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Abstract

This study attempts to delineate subsurface lineamentthéotectonically and volcanically
active region of the Ziwagphala Lakes basin, central Main Ethiopian rift. Most of the
previously mapped subsurface structures in the region under consideration famlimeating
crustal structures thicknesssand Moho depthsindulations Moreover, earsurface structures
in the sameaegion were mapped using analysis of Digital Elevation Modabe data On the
other handthere are few studies that have targetednapping geologic structures lying at
intermediate depth leveletween the shallower and deeper Eaiithe objective of this research
is thus to map the subsurface geologic structures/lineaments &wemagedepth of 3km
(crystalline basement layer deptlom surface using gravity datBhese investigation results are
validated by Digital Elevation Model extracted lkmeents.Filtering techniques including
derivative filters, upwargontinuation and line module algorithm of PCl Geomasica used to
extract thegravity and topographic lineaments of the regi@rientation analyses of these
subsurface and surface lineaments are made using line direction histogram ofSheo@@are.
Accordingly, the gravity subsurface lineaments mapped in this study are foundambently
oriented in theNNW-SSE to NWSE am E-W directionon average. Téseresults appear to be
contraryto theNNE-SSW to NESW trendingsurface geologic structure mapped on the bases of
actual field observation carried out by previous researchers and automatically extracted
lineaments based on Digital Elevation Models data considerdds research The subsurface
lineamentsmappedusing gravitydata coincide with the orientation of pegisting subsurface
structures crossing the rift orthogonally. These structural lineaments whidom@sidered to be
masked in the subsurface coincide with the orientation dfigeozoicOgaderrift as compared
to the overlying surface structureshich appear t@oincidewith the orientationof the Cenozoic
Main Ethiopian ift.



1. Introduction

The Main Ethiopian Rift (MER) encompassittyee segmentsouttern, centraland nortlern
MER (Woldegabriel et al., 1990Bonini et al., 2005is part of a bigger East African Rift system
(EARS) that linksthe Afar triple junctionand the Kenya Rift region3.he study areaZiway-
Shala Lakes basin, iscated in the central part of the Main Ethiopian (Ffyenew, 2001 and is
boundedwithin the limits of 3800’-39°30'E and 7007-8°30’'N. The region ischaracteded by
volcanotectonic depressi@nhavingthreephysiographic features, the rift floor and the flanking

escarpmentandplateaus. The meaievation varies from 1632 masl to 3448 méslyure ).

1.1 Geologic and suctural settings

These geologyand geologic structures observed in the regave due to the active Cenozoic
volcanic, tectonic and sedimentation proceséésbe et al., 2007; Woldegabriel et al., 2000;
Turdu et al., 1999)These structures could be faults, joints and fractures which have surface
expression as shown in the geologic niapure 2)and structural map-igure 3) of the area.
These structures could constitute faults, joints and fractures with theicesestpression shown

in (Figure 2)and(Figure 3) These surface structures generally hav@ fd NNESSW and NE

SW to NS (Korme et al., 2004prientation and are collectively called Wonji Fault Belt (WFB)
(Mohor, 1962)and boundary fault&Soccaletti et al.1998) The WFB is the youngest and most
active fault system crossut by the preexisting NWSE Mesozoic Ogaden rift faulkorme et

al., 2004) These preexisting structures have been proven to exert a significant control on the
accommodation of deformation and on the distribution of strong volcanic activity et al.,

2013; Abebe et al., 2001 the region.



1.2 Rationale and objective of the study

The geological structures ithe East Africa Rift systemdocumented in different literatures
mainly targeton extracting the surface structures of shalkaxth origin(e.g.,Molin and Corti,

2015 Agostini et al., 2011)The data used to trace these surface structurd3igital Elevation
Model OEM) images. The surface structures in the Ziw8jala Lakes basin mapped using
DEM data and actual field observatiofsgostini et al., 2011) is shownin Figure 2.The
subsurfacestructures of deeper origin for the same region are extracted from geophkigsacal
(mainly gavity and gismig, most of which focus on mappimgustal structures thicknesses and
Moho depth undulationsBased on gravity data, different researches arrived at the conclusion
that the crust thins northward along the (iftickus, 2007 Tiberi et al., 2005 Tessema and
Antoine, 2004 Mahatsente et al., 1999Refraction/wideangle seismicreflection survey
conducted along the rifiviaguire et al., 2006 support the reswdfrom gravity data Though, its
depth extent is not mentionéthrme et al. 2004)identified a preexisting NW-SE extending
MesozoicOgaden riftfault from gravity data. These structures crosatlaen Ethiopian rift in an
approximately orthogonal fashiofKorme et al., 2004) In this respecthereis lack of studies

that havetargeted on delineating the intermediate depth (between shallower and deeper earth

geological structures different depth levels ithe ZiwayShala Lakes basin

By taking into consideration all the points mentioned, the objectives of this study are thu

defined

1. To map the subsurface geologic structures/lineaments to a depth of the crystalline

basement (3km) using gravity data



2. To map surface structures (topographic lineaments) from DEM data and use this
information to validate(constrain) the subsurface structures mapped usinguhe gr
data.

2. Data

Gravity and Digital Elevation Model (DEM) data sets are examined for subsurfacsuaiace
structures beneath the Ziw&hala Lakes basin, central Main Ethiopian Rift. The data
acquisition and processing is documented as follows

2.1 Gravity Data

Ground basedgravity data were obtained from Geologic&urvey of Ethiopia and PhD thesis
work (Alemu, 1992) This data were reprocessed drmnogenized to the International Gravity
Standardization Network 1971 (IGSN71). The 1967 international gravity formula, a oeducti
density of 2.67 g/cthand sea level as a datum are used. The computed complete Bouguer
anomaly values are gridded to generate the complete Bouguer anomallyimep4 (b)) of the

study areaThe regional anomalis estimated using upward continuation filkeith an upward
continuation height of 6 kniKebede et al., 2020F{gure 4(c)). The residual anomaly map
(Figure 4(d)) of the region is then compiled by subtracting the estimated regional from the

observed complete Bouguer anomaly

The residual anomaly maf-igure 4d)) is characterized bynegative andpositive anomaly
valueswhich are subjected for further analysis to extract the shallow subsurfacturss

(lineaments) of the study area.



2.2Digital Elevation Model (DEMs)

Digital Elevation Model (DEM)s anAdvanced Spaeborne Thermal Emission and Reflection
Radiometer (ASTER{riddedimagerydataused to represemevationinformation of the study
area from which surface geologic structures are mapped from. The DEM data enty@ybds
a 30m spatial reolution(Figure 5)

According to Wladis (1999) since DEM data is a gridded data, gichsed interpretation
methods used in analysis of potential field data can be used to extract surfaceniséamna

region of interest.

3. Methodology

Mapping surface and subsurface structures based on DEM and potential field data lis a wel
practiced and established procedure. Contacts between rocks that have diffgsecal ph
properties usually occur along weak boundaries (lineaments) which may cohdatlts
fractures, etc. Suchnkeamentswhich could showmajor subsurface structurese extracted
usingimage filtering algorithmsapplied ongravity anomalydata(Aydogan, 2011 Saibi et al.,
2008) Topographic lineamest Kassou et al., 2012bdullah et al., 2010Jordan et al., 2005
Wiladis, 1999 aretracedfrom DEM data using the same filtering techniques used in the analysis
of gravity data.

In this research the filter types used include first vertical derivateeansl vertical derivative,

tilt derivative, upward continuation and line module aldon of PClI Geomatica. The
application of these filters on gridded image map help to extract information on sunthce a
subsurface structures of the ard@&e governing mathematical equations for the filter types

considered are described below



3.1First and second vertical derivative

Vertical derivative (VDR) aredatafiltering techniquesised for the enhancement of the shallow
gravity source features Gridded gravityand DEM anomaly dateanput to VDR filterscan be
expressed as a functionCartesian cordinate system denoted y=f(x,y, 2.

The vertical derivative of this function which shows the change of field/elevatioth respect

to depth( VY is expresseasfirst vertical derivative (8 & 4 (Eq. 1):
8& 4 F 0B 1
( Sy (1)
and second vertical derivativé @ &4Eq. 2):

o°B
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The Oasis montaj Geosoft standard software is used to generate the first and sdeond or
derivatives of the gridded DEM image. The procedures have effects of enharcafigetb

shallow (near surface) sources and generate lineaments.

3.2Tilt derivative

The tilt derivative @ of gravity anomalyF, is expressed as a ratio of its first vertical derivative

to total horizontal derivativé/erduzco et al., 2004kEq. 3):

a= 6&4& P="p—o (3)
: @SA > @5,6;
Where, % :—l(‘ and!!—i are the derivatives of ttgravity anomalyF, with respect toT, U=J @
directions.



A mathematical property of arctan restricts the valueafo lie between F—6 and F—6 or

betweerF904and 904

The filter enhances and sharpens the anomalies with zero value contoursggsErgr

which indicate lithological /structural contacts.

3.3Upward continuation

Vertical cerivative and tilt derivativefilters generally ehance effecof the shallower earth
but not necessarilgffect of the deeper earth. The regional anomaly resulting from the
deeper earth is approximated using the upward continuation filter whiolatieematicdy

expressedy Gupta and Ramani (198andJacobser(1987) (Eq. 4as:

*aglG= 5(G A°P (4)

Where 5( @ is Bouguer anomaly@Gs the wave number andyis the continuation height

The deeper gravity source signatures are isolated by upward continuing the observed
Bouguer anomalies to a higher elevation. Accordingatabserf1987),if a potential fieldis

upward continued to a certain height then itwill map sources situated aind below the

depth 42. The residual anomaly ishen obtained through subtraction of this regional
anomalyfrom the observed Bouguanomalies

Jacobser{1987) alsoshowed that the field generated dglab located at depthn between

Z1 and 2 is simply the difference between the field=ssulting from upward continued

heights of2Z5 =J @Z¢(Figure 6).



The following procedures are followed for teetraction of lineaments emanating from a
sandwichedsliced) gravitysource distributionFigure 6)
9 upward continuation of thebserved Bouguemamaly to a heigistof 0.5, 1, 2, 3, 4,
5 and 6 kms
9 Obtaining dfferences of consequently upwardontinued anomas to generate
anomaliesoriginating fromslabs (slices) located atonsecutive depthbetween 0.25
&0.5,0.5and 1,1and 1.5, 1.5and 2, 2 and 2.5, 2.5 and 3.0, 1.5 and 3km.
9 For anomalies resulting from each slitiee modulealgorithm of PCI Geomatica
and tlt derivative filtersare applied to extratiheamentsesulting from each slice.
The Bouguer gravity anomaly mé&pgure4(a))is upward continuetb heights of 0.5, 1, 2, 3, 4,
5 and 6 km in order to image sources buried at depths of 0.25, 0.5, 1, 1.5,2, 2.5 and 3.0 km
respectively. This upward continuation filter (lgpass filter) generates regional anomalies
subtracted from each other giving rise to regional anomalies generated by stadub lsibs)
located at depths between 0.25& 0.5, 05&1,1&15,15&2,2&25, 25&3.0and 15 &
3 km. As an illustration, the anomalies generated by sliced slabs between the depths 0.25 & 0.5

km, 1.5 & 2 and 2.5 and 3 km are depicteéimure7(a), Figure 1b) andFigure 7c).

OasisMontaj Geosofts used to filter the regional anomaligenerated by sliced slabs locatdhe
depths considereand PCl Geomatica softwaieused to extract the geolodioeamentsoccurring
in the areato a depth of 3 km Nmean crystalline basement deptfihe differenced regional
anomalies(anomalies of the sliced slabs) are exportechesledelief Gediff 256 Grey @ bit)

images to be wsed asaninput tothe Line module algorithm of PCI Geomatica V/Ithe exported

images emphasize gradients in angmgtids and are useful for displaying strong linear features



observed in the image$¥he methods automatically identifyeation in three tepsincluding edge

detection, thresholding and curve extraction (details given in sectian 3.4)

3.4 Line module Algorithm

TheLINE option of PCl Geomatica software extradiseaments automatically from images
and records the polylineis a vector segmentAbdullah et al., 2010)This algorithm is
designed to extratinearandcurv-linear features fromadar images or froroptical images

For mapping reasonably acceptableeaments, the imagshould be enhanced with different
filtering techniquesvhich may includeshadeerelief methods performed using ArcGIS 10.3
software or principal component analysis (PCA) method performed lmange processing
software such a€£NVI 5.1. ThePCA is a statistical technique which removdata
redundancy andolates noise by enhanang imageswhich could finally be used as anput

to the filtersfor extractng geological lineamentsAdiri et al., 2016).

The other imagenhancemennethodis the shadeerelief image techniques which generate a
pan sharpened 8 bit gray scale reflected bands to be used as input to Line module of PCI
Geomatica V10 software to automatically extrgeblogicallineaments. This algorithm
detects the lineation in three steps which incladge detectiostep thresholdingstepand
curve extractiorstep. The input output parameters pertaining to this algorithm including their
relatiorship can be found inthe website hitp://www.pcigeomatics.com/geomatica

help/references/pciFunction_r/python/P_line.html
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The optimal choice of the input/output parameters is chosertrigl and error processith
theshape and density of the generated lineaments taken in to considdiagiaeault input
parameters used by PCI Geomatica algorithm including the selections ntadergsearch
are listed infable 1

Mapping geological structuredifieamenty of intermediate depth in the region considered
are performed using different software such as Geosoft, ENVI BQl, Geomatica V10

ArcGIS 10.3 an@QGIS.

Resultsand Discussion
Geologic structures which could be faults, fractures and joariseextractedrom analysis
of gravity and DEM data. The application of different filtering algorithms on these

anomalies/images generatgavity and topographic lineaments outlined here below.

4.1 Subsurface lineamentsextraction from gravity slice anomalies

Figure 8revealsgravity lineaments extracted in the study area based on the methodologies
mentioned in sections 3.2, 3.3 and 3.4. These includes lineaments extracted based on Line
module algorithm{Figure 8(a, ¢ and e)tilt derivativetechniquesFigure 8 (b, d and)fand

rose diagranplot showing the overall subsurfaogeamentorientationconstructed based on

line directionhistogram modulef QGIS (Figure &0g))

11



The major geological structures (lineaments)gure 8) which are seen in the form of linear
geometriesare extracted through analyzing gravity dafée line module algorithm of PCI
Geomatica is used to extract these lineam@ndgire8 (a), (c) and(e)). Theselineamentsare
comparedvith lineaments mapped using ttié derivative method(Figure 8 (b), (d) and (f))
Their comparison shows that bothethodsgive similarresults in identifying the location,
orientation and density of lineaments in the study afd®e extracted lineaments are
dominantlyoriented NNWSSE to NWSE and EW (Figure8(g)) which thought to coincide
with the direction of preexisting Mesozoic structurepreviously identified in the area
(Korme et al., 2004)Theresultalso show lineamens trending NESW (Figure 8(g))that
coincides with the orientation of tlyggiaternaryfaults of the Main Ethiopian Rft system that
compriseghe study area.

The subsurface lineaments can also be extracted from residual gravity anontifiesesit
depth levels.The estimatedregional anomaliegenerated using upward continuatitm
heightsof 0.5, 1, 2, 3, 4, 5 and Grkare subtracted frorabservedBouguer anomaly to
extractresidual anomaliesaused by sources extending to depths of 0.25 km, 0.5 km, 1.0 km,
1.5 km, 2.5 km and 3.0 kmespectively These residual anomalies #nen converted t8 bit
shaded relief imageto be used as an input to line module algorithm whielp to extract
subsurface lineamenat different depth levels. The identified lineamefitsjure 9(a), (b),
(c), (d), (e) andff) aredominantly oriented in a NVBE directionas alsorevealedby the
rose diagranplot (Figure 9(g)). Theselinear features(lineaments) are imgreemenwith
respect to theirdcation, orientation and densiwyjth thoselineamentsextracted based on the

regional gravity anomalies caused by sliced siahgire 8).
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4.2 SurfaceLineamentsextracted from DEM

The topographic lineamentsonsideredin this sectionare traced using the procedure and

methods outlined in sections 3.1 and 3. 4.

4.21 First and second vertical derivative

The application of first vertical derivative filter on DEM image map generates sitgge map
shown in Figure 10 (a). This map revealsurface structures coinciding witthe existing
Cenozoic fault patterns observed in the study @keastini et al., 2011)Similarly, according to
Wiladis (1999) the second order derivative filter was used for detection of lineaments. This
method has the effect of enhanciagomalies overmnomalous sources. The topographic
lineaments(Figure 1@0b)) mapped using this method also shows the dip directions of the
structure towards blue color contrast.

Figure 10First vertical derivatives of topographifPEM) data(a) Lineaments extracted from
DEM using second order derivative with dip directions towards low color contrast (geg. bl

color) (b)

The lineaments extraateusing derivative filtergFigure 10)give clearer pictureof shallow
source anomaliewith the linear features indicating geologic structures observed in the area.
Furthermore, thenear topographic lowmay be thought tandicate depressiorexisting in the

area.

13



4.2.2Line module of PCI Geomatica

Lineaments ar@automaticallyextracted using the Line module algorithm with enhanced slope
imageof DEM and he input parameters optionsschoice 1 and choice iRdicatedin Table 1
resulting inFigure 11a)andFigure11(b). A lineament density mag-igure11(c)) is derived

from the slope image lineament mapgure 11 (a)) fed as an input tArcGIS software.

With the default parameters (choice 0glfle ) in PClI Geomaticaoftware few lineaments
(faults) were mapped in the area. However, with a change of threshold edge gradient from 100
to 20 (choice 1) and all the others parameters kept constant, the program generates the

lineaments shown iRigure 11 (b).

Similarly, theresult based on input parameters given in choice 2 produces lineaments shown in
the Figure 11 (a). These structures are all similar in orientation and location to that of
lineaments traced based on choice 1. However, they are more linear in shapetanéhstine.

In this case all the curved structures are wipetwith their linearity preserved. Generally, the

two parameter options chosen mostly generate lineaments of the study area. Hineevés a

need to experiment on the selection of the igarameters for better extraction of lineaments in
the study area. The lineation density niapure 11(c)) shows more lineaments on the Eastern
escarpment where the WFB is located as compared to those on the Western escarpraent wh
Silti Debre Zeyete Fault Zone (SDF®) located including their accompanying border faults.
The extracted geologicastructure(lineaments) statistically analyzedtrend analyed and

plotted in theform of rose diagramé&-igure 11d)).

The lineaments generated with PCA enhanced DEM inigggire 1Za)) input to the line

module of Geomaticaoftware is shown irrigure 12(b). The result shows that, the mapped

14



structures agree with previously identified fault maps in location, orientation andydens
However, in this work more lineaments were mapped. Higlessities of lineaments are
observe at WFB and SDFZ and |l@wdensityof lineamens corresponding téhe sedimentary

units of the rift floor~igure 12(b).

In summarythe lineaments extracted with first derivative of DEM as an input to Line module
PCI GeomaticaFigure 11a)) mostly agree with fault mag-igure 3(b))previously mapped in

the area. Most of these lineaments oriented NHSISW as the summery made by line density
rose diagram show$igure11(d)). PCA enhanced DEM input to Line module algorithm of PCI
Geomatica igure 1Zb)) equivalently map the structure with more new lineaments. In both
lineament extraction procedures it is observe that too many lineaments tharetfeulisi or

tectonic features of the study area.

Most of the deep seated lineaments extrafrtad gravity data oriented NNVBSE to NWSE
(Figure 8(g) andFigure 90)). Few of theselineaments traced using these data trend and
NE-SW. Majority of thetraced lineaments from DEMs image trends NSIEW to NESW and
N-S (Figure 11d)) direction which agree with few gravity lineaments in the study @reaire
8 (g) andFigure 9g)). This shows few surface lineaments continued down depth. Minor surface
lineaments trenidg along NWSE coincide with the orientation afostsubsurfacdineaments
extracted using gravitgata.

Furthermore, most surface and subsurfaeaments out of the Main rift axia an Ethiopian
plateauorientedin the direction of pre existing structural orientat{hW-SE) (Figure 12(d)).
This wasalso reveledoy different researcheitbat the crust outside the rift axis Ethiopian
Plateau hasot been modified significantlipy Cenozoic riftingandmagmatism/Dugda et al.,

2005) (Gani et al., 2008)
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5.Conclusion

One way of studying the geological structure of an area is through studying linear features
(lineaments)which could be extracted fromridded data anomalies. In this paper graaihd
Digital Elevation Model (DEMsanomalydata areused tomapthe corresponding gravity and
topographic lineaments of tistudyarea. Thdirst and second vertical derivativest derivative,
upward continuation, line module algorithimie used to automatically extract lineaments in the
study area.Most subsurface lineaments extracted from gravity data oriented-88E/to NW

SE directionswhich are against most surface structural orientatdNE-SSW to NESW)
mappedearlier by different researchers and extracted automatitbaSed onDEM data
consideredin this researchThe subsurface lineaments orientation might be due to the pre
existing subsurface structures crossing the rift orthogonally while surfacaistamight be due

to Cenozoic rifting activitiesA highersurfacelineament density is observed in the easparts

of the study area than the westsitle. Out of the rift most of the surface lineaments are oriented
NW-SE which coincides with gravity data extracted-gxesting structures that strike the MER
orthogonally. It can be concluded from the result that the integration of egttap@graphic
lineaments(surface structuresyith potential field lineamentésubsurface structuresyill add

some information on the enhancements of the previously extracted structural map &.the are
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List of Abbreviations:

MER: The Main Ethiopian Rift

WFB: Wonji Fault Belt

SDFZ: Silti Debre Zeyete Fault Zone

DEM: Digital Elevation Model

IGSN71: International Gravity Standardization Network 1971

ASTER: Advanced Space-borne Thermal Emission Ratlection Radiometer

VDR, FVDR, SVDR andTDR: Vertical derivative, First Vertical Derivative, second Vertical
Derivative and tilt derivative

PCA: Principal Component Analysis

ArcGIS: Aeronautical Reconnaissance Coverage Geographic Information System

QGIS software: Quantum Geographic Informatio8ystemsoftware

ENVI 5.1: Environment for Visualizing Images

PCI Geomatica:Remote sensing desktspftwarepackage for processing earth observation

data
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