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Abstract

In automated vehicles, environment perception is performed by various sensor types, such as cameras,
radars, lidars, and ultrasonics. Simulation models of these, sensors as required in virtual validation
methods, are available in various degrees of detail. However, proving the validity of such models is
a subject of research. New metrics and methods for credibility assessment of simulation are needed
to standardize the validation process in the future. The so-called double validation metric (DVM)
has shown advantages and allows an intuitive interpretability of the validation results. The DVM
has so far only been applied to lidar sensor models. In this paper, an extension to the DVM is
introduced, which is called the DVM Map. A static measurement scenario is conducted in reality
and transferred into simulation. The novel method is demonstrated on the obtained real and sim-
ulated radar sensor data. In this simple scenario special focus is put on the position accuracy of
GNSS reference sensors. Therefore, their impact on the result of sensor model validation is dis-
cussed. The paper shows that the method provides a more detailed and accurate validation of a
radar simulation, revealing previously undetected simulation errors. Errors due to the environment
model, signal propagation, and signal processing are separated and satellite imagery is used for
intuitive visualization of the results. This method is a complementary tool to existing validation
techniques to improve the interpretability and judging the trustworthiness of radar simulations.

Keywords: Radar model validation, Double Area Validation Metric, DVM Map, Radar Cuboid Interface,

Detections Interface
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1 Introduction: What is so
Special about Automotive
Radar Modeling?

Simulation is playing an increasingly important
role in proving the safety of automated vehicles.
New procedures are envisaged in institutions such
as UNECE [1, p. 5, 6], where simulation will be
an integral part of the certification process. Auto-
mated vehicles (SAE level 3+ [2]) rely on robust
environment perception with multiple sensor tech-
nologies. Radar (“radio detection and ranging”)
is one of these technologies, where a signal is
actively transmitted to receive the echo instead of
passively collecting it from other sources, like cam-
eras. Automotive radar sensors commonly used in
series production at different OEMs are based on
the frequency modulated chirp-sequence principle,
which is used to determine the range and the angu-
lar position of objects via antenna patches with
respect to the sensor. What makes radars unique
among current perception sensor technologies is
their ability to also measure the radial velocity
via the Doppler effect. This leads to an addi-
tional dimension of information and a radar ”point
cloud” therefore includes range r, azimuth angle
ϕ, elevation angle θ, radar cross section (RCS) σ,
and relative radial velocity v.

 

Fig. 1: Comparison of a radar (left) and lidar (right) “point clouds”, projected into the captured scene with
parking cars [3, p. 3]. The color represents the intensity-equivalent value per detection.
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Fig. 2: An abstracted radar processing chain with elements visualized as blocks with rounded corners. The group
within the processing chain is visualized as dashed rounded blocks and the sensor interfaces are marked as edged
blocks.

As shown in Fig. 1, a radar “point cloud”, or
more precise a radar “detection list” [4], appears
more sparse and unstructured when compared
to lidar. It becomes visible that modern digital
beam forming radar sensors are not structuring
the scans of the environment in a per layer order,
as current time-of-flight lidar (“light detection and
ranging”) sensors do with their laser beams. The
unstructered and more noisy appearance of radar
detections is reasoned in the radar sensor’s sig-
nal processing. Its front end, as shown in Fig. 2,
entails the signal reception via the antennas and
analog-to-digital conversion (ADC). After apply-
ing a fast Fourier transform (FFT) algorithm, the
time-based signal is structured into the so-called
radar cuboid. This term means a cubic multi-
dimensional volume, often called radar cube for
simplicity. It consists of multiple cells, so-called
”bins”, that can be divided into the dimensions
range ιr, relative radial velocity ιv, azimuth ιφ,
and elevation ιθ.

To enhance explicability, in the remainder,
the content is limited to radars with range,
azimuth, and radial velocity dimensions. How-
ever, the methodology can be applied to elevation
without restriction.
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The three dimensions of the radar cuboid are
visualized in Fig. 3 with one single bin colored
in orange and the teal color depicting the bins of
the radar cuboid at a relative radial velocity of
0 m

 

s . Each bin contains a power ratio P in dB,
which is calculated from the transmitted and the
received signal. The number of bins Ir/v/φ/θ of
each dimension results from sensor design param-
eters like bandwidth, sampling rate and measure-
ment time, as well as the configuration of the
antennas. Except for digitization itself, only infor-
mation due to windowing and noise is lost at radar
cuboid level. Because of this condensation of all
digital available information, it is reasonable to
simulate the synthetic data with chirp sequence
frequency modulated continuous wave radars with
uniform array antennas at this very early inter-
face, as shown in Fig. 3. For the required level
of detail in simulation-based safety validation of
automated driving, low-level interfaces must be
taken into account to simulate specific perception
tasks due to challenging environmental conditions
or object constellations. Furthermore, simulated
low level interfaces enable to enhance early signal
processing.

Pιr=Ir,ιφ=Iφ,ιv=Iv

ιr
nr = Ir

ιφ
nφ = Iφ

ιv
nv = Iv

Fig. 3: Visualization of the radar cuboid with bins in
range denoted as r, azimuth as ϕ and Doppler as v.
The overall number of bins is I and one bin in the cor-
responding dimension is ι. In orange one bin with the
power value P at the position Ir, Iφ, Iv is highlighted.
The teal colored front marks the radar cuboid at the
Doppler bin 0, which is of interest for static validation
studies.

Nevertheless, it will not be sufficient to have
only a simulation model of a sensor available,
but the validity of the sensor model must be

proven along with its delivery. Only in this case
simulation models can also be used in a trust-
worthy manner for safety assessments, as already
envisaged by the UNECE [1, p. 5, 6]. Therefore,
the complexity of radar measurements is due to
noise based on multi-path propagation and RCS
sensitivities. Also the lack of public data sets
and limitations in measurement repeatability is
challenging [5]. Additionally, the number of detec-
tions depends on multiple causes and the noise of
the sensor is complex due to the high frequency
hardware components.
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2 Discussion of Metrics for
Validation of Active
Perception Sensor
Simulation

In this chapter validation metrics from literature
for radar model validation are listed and evalu-
ated. Finally, an overview of the DVM and its
application on lidar data is given.

2.1 Comprehensive Review of

Already Used Validation Metrics

According to Oberkampf and Trucano, validation
is the “process of determining the degree to which

a model is an accurate representation of the real

world from the perspective of the intended uses of

the model.” [6, p. 719] Viehof [7, p. 91] introduced
the so-called sample-vise validity in the context
of vehicle simulation validation. Therefore, radar
sensor model validation is understood as the com-
parison of synthetic and real sensor data with
decent metrics, sample-wise for a specific region
of the desired parameter space of the applica-
tion area. However, this means not only to be
able to access the real sensor to simulate at the
specific interface of interest, but also to design
measurement campaigns according to the cause-
effect chains that are modeled and investigated for
a specific sample of the possible parameter space
of the sensor model.

As described in the previous section, radar
sensor modeling is a special case, as e.g. the rel-
ative velocity is directly measured. Validation of
radar sensor models is a complex task due to the
complexity of radar measurements, as outlined in
the previous section. Besides experiment design
to optimize repeatability and reproducibility of
measurements, while minimizing epistemic and
aleatory uncertainties in reference data, the met-
rics for comparing real and synthetic data play a
crucial role in validation. Aleatory uncertainty is a
statistical deviation based on probability distribu-
tions in data. Epistemic uncertainty means a lack
of information regarding model structure, world
knowledge and measurement errors. [8] While
epistemic uncertainties can and should be reduced
by enhanced reference data collection, aleatory
uncertainties describe the inherent randomness of
measurements.

A first decision guidance for metric selection
is provided by the seven criteria for validation
metrics as refined by Rosenberger [9, p. 99] and
e.g. used by Magosi [10, p. 11], which were con-
densed by Schaermann [11, pp. 20-21], combining
the original lists of six criteria by Oberkampf and
Barone [12, pp. 11-12] and the seven features from
Liu et al. [13, p. 2]:

1. Metrics meet the mathematical properties of a
metric as defined by Fréchet [14]. (Unbounded
results)

2. Metrics are intuitive. (Plausible & output in
unit of measurand)

3. Metrics are applicable to both deterministic
and non-deterministic data.

4. Metrics are quantitative and objective. (No
manually tuned parameters)

5. Metrics do not include acceptance criteria. (No
Boolean output)

6. Metrics consider uncertainties. (Epistemic and
aleatory)

7. Metrics define a confidence interval with
respect to the number of measurement data.

The state of the art in validation metrics for
active perception sensor simulation is extensively
discussed by Rosenberger [9, pp. 60ff.]. Multi-
ple metrics in this collection of 34 options are
only indirect metrics, where detections are sorted
into occupancy grids first or object detection and
tracking is applied. These cannot be applied on
radar data at earlier interfaces like radar cuboid or
detection level. Other metrics measure distances
between points in space. These do not take into
account intensity or power values. Therefore, they
are not applicable to the radar cuboid, which
is not a list of detections, but an equidistant
distributed volume filled with power values.

Tab. 1 shows an excerpt of the remaining met-
ric candidates for radar data. If a metric is capable
of a category given by the column title, it is
marked in a specific shade of green, otherwise
the cells stay blank. The table considers the data
interfaces that the metrics are or could be applied
to (D: Detections, O: Objects). Then, the ability
to be applied to (•/ ⇝ : (Quasi) static/dynamic)
scenario is provided. Additionally, in Tab. 1 the
scale of measurement it is able to process is consid-
ered (M: Metric (interval or ratio), O: Ordinal).
The uncertainties it is able to process (

∫
/

 

:
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Aleatory/epistemic) are given per metric, as well.
For the first four columns, it is marked if the met-
rics are applied without modification in literature
(x), or if the metrics are applied in literature with
moderate adaptions (⋆). Additionally, the cover-
age of the seven criteria for validation metrics from
the beginning of this section is marked in dark
green.

Typical mathematical metrics that can be
applied on object poses in space or detection
coordinates like Manhattan distance (dMa) and
overall error (OE) could be applied to the power
values for a bin-wise comparison of a synthetic
and a real radar cuboid. This also holds e.g. for
mean error

 

d, root mean squared error (RMSE)
and all other familiar error metrics from the col-
lection that are not explicitly mentioned in this
work, but listed in the original source collection.
Still, none of these strictly mathematical metrics
accounts for aleatory or epistemic uncertainties,
which disqualifies them to be applied for radar
sensor model validation on the detection or radar
cuboid interface, due to the scattering charac-
ters. The machine learning-based Deep Evaluation
Metric (DEM) as introduced by Ngo [15] is used
to measure an overall simulation-to-reality gap,
but it does not cover most of the seven crite-
ria. Additionally, there is a lack of interpretability
of the results, making it difficult to make safety
arguments based on this metric. Also it does not
provide insights on how to calibrate and enhance
a sensor model and is therefore not considered in
the following.

Consequently, only the Kullback–Leibler diver-
gence DKL as applied by Schaermann [11],
the Jensen-Shannon distance dJS as used by
Magosi et al. [10], the area validation metric
(AVM) dAVM introduced by Ferson et al. [16], and
the Frequency of positive Kolmogorov-Smirnov
tests fKS, as applied by Eder [17] remain as met-
ric candidates. This means that besides the AVM
as best candidate, two families of metrics should
be evaluated further, namely divergences and
hypothesis testing. Clearly, both are not intuitive
concepts for most people and involve some more
abstract thinking compared to just computing the
area between two curves, as done for cumula-
tive distribution functions (CDFs) or empirical
cumulative distribution functions (EDFs) in case
of the AVM. Rosenberger presents a detailed

analysis of both metric candidate families [9,
pp. 105ff.], where the technique of manufactured
universes [18] is used to compare EDFs from an
artificial “simulation” against an EDF from an
artificial “real” sensor.

After showing hypothesis testing results for the
different compared EDFs and a short summary on
the ongoing discussions on these kinds of tests in
general, this metric family is dismissed for sensor
model validation due to the sometimes misleading
and above all counter-intuitive results. They are
not available in the unit of the measurand, which
makes it less user-friendly e.g. in model specifica-
tion, especially for negotiations with people with
non-technical background. The same difficulties
in interpretation of the results from comparing
the different EDFs are present when applying
Kullback–Leibler divergence or Jensen-Shannon
distance, leading to not further considering them
for sensor model validation, too.

The remaining metric candidate is the AVM
that is simply the integral of the absolute differ-
ence between two CDFs F, F̃ over all real and
simulated sensor measurements

dAVM(F, F̃ ) =

∫
∞

−∞

|F (ζ)− F̃ (ζ)| dζ . (1)

Due to the fact that the cumulated probability
F (ζ) for each measurand ζ is limited to [0, 1] and
unitless with m (e.g. 100) quantiles, the integral
can be applied over the ordinate resulting in the
mean error of all m quantiles of the CDF like

dAVM(F, F̃ ) =

∫ 1

0

|ζ(F )− ζ̃(F )| dF

=
1

m

m∑

i=1

|ζ(Fi)− ζ̃(Fi)| .

(2)

Therefore, the AVM is very similar to the mean
error of all n measurements

d =
1

n

n∑

i=1

|ζi − ζ̃i| . (3)

As visible in Tab. 1, the AVM is the only
metric that handles aleatory and epistemic uncer-
tainties. This ability is reasoned by the fact that it
is not only applicable on EDFs describing aleatory
uncertainties, but also on so-called probability
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Table 1: Excerpt of the evaluation of metrics applied for active perception sensor simulation from Rosenberger [9,
p. 99]. Green color: Metric is capable of a category, x/⋆: Metric applied in literature without/with adaptions.

 

Metric
Interf. Scen. Scale Unc. Covered criteria

D O • ⇝ M O
∫

1 2 3 4 5 6 7

dMa x x x
OE ⋆ x x x

d x x x
RMSE x x x x

DKL ⋆ x x x x x
dJS x x x x

dAVM ⋆ x x x x

fKS x x x x

DEM x x x

boxes (p-boxes). A p-box is expressed by the
left and right boundaries of multiple EDFs. The
width of the p-box at each quantile describes the
epistemic uncertainties, as in Fig. 4 for the two
simulation EDFs. First introduced by Williamson
and Downs [19], a p-box gives the possible interval
of cumulative probabilities for a specific measur-
and x and for a given cumulative probability it
gives a possible interval of values, as discussed in
detail e.g. by Ferson et al. [20].

As epistemic and aleatory uncertainties should
always be minimized during measurements, but
can never be eliminated, they must be propagated
through the simulation to reflect these uncertain-
ties when the model is validated. Practically, this
means that e.g. every position of a sensed object
must be captured with reference sensors during
the measurements to collect the real sensor data to
validate the model. The uncertainty of this refer-
ence position measurement device, e.g. +/-1.0 cm,
is then input for multiple simulations per measure-
ment, e.g. one with the exact reference position
and two more for the edge cases of +/-1.0 cm.
These multiple simulations result in several EDFs
and a combination of all EDFs from simulation
forms the p-box. Its boundaries are composed of
the maximum and minimum x-values of the set of
EDFs for each y-value.

The AVM for p-boxes is simply calculated by
adding the two portions where the simulated p-
box F̃ is higher (d+) or lower (d−) than the real
p-box F as

dAVM(F , F̃) = d− + d+ . (4)

For simplification, in Fig. 4 the EDF F is an
infinitely thin p-box. Consequently, the AVM only
considers the left and the right borders of the
p-box, the original course of each EDF inside is
irrelevant and the borders could actually originate
from different EDFs.

˜
F

F

Fig. 4: Portions of the AVM, where the simulated p-

box F̃ is higher (d+) or lower (d−) than the real EDF
F , based on Voyles and Roy [21].
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2.2 The DVM and its Application

in Validation of Lidar Sensor

Simulation

An additional requirement on validation metrics
is the ability to distinguish model bias and model
scattering error to enable the structured elimi-
nation of these two different modeling errors [9,
p. 72]. Model bias is an approximation of the
mean deviation and model scattering error the
deviation in the distribution function’s shape.
Fig. 5 illustrates the difference between model and
measurement bias and also shows the difference
between the measurement standard deviation and
the model scattering error. Indeed, measurement
bias and scattering error are conceptually similar
to the differences in mean and variance between a
set of normal distributions However, the distribu-
tion functions of the measurand can deviate from
normal distributions.

 

Ideal

value

Measured

bias

Simulated

bias

Probability

Density Measurement

bias

(vs. trueness)

Model

bias

Measured

standard

deviation

(vs. precision)

Simulated

standard

deviation

0
Measurand

Fig. 5: Bias and scattering of measurement and
model [9, p. 11].

Rosenberger therefore introduced the DVM
that distinguishes the two components [9,
p. 118ff.]. The first part is essentially the difference
of d+ and d− in comparison to the original AVM
as sum of these two portions. Voyles and Roy [21]
introduced this difference that is proven to be a
good estimate for the model bias as

dbias(F , F̃) = d− − d+ . (5)

It eliminates symmetrically distributed area
portions of the AVM, which reflect the model scat-
tering error and therefore only keeps the model
bias. Consequently, (5) can be used to estimate a

“corrected” [21] p-box as

F̃c(ζ) = F̃(ζ − dbias) = F̃

(
ζ − (d− − d+)

)
. (6)

Taking this idea of a corrected, bias-free sim-
ulated p-box further, a second-order AVM can
be computed with F̃c that now only entails the
remaining model scattering error. This novel met-
ric introduced by Rosenberger [9, p. 118] is called
corrected AVM (CAVM) and formulated as

dCAVM(F , F̃) = dAVM(F , F̃c) = d−c + d+c . (7)

As illustrated in Fig. 6, the CAVM is a multi-
step process that inherently includes the calcula-
tion of the model bias on its way. It starts with
the calculation of d+ and d− for dbias (5). Then

the simulated p-box is corrected by dbias to get F̃c

(6). Finally, d+c and d−c are calculated, resulting in
dCAVM (7).

Consequently, the novel DVM for comparison
of two p-boxes F , or EDF F as infinitely thin p-
boxes, is achieved that distinguishes model bias
and model scattering error with respect to the
actual sensor bias and its real scattering behavior,
as

dDVM(F , F̃) =
(
dbias(F , F̃), dCAVM(F , F̃)

)
.

(8)

Aligned with distinguishing model bias and
model scattering error, model validation should
start simple to reach more complex scenarios later.
Accordingly, Rosenberger starts with demonstrat-
ing the DVM for beam-wise model evaluation in
static scenarios, like targets in different distances
with no other effects taking place, to more com-
plex and object-wise validation of synthetic lidar
detections. Aside from the interpretability of the
results in the unit of the measurand, the accu-
racies are considered by the reference tests using
the p-boxes. Consequently, for radar model valida-
tion, the validation should follow this incremental
approach. The experimenter should take special
care to consider isolated cause-effect chains, which
influence the radar signal propagation. A possi-
ble ontology to derive them is PerCollECT [22] as
available on Github [23].
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(b) CAVM calculation with F̃c.

Fig. 6: Illustration of the CAVM [9, p. 118] in a
lidar sensor measurement campaign. A plate is placed
in front of the sensor at 10m in a static scenario.
rnom and rref are the nominal and measured reference
range. n and ñ1 are the number of detections from real
data and simulation sim1, which is a control factor
for the comparison of the different EDFs [9, p. 103].

These F is the EDF from real data. F̃ is the p-box

from simulation. F̃c is the simulated p-box corrected
with the estimated model bias dbias. d

+ and d− mark

areas where the simulated p-box F̃ is higher (+) or

lower (-) than the real EDF F . d+c and d−c mark areas

where the corrected simulated p-box F̃c is higher (+)
or lower (-) than the real EDF F .

Besides the DVM there are other applications
of the AVM described in the literature. Brune
et al. compare in their application the left and
right edges of the measurement and simulation
p-boxes with each other [24]. Compared to the
DVM, this approach offers the advantage that the
p-box size is included in the metric result. This
aspect is missing in the DVM according to Rosen-
berger. However, Brune’s AVM does not explicitly

consider the scattering error of the distribution
function, which means that the information about
the shape similarity of the p-box is lost. Fig. 7
shows the AVM according to Brune et al. and illus-
trates how the size of the p-boxes is incorporated
into the result of the AVM.
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Fig. 7: Visualization of the AVM calculation dL and
dR based on the left and right border comparison

between measurement FL, FR and simulation F̃L,

F̃R, based on Brune et al. [24]

2.3 Double validation metric

limitations

As mentioned in Sec. 1, the measurement of the
radial relative component of the velocity is possi-
ble with radar sensors. This allows the discussion
of the DVM to model validation in dynamic sce-
narios. As already shown by Holder, even simple
measurement scenarios are subject to difficulties
regarding repeatability of complex geometries that
must be taken into account [25]. Fig. 8 shows the
variation of the RCS denoted as Q(σ) over the
distance in the radar sensor coordinate system
denoted as Sr of a retroreflector, which is a corner
cube reflector (CCR), and a vehicle.

Therefore, in order to apply the metric, it is
advisable to introduce p-boxes for the measure-
ment data to consider the limited measurement
repeatability and take them into account in the
metric result. Based on Fig. 8 and the limited
reproducibility the size of the measurement p-box
and the distribution of EDFs must be part of the
metric.
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Additionally, the size of the simulation p-box
is a factor influencing the quality of the DVM.
These properties are missing in the DVM accord-
ing to Rosenberger because these characteristics
are lost during the transformation of EDFs to p-
boxes. Theoretically constructed edge cases (ECs)
substantiate the previous remarks. These ECs
can appear in the application of the validation
methodology to radar due to the sensitivity of
the model to small changes in reference sensor
measurement uncertainties, but also due to the
problem of reproducibility of measurements.

Fig. 9 shows the first ECs with the results
of the Rosenberger’s DVM and the evaluation
according to Brune et al. [24].

 

Fig. 8: RCS in different experiment trials of a CCR in blue and a Golf Mk5 in black [25].
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Fig. 9: EC 1 of the DVM definition by Rosenberger and AVM calculation by Brune. On the left side the EDFs
are visualized. On the right side the p-boxes of measurement and simulation are shown with the corresponding
colored area.

−10 0 10
0

0.2

0.4

0.6

0.8

1

E
D
F
s

Measurand

C
u
m
u
la
ti
v
e
p
ro
b
a
b
il
it
y EDF Sim

EDF Meas

−10 0 10
0

0.2

0.4

0.6

0.8

1

P
-B

o
x
S
im

a
n
d
M
ea
s

Measurand

C
u
m
u
la
ti
v
e
p
ro
b
a
b
il
it
y P-Box left Meas

P-Box right Meas

P-Box left Sim

P-Box right Sim

d
+=1.95 d

−=0

dL=4.88 dR=0

Fig. 10: EC 2 of the DVM definition by Rosenberger and AVM calculation by Brune.

It addresses, on the one hand, the size of the
p-box and the overlap of the simulation and mea-
surement p-box. To proof the independence of the
methodology regarding the number of simulation
and measurement EDFs, the combination of EDFs
is varied.

Fig. 9 illustrates EC 1 consisting of a large sim-
ulation p-box in comparison to the measurement.
Additionally, the right side of the simulation p-
box equals the left side of the measuremnt p-box.
The AVM and the CAVM are both 0 and there-
fore the model is valid based on the DVM. The
extension by Brune of the AVM covers this EC by
resulting in a dL, which has the same value as the
simulation’s p-box size.
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Fig. 10 shows EC 2 with a large measurement
p-box in comparison to the simulation. A concen-
tration of measurements EDFs on the right side
is also present. For Rosenberger’s DVM the simu-
lation results are only the deviation between the
right simulation and left measurement EDF. The
AVM is small and the CAVM is almost 0, because
the shape of the right simulation and left mea-
surement EDF are nearly identical. Also the AVM
definition by Brune fails in this case. The value for
dL covers just the offset between the two p-boxes.

Fig. 11 visualizes EC 3 consisting of two sim-
ulation EDFs at the left and the right side, which
are very similar in shape. Between the outer dis-
tributions there are several simulation EDFs that
show a completely different distribution shape. By
forming the simulation p-box, the information of
the inner distributions is lost. This leads to the
fact that the deviations in the shape of the distri-
bution function are insufficiently considered in the
DVM validity consideration. Brune’s AVM covers
the big size of the simulation p-box but fails with
identifying the inner distribution functions.

Fig. 12 illustrates EC 4, which is similar to
number 2, where the distribution of the simulation
distribution functions has no effect on the valida-
tion result itself. In the case of Brune’s AVM, only
the total deviation of the p-boxes is quantified.
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Fig. 11: EC 3 of the DVM definition by Rosenberger and AVM calculation by Brune.
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Fig. 12: EC 4 of the DVM definition by Rosenberger and AVM calculation by Brune.

However, the important information of the accu-
mulation of distribution functions at the right side
of the simulation p-box is lost, which could be
helpful for the modeler and the experimenter.

The presented ECs show the lack of the two
validation metrics. Especially the distribution of
the EDFs within the p-box borders are disre-
garded. Another disadvantage is that an assign-
ment of the EDF outliers, which results from
parameters varied in the simulation, to the val-
idation result is excluded. Generally, the intro-
duction of p-boxes obscures the validation result
and leads to potential misinterpretation. There-
fore, the methodology to apply the DVM has to
be extended and modified.

In order to ensure comparability of simulated
and real data based on DVM, it is essential to
include the number of data points in the evalua-
tion process. A deviation in the numbers between
simulation and measurement of 10% is consid-
ered as an acceptable limit in the remainder of
this paper by the authors. At the detection level,
this is particularly problematic in the case of the
radar sensor, as the number of detections can vary
greatly between individual measurement cycles,
for example due to clutter from vegetation or rain.
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3 Radar validation
methodology

In this chapter, based on the theoretical ECs,
the methodology for determining the DVM is
adapted. Furthermore, it is shown how the new
methodology can be applied to radar data.

3.1 The DVM Map

To overcome the DVM limitations of simulation
and measurement p-box size as well as distribu-
tion and shape of EDFs an adaption of the DVM
is necessary. Fig. 13 shows the adapted valida-
tion methodology based on the AVM and CAVM
metric. Compared to Rosenberger, the measure-
ment and simulation p-boxes are resolved and
each simulation is compared to each measurement,
deriving the new ”DVM Map” as a validity tool
visualized as a heat map.
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Fig. 13: This figure shows the adapted DVM method-
ology to address the different ECs with the new DVM
Map as intermediate step.

In a first step, the AVM is formed for each
simulation EDF in combination with each mea-
surement and corrected by the determined dbias
according to (5). The absolute value of |dbias| is
used for visualization in the DVM map so that for
negative and positive model bias, the color value
of the scale is unambiguous. Following the afore-
mentioned procedure, the corresponding CAVM is
formed and dCAVM determined according to (7).
This results in a value for the model bias and the
scattering error for each simulation in comparison
to each measurement. The scattering error finds
an intuitive explanation in the shape deviation of
the corrected simulation EDF in comparison to
the measurement EDF. To calculate the overall
comparison score dSum the absolute value of the
model bias is added with the CAVM result as

dSum = |dbias|+ dCAVM. (9)

These deviations of the simulation can be quanti-
fied in comparison to all measurements. Therefore,
the DVM Map shows the most critical measure-
ment and simulation of the corresponding refer-
ence data uncertainty. When the results of the
DVM Map need to be further processed, the max-
imum of dSum is formed, thus identifying the most
critical combination of measured and simulation
data for sample validation. To demonstrate the
utility of the newly developed DVM Map, the ECs
from Fig. 9 to Fig. 12 are re-examined.

Fig. 14 is sorted by the ECs from left to right
and shows the results for |dbias|, dCAVM and dSum
from top to bottom. The DVMMap of EC 1 shows
that the large model bias of simulation 2 can be
compensated. The CAVM shows minor deviations
since the shape of all EDFs is similar to each other.
It can be seen that the combination of measure-
ment 2 and simulation 1 performs worst in terms
of sample validity.

For EC 2, the focus is also on model bias
examination. The accumulations of EDFs on the
right-hand side are clearly evident, with simu-
lation 1 deviating more than simulation 2. The
result also shows up in dsum, resolving the EC.

EC 3 shows that the distribution of the dif-
ferent simulation EDFs can be mapped using the
dCAVM. However, the influence of dbias predomi-
nates for simulation 1.

EC 4 shows that the DVM Map can also
reproduce high deviations of the simulation and
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Fig. 14: DVM Map of the ECs defined in Fig. 9 to
Fig. 12 processed with the newly introduced method-
ology. From left to right, the various ECs are shown.
From top to bottom the DVM Map of |dbias|, dCAVM
and dSum is illustrated. The coloring corresponds to
the quantitative deviation of the corresponding value,
where blue means low and red means high. The upper
and lower limit of the scale is determined by the mini-
mum and maximum value in the corresponding DVM
Map.

thus reflects valuable information regarding sam-
ple validity and the influence of various aleatory
uncertainties.

3.2 DVM Map Application on

Radar Sensor Interfaces

Fig. 15 shows the methodology application to
radar cuboid and detections in a study of sample
validity of a radar model. The first step is to run
defined scenarios in the real world (bright red).
In addition to the measurement data at detection
and radar cuboid level, the measurement cam-
paign yields the operational reference data, which
is subject to epistemic and aleatory uncertainties.
Operational reference data means is this context
the ability to take a reference measurement with
additional sensors independent from the radar sen-
sor. The uncertainties are determined by means of
reference sensors or reference sources.

The measured reference data is transferred to
the simulation (light blue) in a further step. Here,
in addition to the measured reference value, the
epistemic uncertainties are propagated through
the simulation. As a result, simulation data on
detection and radar cuboid level are available,
where the number of simulations depends on the
number of simulated uncertainties.

Different variants of the new validation
methodology can then be applied to the measure-
ment and simulation data. First, a very rough con-
sideration of all detections and all cells of the radar
cuboid is advisable. From this, basic deviation of
the sensor model from the measured data can be
derived, as well as which uncertainty combina-
tion together with which measurement shows the
largest measurand deviation. This allows conclu-
sions to be drawn about gross modeling errors, as
well as measurement outliers, provided the num-
ber of measurements is large enough to identify
outliers.

Detections and the corresponding bins in the
radar cuboid are of great interest of a validation
study. This can be justified firstly by the fact
that detections represent the input for all sub-
sequent steps of radar processing, and secondly
that here, either due to the environment or due
to objects, power differences are present that a
simulation model should represent. Therefore, the
time aggregated detection data from all measure-
ments are clustered using a Density-Based Spatial
Clustering of Applications with Noise (DBSCAN)
algorithm and thus a region of interest is defined,
which in turn can be transformed into cells of
the radar cuboid. By applying the new methodol-
ogy, individual areas of particular interest in the
radar measurement are examinable in a dedicated
manner.

Finally, an application of the radar validation
methodology to each individual cell of the radar
cuboid is performed. Local effects and influences
are the focus of the investigation and provide valu-
able information about the model sensitivity with
respect to the reference sensor uncertainties. By
matching the results to a satellite image detailed
investigations of the influence of the environment
are possible.
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Fig. 15: Validation methodology to apply the DVM Map to different levels in the radar processing chain. From
left to right the application of the DVM map to all detections, to the entire radar cuboid, the region of interests,
which result from time aggregated, clustered detections, associated with the corresponding radar cuboid cells and
each radar cuboid cell separately is visualized.
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4 Application validation
methodology

In this chapter the aspects considered theoreti-
cally so far are verified in the following by means
of a validation study. For this purpose, a measure-
ment campaign is carried out on the August-Euler
airfield proving ground in Griesheim. The study is
intended to serve as a proof of concept of the DVM
Map, therefore a static scenario is measured.

4.1 Experimental setup

The object in the validation study is a CCR lying
flat on the asphalt, which is placed on different
positions in front of the radar sensor. The posi-
tions differ in the range r to the radar sensor and
the azimuth angle ϕ. For r, 29.56m and 48.33m
are chosen, respectively, due to the radial resolu-
tion, so that the CCR is located once close to the
edge and once in the center of the range bins. For
ϕ, positive as well as negative angles are defined
so that the CCR is within the sensor’s unambigu-
ous azimuth measurement range and the width of
the test site is sufficient. Thus, angles of -8 °, -4 °,
0 °, 4 °, 8 ° are obtained. Fig. 16 shows a sketch
of the measurement setup with the different CCR
positions, which are measured one after another,
on the left side and the real world measurement
setup for position 1 on the right side. The posi-
tion of the CCR and the sensor is obtained using
a real time kinematic (RTK)-based global navi-
gation satellite system (GNSS) antenna. For each
measuring position, 5 measurements of 60 seconds
each are recorded with the radar sensor resulting
in approx. 850 samples.

The measurement setup and the existing mea-
surement technology result in the uncertain refer-
ence data listed in Tab. 2. Here, some parameters
are determined directly and others result from
the propagation of error of several measurement
uncertainties.

4.2 Simulation model

The reference data uncertainties listed in the table
are transferred to the simulation in a next step.
Reference data uncertainty propagation through
simulation is realized by defining separate sce-
narios with the upper + and lower limit − of
this uncertainty. Additionally, one simulation with

all uncertainty-free reference measurement data
denoted as N is integrated. For the radar simula-
tion, the output of a black box radar ray tracing
algorithm by IPG CarMaker version 9.1.1 and
an adapted open source radar signal processing
model [26] is used.

The input from the ray tracing algorithm is
interpreted in the radar model as a delta peak
in frequency space and is called ”Fourier trac-
ing” [25]. The range and angle information of the
ray is used to calculate the radar cuboid bin in
the different dimensions in which the delta peak
is located. A windowing function is used to smear
the power of the delta peak into the neighbour-
ing bins. This allows effects such as ambiguities,
separation capabilities and interferences to be
present in the radar model. In addition, a non-
deterministic noise simulation is implemented for
this model approach. Based on measurements, the
mean and standard deviation are determined for
each range-azimuth cell combination. A Gaussian
distribution with the determined parameters is
then imposed on cells whose minimum power is
below the noise floor. Fig. 17 shows the determined
mean and standard deviation as a range azimuth
map. This result is conducted by placing the sen-
sor on the asphalt with its front side pointing into
the sky.

The radar model is parameterized using the
data sheet and calibrated with position 1 of the
CCR on the detection interface. Additionally, a
simulation model of the August-Euler airfield in
Griesheim is used for the environment simulation.
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Fig. 16: Experimental setup of the validation study. CCR position 1 (rCCR,Pos1 =29.56m, ϕCCR,Pos1 =0) is
used for simulation calibration purposes and position 3 (rCCR,Pos3 =29.56m, ϕCCR,Pos3 = -8 °) is analyzed based
on the presented methodology,

Table 2: Measured reference data uncertainties for CCR position 3 defined in Fig. 16. The local cartesian
coordinate system G is defined in East-North-Up direction with the origin located on the August-Euler airfield
in Griesheim.

Reference data Variable Measurement Uncertainty

Sensor azimuth orientation in G GϕS 197.91 ◦ ± 0.07 ◦

Sensor x position in G GxS 977.43m ± 0.02m
Sensor y position in G GyS 241.56m ± 0.02m
Sensor height in G GhS 12.89m ± 0.02m

CCR x position in G GxC 948.33m ± 0.02m
CCR y position in G GyC 216.46m ± 0.02m
Edge length CCR lC 0.240m ± 0.005m
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Fig. 17: Mean value and standard deviation illustrated as range azimuth map for a Gaussian distribution noise
model.
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5 Results and Discussion

In this chapter, the different results of the DVM
Map are shown and discussed. Therefore, the
methodology defined in Sec. 3 is applied to the
static validation scenario. The DVM Map with
the new validation methodology is applied to the
different interfaces as described in Fig. 13 and
Fig. 15. In Sec. 5.1 all detections are analyzed.
Afterwards in Sec. 5.2 the results of the whole
radar cuboid is discussed. The region of interest
in the radar cuboid by means of clustered detec-
tions is described in Sec. 5.3. Finally, the results
of each cell of the radar cuboid combined with
a visualization on top of a satellite image are
shown. As an example, the previously mentioned
scenario of CCR position 3 at rCCR,Pos3 =29.56m
and ϕCCR,Pos3 = -8 ° is evaluated.

5.1 Whole Detections

This section contains the evaluation for all detec-
tions of the measurements and simulations. Fig. 18
shows all detections of all measurements com-
bined in one diagram in Cartesian coordinates,
where the origin is the sensor position. There-
fore, the EDFs of the different distributions of the
quantities r, ϕ and σ are calculated.
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Fig. 18: Plot of all detections in the Cartesian sen-
sor coordinate system. Especially in near range of the
sensor as well as at the transition of the asphalt and
vegetation clutter is present. The CCR is located at
Sx=29.4m and Sy= -4.2m

The representation of the detections as distri-
bution functions is visible the top row of Fig. 19.
The EDFs of the different measurements are close
to each other and the deviation of numbers of
detections is less than 1%. This indicates a high

reproducibility of the measurement results. How-
ever, there is a significant difference in the number
of detections between simulation and measure-
ment, which prevents a valid evaluation based on
the DVM.

Nevertheless, further analysis of the data will
be conducted to describe and analyze the general
methodology. The distributions of the detections
from the simulation are almost at the same posi-
tion in every cycle for the range as well as the
azimuth angle. However, deviations of the simu-
lations in RCS show up. The analysis of the RCS
shows that the model reacts very sensitively to
small changes of the scenario, which again empha-
sizes the necessity to consider the reference sensor
uncertainties.

The basically different distribution functions
between measured and simulated data result from
the environment model of the August-Euler air-
field as well as the ray tracing simulation. The ray
tracer used in the CarMaker version has no reflec-
tions from the road surface in the given setup as
well as no reflections from the vegetation next to
the asphalt surface due to the lack of simulated
vegetation. Therefore, only rays from the CCR
are processed as radar signal processing model
input. Thus, only detections at the object result,
whereby besides the small number of detections
also the distribution in range and azimuth are lim-
ited to the position of the CCR. However, the
detections of the CCR are in the same distance in
measurements and simulations. This can be seen
particularly well in the second row at r=29.56m
as well as ϕ= -8 ◦ by the step in the measurement
EDFs highlighted by the red ellipse.

The second row of the Fig. 19 shows the simu-
lation EDFs F̃c corrected by the model bias dbias
based on the AVM calculation to measurement 1.
This represents the second step of the method-
ology from Sec. 3. It is already evident, without
a quantitative determination of the deviation by
means of dCAVM, the fundamental difference of the
distribution functions.
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Fig. 19: From left to right are the range, azimuth, and RCS results of all detections. The first row visualizes

the EDF of all measurements F and of all simulations F̃ . In the second row the EDF of measurement
1 FMeas1 and the corrected simulation EDFs F̃c are shown. The red circles illustrate the data points in
the measurement EDFs where the CCR is located. The last two rows show the DVM Map of the above
mentioned quantities. The number of detections of the measurement n and simulation ñ is in the legend.
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The DVM Map in Fig. 19 verifies the findings
already made from the first visual impression. In
the range domain, the constancy of the simulation
of dbias and dCAVM stands out. In the range, the
simulation model is insensitive to the simulated
uncertainties. This is due to the fact, that the mea-
surement uncertainties are very small compared
to the radar’s range resolution of 1.8m. Measure-
ment 1 and 5 show the smallest deviations in the
model bias and measurement 2 the largest devi-
ation. The scattering error of measurement 2 is
largest and lowest for measurement 5 for the range
dimension. Thus, the differences in the results of
the DVM Map are due only to the differences in
the measurements.

In the case of the azimuth dimension, the
model is slightly more sensitive, as shown by the
minor color changes in the perpendicular compo-
nents of the DVM Map. These variations are small
compared to the measurement influence shown in
the horizontal of the various uncertainties. Here,
the negative variations of the y-position and the
rotation ϕ of the sensor are the uncertainties with
the most notable influence on the result.

For the RCS, in turn, the negative x-position of
the CCR variation and the negative sensor height
variation have the largest influence. All parame-
ters have a clear but different influence on the RCS
distribution of detections. In addition, it is shown
that the DVM Map is able to represent the dif-
ferent positions of the EDFs with respect to each
other in a very intuitive and simple way.

The influence of the environment in combina-
tion with the ray tracing algorithm as stated above
is simply too large to make a validity statement by
means of the analysis of all detections. However,
the analysis of all radar detections can be used to
compare stochastic effects from the environment.
This includes not only influences like vegetation
but also weather influences like rain and snowfall.

5.2 Whole Radar Cuboid

In this section the DVM Map is applied to the
whole radar cuboid. The only dimension consid-
ered in this case is the power distribution P of all
cells of the radar cuboid, with the velocity dimen-
sion reduced to one cell ιv = 0. This reduces the
radar cuboid to a range-azimuth map where each
cell holds a spectral power value. Fig. 20 shows

the EDFs of simulation and measurement as well
as the corresponding DVM Map.

The course of the simulation EDFs is charac-
terized by the noise simulation at the beginning.
Only above -82 dB the effect of the radar cuboid
cells filled by the CCR with a higher power is vis-
ible. In relation to the number, however, these are
represented much less frequently, so that the gray
curves just above -80 dB are just close to 100%
cumulative probability. All simulation runs are
very close to each other and show only minor dif-
ferences. This observation is again justified based
on the sensor noise simulation introduced into the
model. Nevertheless, the measurement EDFs devi-
ate from the simulation course by a few dB up
to -80 dB. Above -80 dB the model of the envi-
ronment and the ray tracing algorithm become
noticeable again. Due to reflections of the environ-
ment, cells of the radar cuboid in the measurement
are filled with power up to -60 dB. Subsequently,
the effect of the CCR is visible in the form of steps
at -43 dB up to -20 dB in the EDFs.

The corrected EDFs are also close to each
other, which means that only small deviations in
the dCAVM are to be expected. The number of cells
still indicates that the cycle time of the simulation
model does not yet match the real sensor. Never-
theless, the deviation in the number of data points
allows a comparison because the deviation is less
than 10%. The problem of comparability, as evi-
dent in Sec. 5.1 when analyzing all detections, is
less present in the radar cuboid.

The values of the dbias are close to the real
measurement due to the noise simulation and
a deviation of 3.5 dB is tolerate able given the
dynamic range of a radar sensor that spans over
80 dB. Measurement 2 and 3 show the largest
deviations to all simulation parameters, with an
increased sensitivity of the model to the uncer-
tainties Cx

−, Sy
− as well as Sh

−.
dCAVM is around 3.5 dB and can be justified

by the aleatory uncertainties of the environment
on the measurement result. Different areas on the
test track produce higher powers in the measure-
ment, which the environment simulation does not
cover. In conclusion, the noise simulation distorts
the influence of the environment model and the
ray tracing algorithm. Thus, before integrating
stochastic effects, it is recommended to analyze
and optimize the whole simulation chain with ideal
test objects and small region of interests.
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+ ñ: 1345792

Meas2 n: 1456896 Sφ
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+ ñ: 1345792 Cx
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Fig. 20: The DVM Map of the whole radar cuboid is shown. The first diagram visualizes the EDF of all mea-

surements F and of all simulations F̃ . In the second one the EDF of measurement 1 FMeas1 and the corrected

simulation EDFs F̃c are shown. The second row shows the DVM Map of the above mentioned quantities. The
number of analyzed radar cuboid cells of the measurement n and simulation ñ is in the legend.



Metric for Radar Sensor Models

5.3 Clustered Detections on Radar

Cuboid Level

In this section, the results of clustered detections
at radar cuboid level are presented and analyzed.
Fig. 22 shows the position of the clustered detec-
tions in the Cartesian sensor coordinate system.
The cluster of CCR is number 5 and highlighted
in the figure with a red circle at Sx=29.4m and

Sy= -4.2m. At close range of the sensor, some
detections are visible due to the reflection of
the road surface. Especially on the x-axis and
in the edge region of the sensor more detections
due to this effect show up. All detections from

Sx=40m are located at the road border where the
asphalt ends and the vegetation starts. This clut-
ter is present in all measurements and differs only
slightly between measurements.

In detail, the CCR and the corresponding bins
of the radar cuboid are considered below. The
upper part of Fig. 21 again represents the uncor-
rected and corrected EDFs of simulations and
measurements and measurement 1, respectively.

The step shape visible in the measurements
results from the 4 different range azimuth cells
analyzed in the evaluation based on the CCR’s
position. The variations of a cell are within a few
dB over time, which can be seen in the slope
of the EDFs. Furthermore, the reproducibility of
the measurements is exceptionally high, which
is reflected in the overlap of the courses of the
measurements.
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Fig. 22: Clustered radar detections of all measurements in the sensor coordinate system, where the color represents
the belonging to a cluster. The red circle at Sx=29.4m and Sy= -4.2m shows cluster 5, where the CCR is located.

In general, the simulations have a clear model
bias. Here, the first modeling errors of the signal
processing are evident. The model is calibrated to
the RCS of the CCR at position 1 and therefore a
difference in the calculation of the RCS from the
radar cuboid power to the detections exists.

Furthermore, there is a clear influence of the
uncertainties propagated by the simulation. In
three simulations, the step shape is similar to the
measurements, but the slope itself is more sub-
stantially smeared and not as steep. All other
simulations have a much lower slope after the ini-
tial step. The beginning of the simulation slopes
can be explained by the noise simulation. Two
radar cuboid cells are considered here, which are
not yet affected by the power increase due to the
CCR. From this, a modeling error can again be
identified. The window functions of the real sensor
differ from those of the simulation model because
the power increase of the CCR does not smear as
far into neighboring bins as in the measurement.
The discrepancy in the number of cell values con-
sidered indicates a sampling difference between
the model and the real sensor.

The previously described findings from the
EDFs are also reflected in the DVM Map. The
simulations of Sy

−, Cx
− as well as Sh

− show the
lowest deviations in model bias as well as scatter-
ing error. This is in agreement with the findings
from Sec. 5.2, where also the mentioned uncer-
tainties represent the smallest deviation (see also
Fig. 20).
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− ñ: 1502 Cy
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Fig. 21: The uncorrected and corrected EDFs as well as the DVM Map with dSum of the CCR cluster 5 is shown.
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In comparison to the previous figures, the heat
map of dSum is additionally shown, since the fur-
ther considerations in Fig. 21 are based on these
results. To compare the clusters with each other,
the maximum value of dSum and its corresponding
cell in the heat map is used. The values for |dbias|
as well as dCAVM of the uncertainty measure-
ment combination are transferred to a separate
bar diagram in Fig. 23.

Clusters 1 to 4, 10, 13, 17, 21 and 24 in Fig. 23
show the clear difference between simulation and
measurement in the close range of the sensor. As
already described, ground reflections are not fur-
ther considered in the simulation model, which
results in the visible difference between simula-
tion and measurement. Clusters 6 and 7 represent
the largest clusters with the main clutter due to
vegetation. The influence of vegetation is not as
large as the deviations in the near sensor range,
since the distance is larger and thus the power in
the radar cuboid approach the noise level. Never-
theless, a clear difference between simulation and
measurement can be identified.
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biggest influence based on the measurement uncertainty parameter combination on the x-axis.

Among the clusters farthest from the sensor in
the range, number 18 stands out. At this location,
there is an intersection of runway and taxiway
on the August-Euler airfield. The effects of the
change in ground properties are thus detectable in
the methodology using the DVM Map. Across all
clusters, no trend in the measurements and uncer-
tainty parameters can be detected, which on the
one hand speaks for the good reproducibility of
the measurements and on the other hand for the
high sensitivity of the radar model.
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5.4 Each Range and Azimuth Radar

Cuboid Cell

To increase the interpretability of the results,
the outcome of the DVM Map are plotted on a
satellite image. For this purpose, the measured
positions of the sensor and the determined ori-
entation are taken as origin and the range as
well as azimuth resolution of the radar cuboid is
used to distribute its cells over the satellite image.
From top to bottom, |dbias|, dCAVM and dSum are
visualized in Fig. 24. The coloring of the cells
corresponds to the results of the DVM Map per
radar cuboid cell. As an example, the DVM Map
of cell ιr = 18, ιφ = 16 is shown. As in Fig. 23
for further analysis, the maximum of dSum for
the measurement and uncertainty combination is
used. Therefore, this combination is used to color
the cell in the value of |dbias|, dCAVM and dSum.

In the top plot it can be seen that there is a
deviation of about 30 dB in the area where the
CCR is located. The smearing of the power in
neighbor bins due to the windowing function is
included in the simulation model, but an assign-
ment to the causal effect of the deviation is
difficult. On the one hand, the power of the CCR is
too low, which can be corrected by calibrating the
model at radar cuboid level. On the other hand,
the window function in the model is iteratively
determined, which means that measurement and
modeling errors may also be present here.

Directly next to the highlighted cell ιr =
18, ιφ = 16 there is an area with the maximum
deviation between simulation model and measure-
ment, which is 55 dB. In the simulation model
there is no input data from the raytracing algo-
rithm and only the noise simulation fills these cells
of the radar cuboid. During the measurements, no
objects or asphalt peculiarities were noticed that
justify this increase in power. For these reasons,
there has to be an effect in the signal processing
of the radar sensor, which is not considered in the
radar model and is triggered by the CCR. There-
fore, the method is able to identify a systematic
model error at this point. Along the runway there
are still increases in the model bias, ranging from
15 to 25 dB.

In the second satellite plot the scattering error
represented by dCAVM is visualized. The highest
deviation is present at the CCR. The distribution

shape in the measurement looks like a step func-
tion. The simulation EDFs are not so steep and
the propagated uncertainties have a big impact on
the shape especially at lower powers. This proves
the high sensitivity of the radar model chain with
respect to the measurement data uncertainty

Along the runway and the transition to vege-
tation, notable deviations are evident, as already
in |dbias|. Of particular interest is the intersection
of the taxiway with the runway highlighted by the
red circle. Due to the transition between vegeta-
tion and asphalt, higher values in comparison to
the surrounding cells for dCAVM are shown.

In the dSum satellite plot, the differences now
become even more apparent. In addition to the
features of the runway, vegetation, and intersec-
tion already mentioned, the sensor’s close range
has significant discrepancies. This underlines the
findings from the analysis of the clusters in the
previous chapter.
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Fig. 24: Satellite image in which the results of the DVM Map are shown. From top to bottom, the validation
results for |dbias|, dCAVM and dSum are illustrated. In the lower right corner of each plot, the DVM Map of cell
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6 Conclusion

This paper introduces the concept of the DVM
Map and its application to radar data using a
static scenario. Based on four ECs, the need for
an extension of the existing DVM definition is pre-
sented. A methodology which allows to apply the
DVM Map on radar cuboid and detection level is
described. A validation study is exemplified using
the described experimental setup and an adapted
radar simulation model.

It is evident that looking at all detections
only makes sense if the environment simulation is
matched with the ray tracing algorithm. It can
be seen that the different number of detections is
a fundamental problem of the simulation model
with all its components.

The evaluation of the entire radar cuboid has
the advantage that the number of data depends
only on the correct model parameterization. The
comparison reveals whether aleatory uncertainties
such as noise are modeled correctly.

The clustered detections are used to analyze
the areas that are particularly affected by power
differences. In the case of the validation study,
the analysis of the CCR shows high deviations
between measurement and simulation. Therefore,
objects can be identified and evaluated particu-
larly well using this approach.

Finally, all cells of the radar cuboid are ana-
lyzed. Local aleatory and epistemic uncertainties
of the environment model, e.g. vegetation and
asphalt, are visible. Additionally, effects of the
radar signal processing model can be separated
from environment model and ray tracing algo-
rithm. In general, it can be seen that validation
of a sensor model and its signal processing is
only possible if the environment simulation is
qualified regarding physical effects and aleatory
uncertainties.

Overall, it can be seen that the DVMMap with
its application to the different levels significantly
increases the interpretability of scenarios in the
following manner:

• The DVM Map gives the output score in units
of the analyzed size.

• The DVMMap gives information about the sen-
sitivity of each modeled reference data inaccu-
racy in the simulation with each measurement.

• Clustering gives dedicated information about
object model and modeling errors.

• Using the DVM Map in combination with the
satellite plot, errors can be spatially localized
and thus the environment model can be exam-
ined.

The DVM Map can also be used to compare
measurements with each other and thus investi-
gate stochastic effects such as rain and compare
the similarity of rain conditions between mea-
surements. Furthermore, measurement setups that
have to be dismantled and reassembled can be
examined and comnpared by a reference mea-
surement. Furthermore, an analysis of the signal-
to-noise ratio offers further potential to improve
the understanding of the underlying effects in the
future. So far, the consideration of uncertainties
is limited to the upper and lower bounds, which
does not take into account mutual influences of
the uncertainties. Therefore, it is recommended in
a next step to combine the uncertainties with each
other and to limit the parameter space in the pro-
cess. As soon as further uncertainties are added
and not only the upper and lower bounds of the
uncertainties are varied, this inevitably leads to
an explosion of the parameter space. Assuming a
parameter number in the present scope with five
instead of three variations is examined full factori-
ally, the number of necessary simulations for just
one scenario with a CCR is

nsim = nnparam

var = 57 = 78125. (10)

This estimate does not include material prop-
erties or complex geometries and each simulation
has to be repeated for a change in the model itself.
Therefore, the parameter sensitivity of the model
must be determined in advance and thus reduce
the parameter space.

In the future, we will extend the methodol-
ogy developed here for static scenarios to dynamic
scenarios. However, this poses challenges specifi-
cally with respect to temporal aggregation of data.
It is imperative that these challenges be resolved
in order to qualify the methodology for model
validation.
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