified the accessibility of three peptides from APP in only one 488 

15-month mouse. It has been known that the amyloid beta plaque accumulates primarily in the cortex, 489 

followed by the hippocampus, basal ganglia, thalamus, and basal forebrain.53 However, because the 490 

purpose of this study was to globally investigate the change of the proteome, we used whole brain tissue 491 

sample in this study, not just the amyloid-beta plaque containing cortex region of the brain.  492 

 It has been suggested that kidney function is linked to brain activity,54 and changes in kidney 493 

function may play a role in the development and progression of AD. Studies have shown that the MRI 494 

images of the brains of AD patients were similar to that of kidney patients55 and a systematic meta-analysis 495 

demonstrated that cognitive impairment is significantly related to malfunction of kidney.56 Despite 496 

persuasive evidence of the link between the kidney and AD, the exact physiological mechanisms underlying 497 

this relationship are not fully understood. From our WGCNA analysis, we found two modules (M11 and M14) 498 

to be significantly co-expressed in kidney and investigated the enriched functions of the structurally altered 499 

proteins using GO enrichment analysis. In both modules, purine-related functions were most significantly 500 

enriched. Our findings from kidney are supported by results of metabolomic studies showing that guanosine 501 

monophosphate (which is derived from purine guanine and associated with purine metabolism) was 502 

dysregulated in the brain of an AD mouse model based on APOE4 allele mutant mice.57 Therefore, it can 503 

be inferred that purine metabolism may play a role in the link between kidney function and AD. 504 

 We introduced a feature to the CPP pipeline that can be employed under various experimental 505 

conditions. A multidimensional protein identification technology (MudPIT) can be used to generate high 506 

sequence coverage of the proteome.58, 59 MudPIT separates peptides first by charge and then by 507 

hydrophobicity to create a two-dimensional separation. In MudPIT, peptides released from a C18 trap 508 

column are loaded onto a strong cation exchange column and then released with a buffer that increases in 509 

ionic strength through sequential elution steps. Released peptides are bound to the C18 analytical column 510 

and are then eluted sequentially to the mass spectrometer based on hydrophobicity. It is not recommended 511 

that hydrophobicity be used for the first dimension of the 2D-LC-MS because the hydrophobicity of 512 

deuterium is slightly lower than hydrogen, so a partial separation of differentially labeled peptides might 513 

occur.60  514 

 Limitations to this study include the lack of a standard to monitor the distribution of reagent solution 515 

to organs in the body during the first labeling step. Although some signs such as body twitching, tail flicking, 516 

and head moving in the anesthetized animals was observed, a reliable quantitative standard to assess the 517 

extent of labeling in each organ would be useful. We defined labeling efficiency as the ratio of initially labeled 518 

peptides over identified lysine-containing peptides per tissue. It is an inevitable limitation of CPP that 519 

dimethylation cannot occur on a lysine site that is already modified (i.e., acetylation and ubiquitination); 520 

thus, the accessibility of innate partially labeled lysine sites will not be accurate. An additional limitation is 521 

the method uses lysine as the conformation reporter which occurs at a frequency of roughly 5-7% in proteins 522 

and thus the quality of the analysis scales with sequence coverage of individual proteins. High sequence 523 

coverage will generate more MS/MS of lysine containing peptides and increase the completeness of the 524 

analysis.   525 

 It is likely that changes in protein structure are a result of failing proteostasis and expression 526 
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changes are a function of alterations in protein synthesis and/or degradation. Mutations of DNA in somatic 527 

cells accumulate as we age 61-64 and can result in changes to protein sequences, necessitating more effort 528 

to keep proteins properly folded. Our new method provides a means to measure protein surface 529 

accessibility as a surrogate for protein conformation in vivo and in animal models to study of the role of 530 

protein folding in aging and AD. Our proteomic analysis showed changes in protein structures in multiple 531 

tissues during the progression of AD. Even though the patterns of change in non-brain tissue did not 532 

correspond exactly with those in the brain tissue (and it is not clear they should), our analysis showed 533 

changes in protein structure and expression in other tissues in the AD mouse model. In conclusion, this 534 

new method to measure in vivo alterations to protein surface accessibility in animal models of disease 535 

provides a means to measure a previously unexplored characteristic of proteins to provide insights into how 536 

physiological systems are perturbed.   537 
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Figure 1. Strategy for identifying dimethyl-labeled peptides 1 

A. Three mice per each age group (ranging 6 months to 15 months) were used for AD (APPNL-F) and NC 2 

(C57BL6/J). The first step of the CPP workflow consists of three sub-steps that were conducted via 3 

perfusion: i) blood was washed by PBS, ii) tissue was fixed by formaldehyde, and iii) exposed lysine sites 4 

of the native proteins were labeled with light-dimethylation ([CD2H]2). Proteins from each of the seven 5 

organs were extracted and digested separately with chymotrypsin, after which the newly exposed lysine 6 

sites were labeled with heavy dimethylation ([C13D3]2).  7 

B. More than half of the total labeled peptides were tissue-specific. Less than 3% of a total of labeled 8 

peptides were peptides common to all seven tissues.  9 

C. The proportions of labeled proteins were determined by assigning proteins to the labeled peptides. 10 

Unlabeled proteins were not counted. The largest portion of labeled proteins was tissue-specific proteins, 11 

and the portion of proteins common to all 7 tissues was the third largest portion.  12 

D-G Biological triplicates were correlated across 7 tissues at 6 months (D), 9 months (E), 12 months (F) 13 

and 15 months (G).  14 
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Figure 2. Labeling efficiency of the 1st labeling via perfusion  15 
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A. All the labeled peptides (light, heavy or both light and heavy) were counted as identified peptides for 16 

each tissue sample. The proportions of identified peptides that were labeled ranged from 38.01% (n = 8,758) 17 

in brain to 51.20% (n = 10,779) in heart (blue). Diamonds indicate the relative proportion of proteins that 18 

were labeled. 19 

B. The proportions of lysine-containing peptides that were light-labeled were determined for each tissue. 20 

The proportions ranged from 91.5% (n = 5,583) in muscle to 97.5% (n = 10,745) in heart (pink). All tissue 21 

samples show a labeling efficiency of more than 90% for labeling via the perfusion method, while the 22 

number of light-labeled peptides were variable (blue). 23 

C, E. The tissue-specific labeled peptides (C)/proteins (E) (green/orange) and shared peptides/proteins 24 

(pale green/pale orange) were determined for each tissue sample.  25 

D, F. These bar graphs represent the contribution of each tissue to the total number of tissue-specific 26 

labeled peptides (D)/proteins (F).   27 
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Figure 3. Variability of the conformational changes depending on the tissues 28 
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A. Two representative peptides (ILETQKQF and GIQKELQF) were shown representatively. The normalized 29 

values were utilized to fit spline models. The accessibility of each peptide for both NC (blue) and AD (red) 30 

exhibited significantly distinct patterns from 6 to 15 months (P-value < 0.05).  31 

B. Venn diagram shows the number of peptides exhibiting significant differences in the trend of accessibility 32 

changes between NC and AD. There were no peptides from AD that showed a significant difference in 33 

accessibility changes compared to NC in all 7 tissues during the period from 6 to 15 months. The value of 34 

zero was not indicated. 35 

C-H During AD progression, 10 common peptides exhibited distinct patterns in accessibility between NC 36 

and AD in different four tissues. The variabilities for the structural changes in each tissue were calculated 37 

based on the value of brain using the formula: (fold-change of other tissue - fold-change of brain) / fold-38 

change of brain at 6 mo (C), 9 mo (D), 12 mo (E), and 15 mo (F). Only the first three amino acids were 39 

shown. AGTAEAIKAL of Gatd3 (G) and GIQKELQF of Ldha (H) showed a difference in the magnitude of 40 

accessibility change in muscle and spleen compared to that in the brain as AD progressed.  41 

I. Enriched KEGG pathways with 10 proteins.  42 
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Figure 4. Changes in the structures of proteins that are known to be associated with brain. 43 

A, B. Accessibility of 83 labeled peptides that mapped to 62 proteins were significantly changed. The 44 

accessibility values in AD groups decreased more steeply than those in NC groups (A). The proteins and 45 

peptides corresponding to each change in the accessibility are indicated (B). 46 

C, D, E. Cnp was more highly expressed in brain than in the other tissues (C). Two of the three peptides of 47 
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Cnp share one lysine site, and variations in accessibility for these two peptides are represented. 48 

KIIPGSRADF (D) is located at 87-96 amino acid of Cnp and QYQVVLVEPKTAW (E) is located at 141-153 49 

amino acid of Cnp. While they exhibited a decreasing trend in AD, the accessibility values were lower in AD 50 

compared to NC, and the trend in AD was steeper than in NC. Blue indicates NC groups, pink indicates AD 51 

groups. Asterisk (*) denotes significance. 52 

F. Expression of 60 brain proteins were compared to averaged expression in six other tissues (F). The 53 

minimum enrichment factor was 0.13 for Eef2 in NC at 15 mo and the maximum enrichment factor was 54 

1,232 for Tuba1b in NC at 12 mo. Expression of 6 proteins (Eef2, Gucy1b1, NARS1, Slc25a12, Wdr37, 55 

Ywhag) was lower in brain than the expression of the corresponding proteins in other tissues at all ages in 56 

NC and AD. The bar indicates the enrichment factor, with red indicating an enrichment factor more than 1, 57 

and blue indicating an enrichment factor less than 1. Proteins enriched more than 70-fold are marked in 58 

red.  59 
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60 

Figure 5. The structural changes of the co-expressed proteins by WGCNA 61 
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A. Four of the seven tissues (brain, kidney, muscle and spleen) showed significant correlated modules (R2 62 

> 0.4, P-value <0.05).  63 

B. In module 3 (M3) of brain, the eigenprotein level between AD and NC was assessed, with dot colors 64 

indicating the age of the mice.  65 

C-E. The labeled peptides of M3 proteins were clustered based on the fold-change of the accessibility (C). 66 

Distribution of the fold-change of the accessibility of cluster 1 (D) and cluster 2 (E). Of 481 labeled peptides 67 

that mapped onto 174 proteins in M3, fold-change of accessibility of 268 peptides showed a consistent 68 

decrease in progressing AD in cluster 1 and fold-change of accessibility of 213 peptides in cluster 2 did not 69 

significantly change in progressing AD. *p < 0.05, **p < 0.005 and ****p < 0.0001 70 

F-I. The fold changes of the accessibility for Map1a (F), Psat (G), Mag (H), and Plp1 (I) are presented. The 71 

peptides in the bold box were included in cluster 1. Peptides in the bold box clearly decreased.  72 
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Figure 6. The biological functions affected by structural changes of composed proteins.  73 
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A-C. Structural changes of proteins enriched in generation of precursor metabolite and energy (A), carbon 74 

metabolism (B), and metal ion homeostasis (C) are shown. The heatmap (right) showed variations in the 75 

fold-change of the accessibility based on peptide sequence. The scatter plots (left) were plotted irrespective 76 

of peptide sequences.  77 

D-F. Expression change of proteins enriched in generation of precursor metabolite and energy (D), carbon 78 

metabolism (E), and metal ion homeostasis (F). The fold-changes of the expression level are presented. 79 

*p < 0.05, **p < 0.005 and ****p < 0.0001  80 
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Figure 7. The physical interactions of the proteins in M3 of brain 81 
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A. Forty-five proteins in the brain dataset were physically interacted. Each node indicates a protein. The 82 

ring color of the node indicates the terms that the protein is associated with. The size of node represents 83 

the number of significantly changed lysine sites, with very small nodes indicating no significantly changed 84 

peptides, small nodes indicating one significantly changed peptide, medium nodes indicating 2-4 85 

significantly changed peptides, and large nodes indicating more than 4 significantly changed peptides.  86 

B. The structure of the Plp1-Mag complex was predicted using AlphaFold-Multimer. The structure in dark 87 

pink is Plp1 and the structure in light purple is Mag. FSKNYQDY of Plp1 and YFNSPYPKNYPPVVF of Mag 88 

were presented in green and red, respectively. The right panel is an enlarged view of the complex on the 89 

left. The distance between alpha-carbons of two lysine sites was 13.9 Å.  90 

C, D. Structural changes in adjacent peptide regions with potential binding, with variation of the accessibility 91 

of site in AD (pink) and NC (green) for FSKNYQDY (C) and YFNSPYPKNYPPVVF (D).  92 
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