Numerical Analysis of Prey Refuge Effects on the Stability of Holling Type III Four-Species Predator-Prey System

Francis Odhiambo (✉ francisakwenda@gmail.com)
Jaramogi Oginga Odinga University of Science and Technology

Titus Aminer
Jaramogi Oginga Odinga University of Science and Technology

Benard Okelo
Jaramogi Oginga Odinga University of Science and Technology

Julius Manyala
Jaramogi Oginga Odinga University of Science and Technology

Research Article

Keywords: Dynamical system, Lyapunov technique, Routh-Hurwitz criterion, Eigenvalue

Posted Date: June 29th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3117422/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.
Numerical Analysis of Prey Refuge Effects on the Stability of Holling Type III Four-Species Predator-Prey System

Odhiambo Francis, Titus aminer, Benard Okelo and Julius Manyala

Jaramogi Oginga Odinga University of Science and Technology: Department of Pure and Applied Mathematics, Bondo, Kenya.
Email: francisakwenda@gmail.com

How to cite this paper: Odhiambo Francis, Titus Aminer, Benard Okelo and Julius Manyala (2023) Numerical Analysis of Prey Refuge Effects on the Stability of Holling Type III Four-Species Predator-Prey System.

Abstract
The dynamic behavior of a multi-species system that includes a prey refuge and a Holling type III functional response is examined in this work. The pre-requisites for the presence of the equilibrium points, as well as their local and global stabilities, for the suggested system are analyzed and derived. The Routh-Hurwitz criterion and the eigenvalue technique are used to study the local stabilities. On the other hand, the global stabilities have been studied using the Lyapunov technique. Numerical simulations have been carried out using the Matlab ode45 solver software to verify the analytical results. The findings show that refuge plays a significant part in improving the dynamical stability of the system.

Keywords
Dynamical system, Lyapunov technique, Routh-Hurwitz criterion, Eigenvalue

1. Introduction
The behavior of any complex dynamic system such as, biological models that explain the properties of intricate interactions between specific organisms in a biological context is a natural outcome of interaction between its constituent parts [1]. Many ecological and biological processes are rooted on the complex features of species and their dynamic connections with one another. The interaction among species is one of these relationships and has been a central subject in mathematical biology due to its pervasiveness and significance [2]. Most scholars (see [3] and [4]), have extensively investigated the qualitative dynamic properties of interacting predator-prey models in order to understand the species’ long-term behavior.
In the modelling of naturally occurring processes, dynamical systems are widely used [3]. The theory of dynamical systems is largely concerned with establishing qualitative predictions about the behavior of systems that evolve over time when the system’s control parameters and the initial state change [5]. Mathematical models of real-world phenomena are hence expressed as systems of nonlinear differential equations (DE), which are usually difficult to solve explicitly [6]. As a result, numerical methodologies need to be employed to evaluate the solutions of such systems, with stability analysis being used to illustrate the solutions’ trajectories [7]. This numerical characterization of the solution(s) behavior is carried out by first determining the system’s equilibrium points and then using stability analysis to comprehend the general behavior of solutions [4].

Consider a nonlinear system of ordinary differential equation of the form,

$$\frac{du_i}{dt} = g_i(u_i)$$

(1)

where $u \in \mathbb{R}^m; i = 1, 2, \ldots m$.

Suppose that a point $u(t) = u^*(t)$ is an equilibrium point of System 1 and let $u_i(t)$ be its original solution. Then, the nature of $u_i(t)$ near $u^*_i(t)$ determines the local stability according to Ma and Wang [8].

Let’s represent the original solution to Equation 1 as $u_i(t) = u^*_i(t) + \psi(t)$, where $u^*(t)$ stands for any alternative solution to Equation 1 and $\psi(t)$ denotes any minor modification to the original solution $u(t)$. Consequently, according to Ma and Wang [8], $\psi(t)$ can be linearly approximated as $\frac{d\psi}{dt} = \zeta(t)\psi$, where the matrix $\zeta(t) = \left(\frac{\partial g_i}{\partial y_j}\right)_{u^*}$ is the Jacobian matrix at the equilibrium point, $u^*(t)$. The signs of the eigenvalues of this matrix dictate the linear stability of the equilibrium points, $u^*_i(t)$ and the characteristic equation for the Jacobian matrix is given by,

$$\det (\zeta - \gamma I) = a_0\rho^n + a_1\rho^{n-1} + a_2\rho^{n-2} + \ldots + a_n = 0.$$

The constraints on the coefficients a_i (i=1,2,...,n) are then obtained using Routh-Hurwitz criterion which assures local asymptotic stability at $u^*(t)$ if the choice of parametric values is such that all the constraints are simultaneously satisfied [9]. If $u_i(t)$ continue being close to $u^*_i(t)$ as $t \to \infty$, it is considered stable otherwise, it is considered unstable. Furthermore, if the solutions approach the critical point over time rather than just staying within a set radius, the critical point is asymptotically stable [7].

A lot of work has been done in establishing the stability of the equilibrium points of dynamical systems, both locally and globally [10]. Shireen [9], studied a four-species model with prey refuge for its dynamical behavior including the stabilities of its equilibrium points and carried out numerical simulations to confirm his analytical results. However, his model incorporated a linear predator-prey functional response which is rare among most feeding patterns.

In this paper therefore, we discuss the dynamical behavior of a set of predator-prey system formulated in [11], given by the following model.
\[\frac{du_1}{dt} = \tau_1 u_1 \left(1 - \frac{u_1}{K_1} \right) - \gamma_1 u_1 + \gamma_2 u_2 - \eta_1 \left(\frac{u_1^2 v}{h + u_1^2} \right) - \tilde{n}_1 u_1 w, \]

\[\frac{du_2}{dt} = \tau_2 u_2 \left(1 - \frac{u_2}{K_2} \right) + \gamma_1 u_1 - \gamma_2 u_2, \]

\[\frac{dv}{dt} = \eta_2 \left(\frac{u_1^2 v}{h + u_1^2} \right) - \mu_1 v - \xi v w, \]

\[\frac{dv}{dt} = \tilde{n}_2 u_1 w + \xi_2 v w - \mu_2 w, \]

where \(\tau_1 \) and \(\tau_2 \), \(K_1 \) and \(K_2 \), \(\gamma_1 \), \(\gamma_2 \), \(\eta_1 \), \(\eta_2 \), \(\mu_1 \), \(\mu_2 \), \(\tilde{n}_1 \), \(\xi_1 \) and \(\xi_2 \) are positive constants.

2. Existence of the steady states

The System 2 is shown to have a total of five non-negative equilibrium points namely: The vanishing fixed point; \(E_0(0,0,0,0) \), the planar fixed point; \(E_1(u_1^*, u_2^*, 0, 0) \), the specialist predator-free fixed point; \(E_2(u_1^*, u_2^*, 0, w^*) \), the generalist predator-free fixed point; \(E_3(u_1^*, u_2^*, v^*, 0) \) and finally the coexistence fixed point; \(E_4(u_1^*, u_2^*, v^*, w^*) \).

Clearly, the existence of \(E_0(0,0,0,0) \) is trivial and hence ignored. The conditions that determine the existence of the remaining equilibrium points are derived as shown below.

2.1. The Planar Fixed Point

Proposition 2.1: The planar fixed point \(E_1 \) only exists if the conditions \(\tau > \gamma_1 \), \(\frac{\tau_1(\tau_2 - \gamma_2)}{K_1 \gamma_2} > \frac{\tau_2(\tau_1 - \gamma_1)}{K_2 \gamma_2} \), and \((\tau_2 - \gamma_2)(\tau_1 - \gamma_1) < \gamma_1 \gamma_2 \) hold.

Proof: Let \(u_1^* \) and \(u_2^* \) be non-negative solutions to

\[\tau_1 u_1 \left(1 - \frac{u_1}{K_1} \right) - \gamma_1 u_1 + \gamma_2 u_2 = 0, \] (3)

\[\tau_2 u_2 \left(1 - \frac{u_2}{K_2} \right) + \gamma_1 u_1 - \gamma_2 u_2 = 0. \] (4)

From Equation 3, we have

\[u_2 = \frac{1}{\gamma_2} \left[\frac{\tau_1 u_1^2}{K_1} - (\tau_1 - \gamma_1) u_1 \right]. \] (5)

Substituting Equation 5 into Equation 4, we obtain

\[Au_1^3 + Bu_1^2 + Cu_1 + D = 0 \] (6)
Where, \(A = -\frac{\tau_2 \tau_1^2}{\gamma_3^2 \kappa_3} \leq 0 \), \(B = \frac{2\tau_1 \tau_3}{\gamma_3^2 \kappa_1} (\tau_1 - \gamma_1) \), \(C = \left[\frac{\tau_1 \kappa_2 (\tau_2 - \gamma_2) - \tau_2 (\tau_1 - \gamma_1)^2}{\kappa_1 \gamma_2} \right] \), and \(D = \left[\frac{\gamma_1 \kappa_3 - \kappa_2 (\tau_2 - \gamma_2) (\tau_1 - \gamma_1)}{\gamma_3} \right] \).

Therefore, given the value of \(u_1 = u_1^* \), the corresponding value of \(u_2 = u_2^* \) can be found from Equation 5 for which the inequality \(u_2^* > \frac{\kappa_1}{\tau_1} (\tau_1 - \gamma_1) \) holds for \(u_2^* \) to be positive and \(u_1^* \) is the positive root of the Polynomial 6. Therefore, Equation 6 has a unique positive solution, that is \(u_1 = u_1^* \) if by Descartes rule of signs, the following conditions hold:

\[\tau > \frac{\tau_1 (\tau_2 - \gamma_2)}{\kappa_1 \gamma_2} > \frac{\tau_2 (\tau_1 - \gamma_1)^2}{\kappa_3^2 \gamma_3^2}, \quad \text{and} \quad (\tau_2 - \gamma_2)(\tau_1 - \gamma_1) < \gamma_1 \gamma_2. \]

2.2. The Specialist Predator-free Fixed Point

Proposition 2.2 The specialist predator-free fixed point \(E_2 \) only exists under a certain value of \(\kappa_1 \) in the unprotected area, below which it fails to exist.

Proof: Suppose that \(u_1^*, u_2^* \) and \(w^* \) are the non-negative roots of the algebraic equations

\[
\tau_1 u_1 \left(1 - \frac{u_1}{\kappa_1} \right) - \gamma_1 u_1 \gamma_2 u_2 - \bar{n}_1 u_1 w = 0, \tag{7}
\]

\[
\tau_2 u_2 \left(1 - \frac{u_2}{\kappa_2} \right) + \gamma_2 u_1 - \gamma_2 u_2 = 0, \tag{8}
\]

\[
\bar{n}_2 u_1 w - \mu_2 w = 0 \tag{9}
\]

From Equation 9, we have

\[
u_1^* = \frac{\mu_2}{\bar{n}_2} \tag{10}\]

Substituting Equation 10 into Equation 8 gives

\[
u_2^* = \frac{1}{2 \tau_3 \bar{n}_1} \left[\kappa_3 \bar{n}_2 (\tau_2 - \gamma_2) + \sqrt{\kappa_3^2 \bar{n}_2^2 (\tau_2 - \gamma_2)^2 + 4 \tau_3 \bar{n}_2 \gamma_1 \kappa_2 \mu_2} \right]. \tag{11}\]

Substituting Equation 10 and Equation 11 into Equation 7 leads to

\[
w^* = \frac{1}{\bar{n}_1} \left[(\tau_1 - \gamma_1) - \frac{\tau_1 \mu_2}{\bar{n}_2} + \frac{\gamma_2 u_1^* \bar{n}_2}{\mu_2} \right]^2 \tag{12}\]

This implies that \(w^* \) is positive if and only if

\[
(\tau_1 - \gamma_1) + \frac{\gamma_2 u_1^* \bar{n}_2}{\mu_2} > \frac{\tau_1 \mu_2}{\kappa_1 \bar{n}_2} \tag{13}\]
Remark 2.2: Condition 13 clearly specifies a carrying capacity \mathcal{K}_1 threshold value in the unprotected region. As a result, generalist predators continue to exist. However, Condition 13 may fail if \mathcal{K}_1 becomes too small.

2.3. The Generalist Predator-free Fixed Point

Proposition 2.3 The generalist predator-free fixed point E_3 only exists when $\eta_2 > \mu_1$, but fails to exist when the value of \mathcal{K}_1 in the unprotected zone falls below its threshold value.

Proof: Let the non-negative solutions of the algebraic equations below be represented by u_1^*, u_2^* and v^*. From the third equation of System 14, we have

$$u_1^* = \frac{h\mu_1}{\eta_2 - \mu_1},$$

(15)

Substituting Equation 15 into the second equation of System 14 and doing a little simplification gives an expression for u_2^* as,

$$u_2^* = \frac{1}{2\tau_2} \left[\kappa_2(\tau_2 - \gamma_2) + \sqrt{\kappa_2^2(\tau_2 - \gamma_2)^2 + 4\tau_2\gamma_1\kappa_2u_1^*} \right].$$

(16)

From the first equation of System 14, it follows that

$$v^* = \frac{\eta_2}{\mu_1\eta_1} \left[\gamma_2u_2^* + (\tau_1 - \gamma_1) \sqrt{\frac{h\mu_1}{\eta_2 - \mu_1} - \frac{\tau_1h\mu_1}{\kappa_1(\eta_2 - \mu_1)}} \right].$$

(17)

The following conditions must be satisfied for the positivity of the solutions of u_1^*, u_2^* and v^*.

$$\eta_2 > \mu_1$$

(18)

$$\gamma_2u_2^* + (\tau_1 - \gamma_1) \sqrt{\frac{h\mu_1}{\eta_2 - \mu_1} - \frac{\tau_1h\mu_1}{\kappa_1(\eta_2 - \mu_1)}} > \frac{\tau_1h\mu_1}{\kappa_1(\eta_2 - \mu_1)}.$$

(19)

Remark 2.3: It can be seen from Condition 19 that it gives a threshold value of \mathcal{K}_1 in the unreserved region at which the specialist predators continue to survive.
Unfortunately, when κ_i becomes too small, the generalist predator-free fixed point could fail making its existence violated.

2.4. The Interior Equilibrium Point

Proposition 2.4 The coexistence equilibrium point E_4 exists whenever the conditions

$$\tau > \gamma, \ u_1^* < \frac{\mu_1}{\eta_2} \text{ and } u_1^* > \frac{h\mu_1}{(\eta_2 - \mu_1)} \text{ hold.}$$

Proof Let the non-negative roots of the system of equations below be denoted by u_1^*, u_2^*, v^* and w^*. Then,

\[
\begin{align*}
\tau_1u_1 & \left(1 - \frac{u_1}{\kappa_1}\right) - \gamma_1u_1 + \gamma_2u_2 - \frac{\eta_1u_1^2v}{h + u_1^2} - \tilde{n}_1u_1w = 0, \\
\tau_2u_2 & \left(1 - \frac{u_2}{\kappa_2}\right) + \gamma_1u_1 - \gamma_2u_2 = 0, \\
\frac{\eta_1u_1^2v}{h + u_1^2} - \mu_1v - \frac{\xi_1}{\xi_2}vw &= 0, \\
\tilde{n}_2u_1w + \frac{\xi_2}{\xi_1}vw - \mu_2w &= 0.
\end{align*}
\]

From the fourth Equation of System 20, we have

$$v^* = \left(\frac{\mu_2 - \tilde{n}_2u_1^*}{\xi_2}\right).$$

Given the third Equation of System 20, we can get

$$w^* = \left(\frac{(\eta_2 - \mu_1)u_1^* - h\mu_1}{\xi_1(h + u_1^2)}\right).$$

The value of u_2^* can be expressed as shown below upon mathematical manipulations on the second equation of System 20

$$u_2^* = \frac{1}{2\tau_2} \left[\kappa_2(\tau_2 - \gamma_2) + \sqrt{\kappa_2^2(\tau_2 - \gamma_2)^2 + 4\tau_2\gamma_1\kappa_2u_1^*} \right].$$

Substituting the values of v^*, w^* and u_2^* from Equation 21, Equation 22 and Equation 23 respectively into the first equation of System 20 gives

$$-\eta_1u_1^2 + \kappa_1(\tau_1 - \gamma_1)u_1 + \kappa_1\gamma_2 \left[\kappa_2(\tau_2 - \gamma_2) + \sqrt{\kappa_2^2(\tau_2 - \gamma_2)^2 + 4\tau_2\gamma_1\kappa_2u_1^*} \right] -$$

$$\left[\frac{\kappa_1\eta_1(\mu_2 - \tilde{n}_2u_1^*)u_1^2}{\xi_2(h + u_1^2)} \right] - \left[\frac{\tilde{n}_1(\eta_2 - \mu_1)u_1^3 - h\kappa_1\tilde{n}_1u_1u_1^*}{\xi_1(h + u_1^2)} \right] = 0.$$
Multiplying every term of Equation 24 by \(\frac{2\tau_1}{h + u_1^2} \) leads to

\[
-2\tau_1\frac{\tilde{\varepsilon}}{\frac{h + u_1^2}{\tilde{\xi}}}(h + u^2)u^2 + 2\tau_2\frac{\tilde{\varepsilon}}{\frac{h + u}{\tilde{\xi}}}\kappa_h(h + u)\left(\tau_1 - \gamma_1\right)u + 1
\]

\[
\kappa_i\gamma + \tilde{\xi} \left[\kappa - \left(\tau_2 - \tilde{\gamma}\right) + \sqrt{\kappa^2 - \gamma_2^2} \right]^{1/2} + 4\tau_2\gamma\kappa u_2 \right]^{-1/2}
\]

(25)

\[
2\tau_2\frac{\tilde{\varepsilon}}{\frac{h + u}{\tilde{\xi}}}\kappa_1\eta_2\left(\mu_2 - \tilde{n}_2\right)u_1^2 - 2\tau_2\frac{\tilde{\varepsilon}}{\frac{h + u}{\tilde{\xi}}}\kappa_1\left(\eta_2 - \mu_1\right)u_1^3 + 2\tau_2\frac{\tilde{\varepsilon}}{\frac{h + u}{\tilde{\xi}}}h\kappa_1\eta_1\mu_1 = 0
\]

Having known the value of \(u_1^* \) from Equation 25, the other values of \(v^*, w^* \) and \(u_2^* \), can easily be computed from Equation 21, Equation 22 and Equation 23 respectively, whenever \(\tau > \gamma \), \(u_1^* < \frac{\mu_2}{\tilde{n}_2} \) and \(u_1^* > \frac{h\mu_1}{(\eta_2 - \mu_1)} \) respectively; and \(u_1^* \) is the positive root of Equation 25.

3. Stability Analysis of the Equilibrium Points

3.1. Local Stability of \(E_0, E_1, E_2, E_3 \) and \(E_4 \)

The local asymptotic stability of each equilibrium point is examined by constructing the Jacobian matrix and obtaining the eigenvalues determined at each equilibrium point. The stability, instability, or saddle of the equilibrium point is determined by the signs of the real parts of the eigenvalues of the Jacobian matrix. The eigenvalues of the equilibrium points must be negative in order for them to be stable. By differentiating the right hand side of System 2 with respect to \(u_1, u_2, v, \) and \(w \), the entries of the universal variational matrix are constructed as shown below.

\[
J = \begin{bmatrix}
A^* & \gamma_2 & -\frac{\eta_1u_1^2}{h + u_1^2} & -\tilde{n}_1u_1 \\
\gamma_1 & \tau_2 - \frac{2\tau_2u_2}{\kappa_2} - \gamma_2 & 0 & 0 \\
A^{**} & 0 & \frac{\eta_1u_1^2}{h + u_1^2} - \mu_1 - \tilde{\xi}_1w & -\tilde{\xi}_1v \\
\tilde{n}_2w & 0 & \tilde{\xi}_2w & \tilde{n}_2u_1 + \tilde{\xi}_2v - \mu_2
\end{bmatrix}
\]

(26)

where,

\[
A^* = \tau_1 - \gamma_1 - \frac{2\tau_1}{\kappa_1} - \left[\frac{2\eta_1u_1v(h + u_1^2) - 2\eta_1u_1^3v}{(h + u_1^2)^2} \right] - \tilde{n}_1w,
\]

\[
A^{**} = \frac{2\eta_1u_1v(h + u_1^2) - 2\eta_1u_1^3v}{(h + u_1^2)^2}.
\]

At this point, we determine whether the equilibrium points in Section 2 are stable, unstable or saddle as discussed in the propositions that follow.
Proposition 3.1 The vanishing equilibrium point E_0 is a saddle point whenever $\tau \leq \gamma$ or $\tau \geq \gamma$

Proof: The Jacobian matrix evaluated at the vanishing equilibrium point, $J(E_0)$ is given by

$$J(E_0) = \begin{pmatrix} \tau_1 - \gamma_1 & \gamma_2 & 0 & 0 \\ \gamma_1 & \tau_2 - \gamma_2 & 0 & 0 \\ 0 & 0 & -\mu_1 & 0 \\ 0 & 0 & 0 & -\mu_2 \end{pmatrix}.$$

Finding the roots of $J(E_0)$ involves solving the auxiliary equation, $[J(E_0) - \lambda I] = 0$, where λ ($i = 1, 2, 3, 4$) denote the eigenvalues of $J(E_0)$. Therefore, $[J(E_0) - \lambda I] = 0$ can be simplified to

$$(-\mu_2 - \lambda_1)(-\mu_1 - \lambda_2)\begin{pmatrix} (\tau_1 - \gamma_1) - \lambda_4 & \gamma_2 \\ \gamma_1 & (\tau_2 - \gamma_2) - \lambda_3 \end{pmatrix} = 0,$$

from which we have $(-\mu_2 - \lambda_1) = 0$ and $(-\mu_1 - \lambda_2) = 0$. So, $\lambda_1 = -\mu_2 < 0$ and $\lambda_2 = -\mu_1 < 0$. The remaining two eigenvalues are obtained by solving the equation

$$\begin{pmatrix} (\tau_1 - \gamma_1) - \lambda & \gamma_2 \\ \gamma_1 & (\tau_2 - \gamma_2) - \lambda \end{pmatrix} = 0,$$

which can be expressed in the form

$$\lambda^2 + e_1\lambda + e_2 = 0,$$

where, $e_1 = - (\tau_1 - \gamma_1) - (\tau_2 - \gamma_2)$ and $e_2 = (\tau_1 - \gamma_1)(\tau_2 - \gamma_2) - \gamma_1\gamma_2$.

According to Routh-Hurwitz criterion [12], all the roots of the polynomial 27 will have negative real parts if the conditions $e_1 > 0$ and $e_2 > 0$ hold.

Let us then consider the following two cases of Equation 27

(i). Case 1: If $\tau = \gamma$, then $e_2 < 0$, which implies that one of the eigenvalues will have a positive real part.

(ii). Case 2: If $\tau > \gamma$, then $e_1 < 0$ and if $\tau < \gamma$, then $e_2 < 0$, implying that in each scenario, one of the eigenvalues is positive.

Therefore, since at least one of the eigenvalues of E_0 is positive and the rest are negative, then E_0 is a saddle point whenever $\tau \leq \gamma$ or $\tau \geq \gamma$.

Proposition 3.2: The planar equilibrium point E_1 is locally asymptotically stable if $\mu_2 > \varrho_2$, $\mu_1 > \eta_2$ and $\kappa_1 (\tau_1 - \gamma_1) < 2\tau_1\mu_1$, otherwise unstable.

Proof: The $J(E_1)$ is given as
The roots $\lambda_i (i = 1, 2, 3, 4)$ of $J(\mathcal{E}_1)$ are obtained by solving the characteristic equation defined by $|J(\mathcal{E}_1) - \lambda I| = 0$ while upon mathematical computations leads to

$$\left\{ \left(\tilde{n}_1 u_1^* - \mu_2 \right) - \lambda_1 \right\} \left\{ \left(\frac{\eta_1 u_1^{*2}}{h + u_1^*} - \mu_1 \right) - \lambda_2 \right\} A_1 - \tilde{\lambda}_4 = 0,$$

where the entries $A_{11} = \frac{\kappa_1 \tau - \kappa_1 \gamma_1 - 2 \tau u_1^*}{\kappa_1}$ and $A_{22} = \frac{\kappa_2 \tau - \kappa_2 \gamma_2 - 2 \tau u_2^*}{\kappa_2},$ from which

$$\left(\tilde{n}_2 u_1^* - \mu_2 \right) - \lambda_1 = 0 \quad \text{and} \quad \left(\frac{\eta_1 u_1^{*2}}{h + u_1^*} - \mu_1 \right) - \lambda_2 = 0 \quad \text{hence} \quad \lambda_1 = \tilde{n}_2 u_1^* - \mu_2 \quad \text{and} \quad \lambda_2 = \frac{\eta_1 u_1^{*2}}{h + u_1^*} - \mu_1.$$

Similarly, the other eigenvalues of $J(\mathcal{E}_1)$ are obtained by solving

$$\left\{ \frac{\kappa_1 \tau - \kappa_2 \gamma - 2 \tau u_1^*}{\kappa_1} \right\} \left\{ \frac{\kappa_2 \gamma - 2 \tau u_2^*}{\kappa_2} - \tilde{\lambda}_3 \right\} - \gamma \chi \neq 0. \quad (28)$$

Making λ_3 the subject of the formula from Equation 28 leads to

$$\lambda_3 = \left\{ \frac{\kappa_2 \gamma - 2 \tau u_2^*}{\kappa_2} \right\} - \left\{ \frac{\kappa_1 \gamma_1 \gamma_2}{\kappa_1 \tau - \kappa_1 \gamma_1 - 2 \tau u_1^* - \kappa_1 \lambda_4} \right\}.$$

If we consider λ_3 as being negative, that is $\lambda_3 = -\chi$, then λ_4 can be obtained from

$$-\chi = \left\{ \frac{\kappa_2 \tau - \kappa_2 \gamma_2 - 2 \tau u_2^*}{\kappa_2} \right\} - \left\{ \frac{\kappa_1 \gamma_1 \gamma_2}{\kappa_1 \tau - \kappa_1 \gamma_1 - 2 \tau u_1^* - \kappa_1 \lambda_4} \right\},$$

for which,

$$\lambda_4 = \frac{\kappa_1 \tau - \kappa_2 \gamma - 2 \tau u_1^*}{\kappa_1} \frac{\kappa_2 \gamma - 2 \tau u_2^*}{\kappa_2} + \frac{\kappa_1 \gamma_1 \gamma_2}{\kappa_1 \tau - \kappa_1 \gamma_1 - 2 \tau u_1^* - \kappa_1 \lambda_4}.$$
conditions $\mu_1 > \eta_2$ and $\mu_2 > \varrho_2$ must hold. Hence, E_1 is locally asymptotically stable when: $\mu_2 > \varrho_2$, $\kappa_1 (\tau_1 - \gamma_1) < 2 \tau_1 u_1$ and $\mu_1 > \eta_2$, otherwise is unstable.

Proposition 3.3 The specialist predator-free fixed point E_2 is locally asymptotically stable if $\eta_2 < (\mu_1 + \xi_1)$, $e_i > 0$ (i = 1, 2, 3,) and $e_1 e_2 - e_3 > 0$; where e''s are defined in the proof that follow, otherwise, E_2 is unstable.

Proof: The $J(E_2)$ is given as

$$J(E_2) = \begin{pmatrix}
\tau_1 - \gamma_1 - \frac{2 \tau_1 u_1^*}{\kappa_1} - \tilde{n}_1 w^* & \gamma_2 & - \frac{\eta_i u_i^*}{h + u_i^*} & -\tilde{n}_1 u_1^* \\
\gamma_1 & \tau_2 - \gamma_2 - \frac{2 \tau_2 u_2^*}{\kappa_2} & 0 & 0 \\
0 & 0 & \frac{\eta_i u_i^*}{h + u_i^*} - \mu_i - \xi_i w^* & 0 \\
\tilde{n}_2 w^* & 0 & \tilde{n}_2 u_1^* - \mu_2 & 0 \\
\end{pmatrix}$$

For simplicity, the above matrix can as well be written as

$$J(E_2) = \begin{pmatrix}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & 0 & 0 \\
0 & 0 & b_{33} & 0 \\
b_{41} & 0 & b_{43} & b_{44} \\
\end{pmatrix},$$

where b_{ij} ($i, j = 1, 2, 3, 4$) are the entries corresponding to the relevant rows and columns respectively. Finding λ_i ($i = 1, 2, 3, 4$) of $J(E_2)$ involves solving the characteristic equation $|J(E_2) - \lambda_i I| = 0$, which can easily be simplified to

$$(b_{33} - \lambda_i) = \begin{pmatrix}
b_{11} - \lambda & b_{12} & b_{14} \\
b_{21} & b_{22} - \lambda & 0 \\
b_{41} & 0 & b_{44} - \lambda \\
\end{pmatrix} = 0. \quad (29)$$

Hence, one of the eigenvalues of $J(E_2)$ is determined by solving the equation $b_{33} - \lambda_i = 0$. So,

$$\lambda_i = b_{33} = \frac{\eta_i u_i^*}{h + u_i^*} - \mu_i - \xi_i w^*$$

and the remaining roots of $J(E_2)$ are obtained by simplifying the second part of Equation 29 to obtain

$$b_{41} [-b_{14}(b_{22} - \lambda)] + (b_{44} - \lambda)[(b_{11} - \lambda)(b_{22} - \lambda) - b_{12} b_{21}] = 0. \quad (30)$$

Equation 30 can further be simplified to $\lambda^3 + e_1 \lambda^2 + e_2 \lambda + e_3 = 0$ where the coefficients e_i ($i = 1, 2, 3$) are defined as: $e_1 = -(b_{11} + b_{22} + b_{44})$, $e_2 = (b_{11} b_{22} + b_{11} b_{44} + b_{22} b_{44} - b_{12} b_{21} - b_{14} b_{41})$ and $e_3 = (b_{14} b_{41} b_{22} - b_{11} b_{22} b_{44} + b_{12} b_{21} b_{44})$.

DO: 10.4236/****.2023.****
By Routh-Hurwitz criterion (See [12], and [13], \(\lambda \) have negative real parts if \(e_3 > 0, e_1 > 0, e_2 > 0 \) and \(e_1e_2 - e_3 > 0 \), and. In addition, given the first eigenvalue \(\frac{\eta_2u_i^2}{h + u_i^2} - \mu_1 - \xi_w^* \), \(\eta_2 < (\mu_1 + \xi_w^*) \). Thus, \(E_2 \) is locally asymptotically stable if these conditions are satisfied, otherwise unstable.

Proposition 3.4 The generalist predator-free fixed point \(E_3 \) is locally asymptotically stable if \(\mu_2 > (\rho_2 + \xi_2), \) \(e_i > 0 \ (i = 1, 2, 3.) \) and \(e_1e_2 - e_3 > 0; \) where \(\epsilon^* \) are defined in the following proof, otherwise unstable.

Proof: The Matrix 24 evaluated at \(E_3 \) is expressed as

\[
J(E_3) = \begin{pmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & 0 & 0 \\
 b_{31} & 0 & b_{33} & b_{34} \\
 0 & 0 & 0 & b_{44}
\end{pmatrix}
\]

where,

\[
b_{11} = \tau_1 - \gamma_1 - \frac{2\tau_3 u_1^*}{\kappa_1}, \quad b_{22} = \tau_2 - \gamma_2 - \frac{2\tau_3 u_2^*}{\kappa_2},
\]

\[
b_{33} = \frac{\eta_2u_3^2}{h + u_1^2} - \mu_1, \quad b_{31} = \frac{2\eta_2u_1^*v^* (h + u_1^2) - 2\eta_2u_3^*v^*}{(h + u_1^2)^2}, \quad b_{44} = \tilde{n}_2 u_1^* + \tilde{\xi}_2 v^* - \mu_2,
\]

\[
b_{12} = \gamma_2, \quad b_{13} = -\frac{\eta_1u_1^*}{h + u_1^2}, \quad b_{14} = -\tilde{n}_1 u_1^*, \quad b_{21} = \gamma_1, \quad b_{34} = -\tilde{\xi}_1 v^*.
\]

The eigenvalues \(\lambda_i \) \((i = 1, 2, 3, 4) \) of \(J(E_3) \) are obtained by solving the auxiliary equation \(|J(E_3) - \lambda I| = 0 \), which simplifies to

\[
(b_{44} - \lambda_i) = \begin{pmatrix}
 b_{11} - \lambda & b_{12} & b_{13} \\
 b_{21} & b_{22} - \lambda & 0 \\
 b_{31} & 0 & b_{33} - \lambda
\end{pmatrix} = 0,
\]

(31)

from which, \((b_{44} - \lambda_i) = 0, \Rightarrow \lambda_i = b_{44} = \tilde{n}_2 u_1^* + \tilde{\xi}_2 v^* - \mu_2, \) and the three remaining eigenvalues are determined by simplifying the second part of Equation 31 to get, \(b_{31} [\frac{b_{13}b_{22}}{b_{33}} - \lambda] + (b_{33} - \lambda) [(b_{11} - \lambda)(b_{22} - \lambda) - b_{12}b_{21}] = 0, \) whose expansion can be expressed in the form of \(\lambda^3 + e_1\lambda^2 + e_2\lambda + e_3 = 0, \) where the coefficients \(e_i \) \((i = 1, 2, 3) \) are defined as; \(e_1 = -(b_{11} + b_{22} + b_{33}), \quad e_2 = (b_{11}b_{33} + b_{33}b_{22} + b_{12}b_{21} - b_{13}b_{23} + b_{11}b_{22}b_{33} + b_{12}b_{21}b_{33}), \) and \(e_3 = (b_{13}b_{33}b_{22} - b_{11}b_{22}b_{33} + b_{12}b_{21}b_{33}). \) All the roots of the cubic equation \(\lambda^3 + e_1\lambda^2 + e_2\lambda + e_3 = 0 \) will have negative real parts if by Routh-Hurwitz criterion \([14, 15]\), \(e_1 > 0, e_2 > 0, e_3 > 0 \) and \(e_1e_2 - e_3 > 0. \) Thus, the
Routh-Hurwitz conditions \((e_1 > 0, e_2 > 0, e_3 > 0\) and \(\phi = e_1 e_2 - e_3 > 0\)) for the negativity of the real parts of all the eigenvalues of \(J(E_3)\) have to be satisfied if in addition from the first eigenvalue \(\tilde{n}_2 u^*_1 + \xi_2 v^* - \mu_2, \mu_2 > (\tilde{n}_2 + \xi_2)\) for the local asymptotic stability of \(E_3\). Hence, \(E_3\) is locally asymptotically stable if these conditions hold, otherwise unstable.

Proposition 3.5 The coexistence equilibrium point \(E_4\) is locally asymptotically stable whenever \(e_1 > 0, e_2 > 0\) and \(e_1 e_2 e_3 - e_3^2 - e_4^2 > 0\), where \(e's\) are discussed in the following proof.

Proof: Consider the Jacobian Matrix 26 evaluated at \(E_4\) below

\[
J(E_4) = \begin{pmatrix}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & 0 & 0 \\
0 & 0 & b_{33} & 0 \\
b_{41} & 0 & b_{43} & b_{44}
\end{pmatrix},
\]

where,

\[
b_{11} = \frac{\kappa_1 \tau_1 - \kappa_1 \gamma_1 - 2\tau_1 u_1^*}{\kappa_1} - \frac{2\eta_1 u_1^* v^* (h + u_1^*) - 2\eta_1 u_1^* v^*}{(h + u_1^*)^2} - \tilde{n}_1 w^*, \quad b_{12} = \gamma_2
\]

\[
b_{13} = \frac{-\eta_1 u_1^*}{h + u_1^*}, \quad b_{14} = -\tilde{n}_1 u_1^*, \quad b_{22} = \frac{\kappa_2 \tau_2 - \kappa_2 \gamma_2 - 2\tau_2 u_2^*}{\kappa_2} - \frac{2\eta_2 u_1^* v^* (h + u_1^*) - 2\eta_2 u_1^* v^*}{(h + u_1^*)^2} - \tilde{n}_2 w^*
\]

\[
b_{22} = \frac{\kappa_2 \tau_2 - \kappa_2 \gamma_2 - 2\tau_2 u_2^*}{\kappa_2} - \frac{2\eta_2 u_1^* v^* (h + u_1^*) - 2\eta_2 u_1^* v^*}{(h + u_1^*)^2} - \tilde{n}_2 w^*, \quad b_{33} = \frac{\eta_1 u_1^*}{h + u_1^*} - \mu_1.
\]

The eigenvalues \(\lambda_i\) of \(J(E_4)\) are obtained by solving the auxiliary equation

\[
|J(E_4) - \lambda I| = 0.
\]

Therefore,

\[
|J(E_4) - \lambda I| = \begin{vmatrix}
b_{11} - \lambda & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} - \lambda & 0 & 0 \\
b_{31} & 0 & b_{33} - \lambda & b_{34} \\
b_{41} & 0 & b_{43} & b_{44} - \lambda
\end{vmatrix} = 0.
\]

Using the cofactor method for determinant, the characteristic polynomial for the variational matrix \(J(E_4)\) can be reduced to \(\lambda^4 + e_1 \lambda^3 + e_2 \lambda^2 + e_3 \lambda + e_4 = 0\), where the coefficients \(e_i (i = 1, 2, 3, 4)\) are defined as \(e_1 = -(b_{11} + b_{22} + b_{33} + b_{44}), e_2 = b_{11} b_{22} + b_{22} b_{33} + b_{22} b_{44} + b_{11} b_{33} + b_{11} b_{44} + b_{33} b_{44} - b_{12} b_{21} - b_{13} b_{31} - b_{14} b_{41} - b_{33} b_{43}, e_3 = b_{12} b_{21} b_{33} + b_{12} b_{21} b_{44} + b_{13} b_{31} b_{44} + b_{13} b_{31} b_{22} + b_{14} b_{41} b_{22} +
\]
According to Routh-Hurwitz criterion [1], the eigenvalues of $J(E_4)$ will have roots with negative real parts if $e_1 > 0$, $e_2 > 0$, $e_3 > 0$, $e_4 > 0$, $e_4 e_2 - e_3 > 0$ and $(e_1 e_2 - e_3)e_3 - e_1^2 e_4 > 0$.

Therefore, the positive equilibrium point E_4 is locally asymptotically stable if $e_1 > 0$, $e_2 > 0$, $e_3 > 0$, $e_4 > 0$ and $(e_1 e_2 - e_3)e_3 - e_1^2 e_4 > 0$, otherwise unstable.

3.2. Global Stability of E_1, E_2, E_3 and E_4

In this section, we apply the knowledge of the Lyapunov direct method to investigate the global stability of the System 2. This is done by employing the relevant Lyapunov function as demonstrated in the proof following the theorem below.

Theorem Suppose that E_1, E_2, E_3 and E_4 are locally asymptotically stable in \mathbb{R}_+^4. Then E_1, E_2, E_3 and E_4 are globally asymptotically stable in \mathbb{R}_+^4 whenever the following condition holds

$$\bar{\eta}_1 \eta_2 \xi_2 < \bar{\eta}_2 \eta_1 \xi_1$$

(32)

Proof: Let us consider a positive definite function for the coexistence equilibrium point E_4 defined by

$$\Phi_4(u_1, u_2, v, w) = c_1 \left[(u_1 - u_1^*) - u_1^* \ln \left(\frac{u_1}{u_1^*} \right) \right] + c_2 \left[(u_2 - u_2^*) - u_2^* \ln \left(\frac{u_2}{u_2^*} \right) \right] + c_3 \left[(v - v^*) - v^* \ln \left(\frac{v}{v^*} \right) \right] + c_4 \left[(w - w^*) - w^* \ln \left(\frac{w}{w^*} \right) \right],$$

where c_1, c_2, c_3 and c_4 are positive constants to be suitably chosen.

Differentiating the function $\Phi_4(u_1, u_2, v, w)$ with respect to time, t along the solutions of System 2 gives

$$\frac{d\Phi_4}{dt} = \frac{\partial \Phi}{\partial u_1} \frac{du_1}{dt} + \frac{\partial \Phi}{\partial u_2} \frac{du_2}{dt} + \frac{\partial \Phi}{\partial v} \frac{dv}{dt} + \frac{\partial \Phi}{\partial w} \frac{dw}{dt}$$

$$= c_1 \left(\frac{u_1 - u_1^*}{u_1} \right) \frac{du_1}{dt} + c_2 \left(\frac{u_2 - u_2^*}{u_2} \right) \frac{du_2}{dt} + c_3 \left(\frac{v - v^*}{v} \right) \frac{dv}{dt} + c_4 \left(\frac{w - w^*}{w} \right) \frac{dw}{dt}.$$

(33)

Now, substituting the values of u_1^*, u_2^*, v^* and w^* from System 2 into Equation 38 leads to
$\Phi_4 = c_1(u_1 - u_1^*) \left[\tau_1 \left(1 - \frac{u_1}{\kappa_1} \right) - \gamma_1 + \frac{\gamma_2 u_2}{u_1} - \frac{\eta_1 u_1 v}{h + u_1^2} - q_1 w \right]$

$+ c_2(u_2 - u_2^*) \left[\tau_2 \left(1 - \frac{u_2}{\kappa_2} \right) - \gamma_2 + \frac{\gamma_1 u_1}{u_2} \right] + c_3(w - w^*)(q_2 u_1 + \xi_2 v - \mu_2)$

$+ c_3(v - v^*) \left[\frac{\eta_2 u_2^2}{h + u_1^2} - \mu_1 - \xi_1 w \right].$

$\Phi_4 = c_1(u_1 - u_1^*) \left[-\frac{\tau_1}{\kappa_1}(u_1 - u_1^*) + \gamma_2 \left(\frac{u_2}{u_1} - \frac{u_2^*}{u_1^*} \right) - \frac{\eta_1 (u_1 - u_1^*)(v - v^*)}{(h + u_1^2)(h + u_2^2)} \right]$

$- c_1 q_1(w - w^*) + c_2(u_2 - u_2^*) \left[-\frac{\tau_2}{\kappa_2}(u_2 - u_2^*) + \gamma_1 \left(\frac{u_1}{u_2} - \frac{u_1^*}{u_2^*} \right) \right]$

$+ c_3(v - v^*) \left[\frac{\eta_2 (u_1 - u_1^*)^2}{(h + u_1^2)(h + u_2^2)} - \xi_1(w - w^*) \right] + c_4 q_2(u_1 - u_1^*)(w - w^*)$

$+ c_4 \xi_2(v - v^*)(w - w^*).$

Carrying out further mathematical computations result to

$$= -\frac{c_1 \tau_1}{\kappa_1}(u_1 - u_1^*)^2 + c_1 \gamma_2(u_1 - u_1^*)(u_2 u_1^* - u_1 u_2^*) - \frac{c_2 \tau_2}{\kappa_2}(u_2 - u_2^*)^2$$

$$- c_1 \left[\frac{\eta_1 (v - v^*)(u_1 - u_1^*)^2}{(h + u_1^2)(h + u_2^2)} \right] - c_1 q_1(u_1 - u_1^*)(w - w^*)$$

$$+ c_2 q_1(u_2 - u_2^*) \left(\frac{u_1 u_2^* - u_2 u_1^*}{u_2 u_1^*} \right) + c_3 \left(\frac{\eta_2 (u_1 - u_1^*)^2(v - v^*)}{(h + u_1^2)(h + u_2^2)} \right)$$

$$- c_3 \xi_1(v - v^*)(w - w^*) + c_4 q_2(u_1 - u_1^*)(w - w^*) + c_4 \xi_2(v - v^*)(w - w^*).$$

Choosing the positive constants c_1, c_2, c_3 and c_4 tactfully as

$C_1 = 1, \quad c_2 = \frac{\gamma^* u_1^*}{\gamma^*_u}, \quad c_3 = \frac{\eta_1}{\eta_2}, \quad \text{and} \quad c_4 = \frac{\tilde{\eta}_1}{\tilde{\eta}_2},$ we end up with

$$\Phi_4 = -\frac{\tau_1}{\kappa_1}(u_1 - u_1^*)^2 - \left(\frac{\gamma_2}{u_1^*} \right) (u_1 u_2^* - u_2 u_1^*) - \left[\frac{\eta_1 (u_1 - u_1^*)^2(v - v^*)}{(h + u_1^2)(h + u_2^2)} \right]$$

$$- q_1(u_1 - u_1^*)(w - w^*) - \left(\frac{\gamma_2 u_2^* \tau_2}{\kappa_2 \gamma_1 u_1^*} \right) (u_2 - u_2^*)^2 + \left(\frac{\tau_2}{u_1^*} \right) (u_1 u_2^* - u_2 u_1^*)$$

$$+ \left[\frac{\eta_1 (u_1 - u_1^*)^2(v - v^*)}{(h + u_1^2)(h + u_2^2)} \right] - \frac{\eta_1 \xi_1(v - v^*)(w - w^*)}{\eta_2} + q_1(u_1 - u_1^*)(w - w^*)$$

$$+ \frac{\eta_1 \xi_2(v - v^*)(w - w^*)}{\eta_2 q_2}. $$

Therefore, we finally end up with

$$\frac{d\Phi_4}{dt} = -\frac{\tau_1}{\kappa_1}(u_1 - u_1^*)^2 - \left(\frac{\gamma_2 u_2^* \tau_2}{\kappa_2 \gamma_1 u_1^*} \right) (u_2 - u_2^*)^2 - \frac{q_1 \mu_2 w}{q_2}$$

$$- \left(\frac{\eta_2 \eta_1 \xi_1 - \eta_1 \eta_2 \xi_2}{\eta_2 q_2} \right) (v - v^*) w.$$

(34)
The time derivative Φ_4 denoted by Equation 34 is negative definite whenever the inequality $\tilde{n}_1\eta_2\tilde{\xi}_2 < \tilde{n}_2\eta_1\tilde{\xi}_1$ holds. Therefore, the coexistence equilibrium point E_4 is globally asymptotically stable in \mathbb{R}^4_+ whenever Condition 32 holds. The proof for the global stabilities of the other equilibrium points is done in a similar way.

4. Numerical Simulations

In this section, numerical simulations are used to verify the obtained analytical results for the System 2. The System 2 is numerically solved using the following set of biologically feasible hypothetical parameters with given initial points

$$\tau_1 = 4, \tau_2 = 3.5, \gamma_1 = 2.5, \gamma_2 = 1.5, \eta_1 = 2, \eta_2 = 1.5, \varphi_1 = 0.25, \varphi_2 = 0.025, \kappa_1 = 30, \kappa_2 = 40, \xi_1 = 0.5, \xi_2 = 0.25, h = 1, \mu_1 = 0.6, \mu_2 = 0.8$$

(35)

With the above parameters, it is noted that all the conditions for existence of the equilibrium points are satisfied. Therefore, the equilibrium points of System 2 exist and given by: $E_1(28.1, 43.0, 0.0, 0.0), E_2(28.0, 43.8, 0.0, 1.4), E_3(0.8, 23.8, 46.1, 0.0)$ and $E_4(25.5, 40.7, 0.7, 1.8)$. Time series of the solutions are then drawn using the in-built ordinary differential equation solver; MATLAB function ode45 software package under the above set of parameters to validate the obtained solutions for each equilibrium point as demonstrated in the subsections that follow.

4.1. The Coexistence Equilibrium Point

The positive equilibrium point's solution gives a threshold level under which all the four species coexist.
Figure 1 shows that as t tends to infinity, the solutions $u_1(t)$, $u_2(t)$, $v(t)$ and $w(t)$ oscillates for a small period of time before asymptotically tending to the positive equilibrium point $E_4(25.5, 40.7, 0.7, 1.8)$, in the long-time limit obtained by solving the algebraic equations for equilibrium points, which agree with the simulation results. Thus, the respective populations can coexist.

At this point, we study the effects of varying certain parameters of the System 2 on the dynamical behavior of its solutions. We demonstrate the effects of varying key parameters, and the corresponding effects on the dynamical behavior of the System 2 illustrated graphically.

4.2. Effect of varying migration rate coefficient γ_1

For various values of γ_1, the solution oscillates briefly before asymptotically approaching the equilibrium points $(21.9, 43.1, 1.0, 1.8)$ when $\gamma_1 = 3.5$ and $(28.1, 38.1, 0.4, 1.8)$ when $\gamma_1 = 1.8$.

![Fig. 2 Convergence of the solution with (a) $\gamma_1 = 3.5$ and (b) $\gamma_1 = 1.8$.](image)

The population density of prey in both the reserved and unreserved zones grows with increase in γ_1. On the other hand, decreasing the value of γ_1 results in an increase in the density of unprotected prey and a slight decrease in the density of protected prey. However, the top predator is not affected by these variations.

4.3. Effect of varying migration rate coefficient γ_2

Figure 3 below illustrates the dynamics of System 4.2.4 in which the solutions approach the stable points $(28.07, 38.16, 0.39, 1.80)$ when $\gamma_2 = 2$ and $(22.90, 42.57, 0.91, 1.80)$ when $\gamma_2 = 1.12$.
It can be seen from Figure 3(a) that as γ_2 increases, the number of unreserved prey increases while the population density of the reserved prey decreases noticeably. This indicates a surplus of prey in unprotected region and as a result, the overall predator’s rate of prey conversion to food rises. The population density of prey in the unreserved region and the specialist predators are also severely affected by a decline in γ_2.

4.4. Dynamics of System 4.2.4 with different values of μ_1

The solutions approaches the stable points $(26.0, 41.0, 0.6, 1.4)$ for $\mu_1 = 0.8$ and $(24.1, 40.0, 0.8, 2.9)$ for $\mu_1 = 0.06$ as confirmed in the Figure 4 below.

Fig. 3 Convergence of the solution (a) $\gamma_2 = 2.0$ and (b) $\gamma_2 = 1.12$.

Fig. 4 Convergence of the solution with (a) $\mu_1 = 0.8$ and (b) $\mu_1 = 0.06$.
An increase in μ_1 leads to an abundance of prey in the unprotected zone and a small decline in the generalist predator's ability to convert prey into food and hence a slight decrease in the density of top predator as depicted in Figure 4(a). However, decreasing the value of μ_1 only results in a noticeable increase in the top predator while the other species are only slightly affected as illustrated by Figure 4(b).

4.5. Effect of varying the natural death rate μ_2

Figure 5 shows that a change in μ_2 initiates oscillations for a short time before approaching the equilibrium points (25.23, 40.61, 1.28, 1.80) when $\mu_2 = 0.95$ and (25.7, 40.8, 0.2, 1.8) for $\mu_2 = 0.7$.

The densities of reserved prey, unreserved prey, as well as generalist predator are insignificantly affected by changes in μ_2. However, an increase in μ_2 leads to an increase in the density of specialist predators as shown in Figure 5(a) and vice versa as illustrated in Figure 5(b). This indicates an abundance of prey in exposed areas, increasing the rate at which prey becomes food for specialist predators.

![Fig. 5](image)

Fig. 5 Convergence of the solution with (a) $\mu_2 = 0.95$ and (b) $\mu_2 = 0.70$.

4.6. Effect of varying the attack rate ξ_1

The System 2 loses persistence as a result of the numerous oscillations caused by an increase in the value of ξ_1, and the chain is broken as depicted in Figure 6(a). However, the solutions asymptotically approach the stable points (26.3, 41.1, 0.6, 1.2) when $\xi_1 = 0.75$ and (17.1, 36.3, 1.5, 9.0) when $\xi_1 = 0.1$.

DOI: 10.4236/****.2023.****

18 Journal
Fig. 6 Convergence of the solution with (a) $\xi_1 = 0.75$ and (b) $\xi_1 = 0.1$.

5. Conclusions

In this paper, a total of five equilibrium points were found to exist and the conditions for their existence derived. Using the eigenvalue approach, Routh-Hurwitz criterion and the Lyapunov technique, all the equilibrium points of the System 2 were investigated for their stability and the conditions for asymptotic stability of each derived. To verify the analytical results, numerical simulations have been performed using MATLAB function ode45 software package and time series graphs of the solutions of System 2 drawn using the in-built ordinary differential equation solver. According to the simulation results, the solutions of the System 2 have been found to undergo a few oscillations before settling down to the equilibrium points in the long run. Moreover, a small variation in the migratory parameters γ_1 and γ_2 caused the species to significantly change. Hence, this confirms the significance of the reserved zone in affecting the dynamical stability of the System 2.

Acknowledgements

Odhiambo Francis thanks his distinguished academic supervisors for their selfless sacrifice in guiding me and proofreading of this document. Professor Bernard Okelo has been so instrumental in ensuring that quality is kept at bar from the beginning to this end. God bless you.

Declaration

Conflict of interest: The authors declare no conflict of interest. The authors have no relevant financial interest to disclose.
References

