Effect of fines percentage on Ultrasonic dewatering of Cellulose Nanofibrils

Udita Ringania
Georgia Institute of Technology

Robert J. Moon
Forest Products Laboratory

M. Saad Bhamla (✉ saadb@chbe.gatech.edu)
Georgia Institute of Technology

Research Article

Keywords:

Posted Date: June 26th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3074203/v1

License: ☇ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Cellulose on October 6th, 2023. See the published version at https://doi.org/10.1007/s10570-023-05522-z.
Abstract

In this study, we perform a comprehensive examination of ultrasonic dewatering in Cellulose Nanofibril (CNF) suspensions, with particular emphasis on the role of fines content. The production of cellulose nanofibrils (CNF) involves mechanical fibrillation which leads to the presence of different percentages of fines (fibrils under 200 µm) in the final product. Although fines have demonstrated mechanical advantages in composite materials, they also increase water retention by the fibrils, leading to increased dewatering time and energy. We selected two distinct CNF samples with 60% and 90% fines, respectively, and subjected them to ultrasonic drying until 100 wt.% CNF is reached. We found that the 90% fines samples displayed 20% longer drying times, indicating a higher water retention capacity than the 60% fines samples due to increased hydrogen bonding sites. Both fines types exhibit a biphasic pattern in water removal, with the second phase, commencing upon the elimination of half the water, displaying similar rates regardless of the fines content. As dewatering and drying processes often induce agglomeration in CNF, we systematically dewatered both the suspensions until reaching concentrations of 15, 25 and 35 wt.% and then redispersed to 0.01 wt.% CNF. To evaluate the stability of redispersed samples, we monitored their settling behavior and conducted UV-vis transmittance analyses. Results showed that while 60% fines samples could be redispersed in 1 min, the 90% fines samples required up to 5 min to reach a similar level of stability to their original suspensions. Notably, UV-vis transmittance values remained consistent across both the 60% and 90% fines samples and their initial suspensions, indicating a lack of significant agglomeration following redispersion. These findings provide critical insights regarding the impact of CNF fines percentages on dewatering duration and suspension stability during ultrasonic dewatering, contributing to improved processing strategies in industrial cellulose applications.

Introduction

Cellulose nanomaterials (CNMs) possess a unique set of properties that have been harnessed in a range of applications, including composite materials, biodegradable and renewable packaging, biomedical applications, and rheology modification (Moon et al. 2011; Rebourillat and Pla 2013; Jang et al. 2015; Ghasemi 2019; Patel et al. 2019; Nigmatullin et al. 2020; Chen et al. 2021; Lai and Yu 2021). Two predominant categories of CNMs are cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). CNFs are characterized as complex, fibril-like particles forming extensively branched networks with both amorphous and crystalline regions, whereas CNCs primarily display a spindle-like non-branching structure, with a high degree of crystallinity. These differences arise from the respective manufacturing processes: mechanical fibrillation for CNFs and chemical extraction for CNCs (Moon et al. 2011; Rebourillat and Pla 2013; de Assis et al. 2018).

Mechanical fibrillation during CNF manufacturing results in the formation of fines within the suspension, the quantity and characteristics of which depend on the type and duration of fibrillation employed (Stelte and Sanadi 2009; Colson et al. 2016; Ghasemi 2019; Kelly et al. 2021). Fines are defined either as fibrils with dimensions < 200 µm (ISO 2014), or as fibrils capable of passing through a 76 µm diameter round...
hole (ISO 2012). Higher fines percentage typically correlates with greater fractions of smaller fibrils, leading to increased mechanical bridging and hydrogen bonding (facilitating network formation) within the suspension (Stelte and Sanadi 2009). This increased fines percentage has been shown to enhance strength and surface properties in pulp non-woven materials (Zambrano et al. 2020). For instance, paper hand sheets incorporating CNF as an additive exhibited an increase in tensile index proportional to the fines percentage, reaching a plateau at approximately 77% (Johnson et al. 2016). This study also noted an increase in internal bond strength and decrease in surface roughness of hand sheets as the CNF fines percentage increased. The fines percentage has also been observed to affect the adhesive strength of CNF stripes, with higher adhesion achieved for stripes containing a higher fines percentage (Kelly et al. 2021). A higher fines percentage can contribute to improved packaging during web formation in papermaking, thereby reducing pore sizes and increasing resistance to air permeance through paper (Johnson et al. 2016).

Although these enhanced mechanical properties are desirable, a higher fines percentage can affect the dewatering properties of a suspension negatively, leading to increased dewatering times during wet pressing (Johnson et al. 2016; He et al. 2017). As traditional dewatering and drying processes are inherently energy-intensive (Miller et al. 2015), a higher fines percentage can contribute to increased energy consumption during the manufacturing process.

Ultrasonic dewatering, however, offers a more energy-efficient method for water removal from CNFs, with an estimated 50% energy reduction compared to traditional spray drying (Ringania et al. 2022). Previous work has explored the influence of system parameters such as the number of transducers used and the CNF flow rate on ultrasonic dewatering efficiency, providing valuable insights for process optimization and future scale-up (Ringania et al. 2022). However, the impact of material properties, particularly fines content, on ultrasonic dewatering efficiency remains uninvestigated. Given that material properties such as fines content can significantly influence dewatering times, it is crucial to examine their potential impact on the efficiency of ultrasonic dewatering, a technique recently applied to CNM suspensions.

In this study, we explore the influence of the fines percentage in a CNF suspension on the efficiency of ultrasonic dewatering and drying. We aim to assess the role of fines content on the water retention behavior and the dewatering rate. As fibril agglomeration during dewatering can pose challenges, we conduct redispersion of the dewatered samples to evaluate the extent to which dewatering and redispersion can be achieved without inducing irreversible CNF agglomeration. We investigate the efficiency of redispersion based on parameters such as CNF fines percentage, final dewatered weight percentage, and redispersion time. We further assess the stability of redispersed suspensions using gravitational settling experiments and UV-visible spectrometry determining the settling time, height, and potential CNF agglomeration of the fibrils.

This study aims to provide insight into the impact of fines percentage on the ultrasonic dewatering and drying process, thereby furthering our understanding of water retention based on CNF suspension parameters and optimizing the process. Additionally, our exploration into alternative dewatering
processes and redispersion techniques could pave the way for innovative strategies for shipping and handling CNFs, enhancing accessibility for various industries.

Materials and Methods

Cellulose Nanofibers:

Cellulose nanofibrils (CNF) produced using mechanical fibrillation are provided by the Process Development Center, University of Maine, Orono (UMaine). Based on the ISO specification (ISO 2014) which states ‘fines’ as fibrils with a diameter less than 200 μm, samples with 60% fines and 90% fines are used in the present work. Figure 1 shows the optical microscopy images for both fines percentages at 0.01 wt.% dilution, with arrows demonstrating the difference in fibril lengths observed in both samples. These CNF suspensions have a solids content ranging between 3 wt.% and 3.5 wt.%, as confirmed by oven drying experiments performed by us (with at-least 3 repeats for each). The specification of fines percentage, lot number and solid weight content for these CNF samples are provided in Table 1.

<table>
<thead>
<tr>
<th>% fines</th>
<th>Lot #</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>60% fines</td>
<td>U136-K</td>
<td>3.4 ± 0.2 wt.%</td>
</tr>
<tr>
<td>90% fines</td>
<td>U103</td>
<td>3.1 ± 0.4 wt.%</td>
</tr>
</tbody>
</table>

Ultrasonic dewatering technique:

The ultrasonic dewatering of CNF suspensions is achieved using a piezoelectric vibrating mesh transducer (VMT) that comprises of a metal mesh connected to a piezoelectric crystal, as described in our previous study (Ringania et al. 2022). By applying voltage to the piezoelectric ceramic, high frequency vibrations in the range of the resonance frequency of the transducer (110-113 kHz) are generated in the metal mesh, which helps remove water from the CNF suspension (Fig. 2(a)). In this work, a custom-build static ultrasonic dewatering platform as shown in Fig. 2(b) is used to perform two studies. (i) We dewater the samples to achieve 100% CNF solid weight content (complete drying) to help understand the impact of fines percentage on water-retention by fibrils during the ultrasonic dewatering process. (ii) We dewater the as received CNF suspension to various solid weight percentages: 15 wt.%, 25 wt.% and 35 wt.% to test their subsequent redispersion and suspension stability thereby. The platform includes a horizontal transducer stand holding the VMT, which is powered by a function generator and a power amplifier. Due to the vibration-induced interference of ultrasound with the weighing system, continuous measurements of the CNF weight are unfeasible. Therefore, we adopt interval-based weight assessments to ensure accurate data collection. First, the weight of the unconnected static VMT platform is tarred on
the weighing scale. We then weigh the CNF sample (for both 60% fines and 90% fines, as received) by placing them on the VMT’s metal mesh. The initial weight of the CNF suspension samples was ∼200mg. After removal from the weighing scale, we connect the VMT setup to the amplifier and initiate ultrasonic vibrations on the CNF sample. We disconnect the setup every 30 s, weighing the sample until we achieve the desired CNF wt%. At least 3 runs are conducted for each final CNF wt.% for the 60 and 90% fines samples. The dewatering process was monitored and recorded using a camera (Logitech) at 2 fps, and timelapse images of the samples are shown in Fig. 2(c) (see SI-Movie 1, SI-Movie 2 and Online Resource 1 for details). The change in area covered by the CNF as drying progressed is calculated through these images and presented in Online Resource 1: SI-Fig. 1.

Characterization:

CNF concentration calculation

Using the initial concentration (C_i) of the CNF in these suspensions (from Table 1), the initial weight of CNF solids (F_i in mg) in the sample suspension of initial weight W_i (mg) are determined:

$$F_i = \frac{C_i}{100} \times W_i \quad 1$$

W_i can also be denoted as $W_{t=0}$ where t=0 represents the start time point for the dewatering process.

To determine the amount of water removed between two time points, where time point represents the time elapsed from start in seconds, and assuming only water passes through the pores, we use the following formula:

water removed between n and m time point = $W_{t=n} - W_{t=m}$; where $n < m \quad 2$

Where, $W_{t=n}$ and $W_{t=m}$ indicates the weight of the sample at time n and m seconds respectively.

Finally, we assume that the solid content of CNF in the suspension remains constant (as determined in our previous study (Ringania et al. 2022)), CNF wt.% at time point n is calculated by:

$$\text{CNF wt.}\% = \frac{F_i}{W_n} \times 100 \quad 3$$

Normalized weight for the samples at any given time point is calculated against the initial sample weight as below:

$$\text{Normalized weight at time point n} = \frac{W_n}{W_{t=0}} \quad 4$$

Redispersion

The samples dewatered to different solid weight percentages (15wt.% , 25wt.% , and 35wt.%) are redispersed and diluted using deionized water to achieve a final solid weight percentage of 0.1% CNF. A vortex mixer (VWR Analog Vortex Mixer No. 10153-838) operated at a speed of 8, redispersed the diluted
samples in two stages. In stage I, the samples were initially redispersed for 1 min and used for gravitational settling and UV vis transmittance experiments. In stage II, the samples were redispersed for an additional 4 min (i.e., a total of 5 mins) and followed by another round of gravitational settling and UV vis transmittance experiments. As received CNF suspensions were diluted with D.I water to 0.1 wt.% CNF by stirring for 30 s using a vortex mixer. This diluted as received CNF suspension is named “original” and was used to provide a comparison to none dewatered material.

Gravitational settling experiment:

To evaluate the suspension stability of the redispersed samples compared to the original samples, we conducted gravitational settling experiments. Glass vials containing both sets of redispersed samples, i.e., those redispersed for 1 min and total of 5 min at 0.1 wt.% for both 60% fines and 90% fines, were allowed to settle for 2 and 12 h, respectively. We captured images every 5 s using a Logitech webcam to record the settling process. To quantitatively analyze the settling behavior, we calculated the height of the dispersed suspension state, characterized by the white area, using ImageJ (see Online Resource 1: SI-Fig. 2), and plotted the data against time. We used an exponential fit equation to fit the data (Online Resource 1: SI-Fig. 3, SI-Fig. 4, and SI-Fig. 5), with the asymptote y_0 representing the final settling height of the samples. We also calculated t_{90} for each sample, which is defined as the time taken to reach 90% of the final settling height.

UV Vis Transmittance

Transmittance data of the redispersed suspensions for both redispersion times (1 min and 5 min) along with the original suspension of 60% and 90% fines at 0.01 wt.% dilution is measured using the UV/Visible spectrophotometer (Ultrospec 2100 pro). Transmittance data are recorded in reference to DI water for wavelength sweeps from 350–800 nm at 41nm/s speed. At least 3 sweeps are conducted for each sample using disposable cuvettes (Fisherbrand disposable cuvette, semi-micro methacrylate cells) with path length 10 mm. Transmittance sweeps for CNF samples with various fines % (between 60% fines and 100% fines) are also recorded. All the transmission sweep data are presented in Online Resource 1: SI-Fig. 6, SI-Fig. 7, SI-Fig. 8 and SI-Fig. 9.

Results and Discussion

Ultrasonic Drying

We examined the influence of fines percentage on the water retention behavior of CNF and the efficiency of ultrasonic dewatering in removing water in this study. CNF suspensions with varying fines percentages were subjected to ultrasonic drying, resulting in 100% CNF solid content, and the drying process was monitored through timelapse imaging (Fig. 2(c)). We observed a reduction in the transducer area covered by the sample as water was removed from the system. Specifically, suspensions with 60% fines showed a size reduction of $\sim 30\%$, while the 90% fines demonstrated a $\sim 11\%$ size reduction. This variation in size reduction provides insight into fibril packing within the sample; greater shrinkage may suggest a sparser...
fibril distribution in the suspension. Previous studies have suggested that the contact area between samples and the transducer can influence the amount of water removed from the system (Ringania et al. 2022). However, given that the mesh portion of the transducer remains covered throughout our experiments (indicated by yellow dotted circles in Fig. 2(c)), we assert that changes in the contact area did not impact overall water removal for both 60% fines and 90% fines samples in these investigations.

Water Retention and Drying Times in Fines Suspensions

We found that the 90% fines suspensions required ~ 20% longer drying times compared to 60% fines suspensions to reach complete dryness. This suggests higher water retention in suspensions with larger fines percentages. The normalized weight of each sample at every time point during ultrasonic water removal is depicted in Fig. 3(a). The 90% fines suspensions consistently displayed a higher normalized weight at any given time point, indicating greater water content.

Phases of Water Removal During Ultrasonic Drying

We further investigate the amount of water removed at 30-second intervals during ultrasonic drying for both samples (Fig. 3(b)). Our results reveal a two-phase process of water removal. Phase I, marked by greater water removal from the 60% fines suspension than from the 90% fines suspension during the initial 120 s, can be potentially explained by considering the types of water present in the system: bound, unbound and intermediate water. Bound water refers to water molecules attached to the fibrils via hydrogen bonding, while unbound water remains free and unattached. Intermediate water refers to the water molecules that interacts with the bound water but are not themselves in contact with the fibrils (Zhou et al. 2019; Xu et al. 2022). We propose that the water primarily removed in Phase I is unbound water. Given that a higher fines percentage provides more sites for hydrogen bonding, we anticipate a reduced quantity of unbound water in the system. Consequently, we observe less water removal from the 90% fines at each step compared to the 60% fines during Phase I, which results in greater water retention in the 90% fines suspension. This also accounts for the longer drying times for the 90% fines compared to the 60% fines.

Phase II commences when the amounts of water removed at each time interval for both suspensions become similar and remain consistent over time. This transition occurs between 90 and 120 s for both systems, as indicated by the 50% water removed line (in black) in Fig. 3(a). We propose that as the quantity of unbound water in the systems decreases, the dewatering of the intermediate and bound water begins with intermediate water removed primarily during transition. Ultrasonic energy is primarily utilized to break the hydrogen bonds before dewatering the tightly packed fibrils. As a result, the system's dependence on the fines percentage diminishes, and water removal from both samples becomes analogous. It is important to note that quantifying the types of water in these systems falls outside the scope of this paper, and these interpretations remain speculative. Nevertheless, this understanding of water removal behavior can be crucial in designing systems specifically tailored to particular suspensions, ultimately enabling optimized water removal.
Ultrasonic Dewatering:

After investigating the complete water removal behavior for both fines percentages, we next explore ultrasonic dewatering to achieve various CNF wt.% and their subsequent redispersion and suspension stability. Previous research has demonstrated excellent redispersion for CNF samples dewatered up to 11wt.% solids without causing irreversible CNF agglomeration (Ringania et al. 2022). Additionally, dewatering can significantly reduce water content in the system, thereby lowering shipping and handling costs without the high energy demands associated with complete water removal. Thus, dewatering is recommended for optimizing the system from both energy consumption and material integrity perspectives.

We compare samples from both 60% fines and 90% fines in terms of their redispersibility and suspension stability. The dewatering time needed to reach CNF wt.% of 15, 25, and 35wt.% for both systems are shown in Fig. 3(a). Subsequent dewatering experiments are conducted using these times as a reference for designing the dewatering times necessary to achieve these desired CNF wt.%. Normalized weight percentage versus time plots for individual samples dewatered to various weight percentages are presented in Online Resource 1: SI-Fig. 10 and SI-Fig. 11. As these data indicate, the dewatering behavior follows a similar trend to complete drying, with the 90% fines requiring longer dewatering times than the 60% fines. The time needed to reach various CNF wt.% for 60% fines is shorter than for 90% fines, evidenced by the time step where the system crosses these solid weight percentage lines in Fig. 3(a). The nonlinear gaps between these lines, despite a constant increase in CNF wt.%, is a consequence of the nonlinear relationship between CNF wt.% to the amount of water removed from the system, as shown in Online Resource 1: SI-Fig. 12.

For example, when dewatering the suspensions to a CNF solid content of 15, 25, and 35wt.%., a change of 10wt% solids content for each case, the corresponding total percentage of water removed from the system was 82, 92.7, and 94.2%, respectively. This shows that a much smaller amount of water removal is needed to increase the solids content from 25wt.% to 35wt.% (~ 1.5% water removed) than when going from 15wt% to 25wt% (~ 10.7% water removed). Achieving CNF weight percentages between 35 wt.% and 100 wt.% proved experimentally challenging due to this relationship, as the change in CNF wt.% is exponential for even the slightest amount of water removed (see Online Resource 1: SI-Fig. 12). It is worth noting that if dewatering is performed to remove only 50% of the initial water, i.e., to achieve between 6 to 7 CNF wt.%, the system remains in the Phase I regime alone. However, for dewatering to 15, 25, and 35 wt.% CNF, both water removal phases are observed.

Redispersion

The nanoscale dimensions of CNF impart unique properties desirable for various applications, such as composite materials, bioproducts, and packaging, which often necessitate the use of these materials in suspension form. Therefore, dewatered and dried CNFs must be redispersed in suspension for industrial applications. However, drying and dewatering frequently lead to irreversible agglomeration of fibrils,
resulting in the loss of their nanoscale dimensions and corresponding unique properties. Redispersing these agglomerated fibrils can incur high energy costs associated with breaking strong interfibrillar bonds. Consequently, it is crucial that the dewatering method does not promote significant agglomeration of fibrils and allows for successful redispersion into solution while retaining their properties (Déleris and Wallecan 2017; Posada et al. 2020).

Previous work by Ringania et al. (Ringania et al. 2022) demonstrated that samples dewatered up to 11 wt.% CNF could be successfully redispersed after 1 min of vortex mixing without any change in CNF particle morphology. As we dewater the samples to higher CNF weight percentages in this study while also varying the fines percentage, it is essential to examine the impact of these variables on redispersibility and evaluate the efficacy of the ultrasonic dewatering method. We thus redispense the samples in two stages, i.e., 1 min followed by an additional 4 min (5 min in total), to also investigate the effect of redispersion time on redispersibility.

Figure 4 displays images of ultrasonic dewatered samples to 15 wt.%, 25 wt.%, and 35 wt.% CNF, for both fines percentages redispersed for 5 min and diluted to 0.1 wt.%, alongside their original samples (e.g. as received CNF suspension diluted to 0.1 wt.%). On initial visual inspection, we did not observe any large agglomerated fibrils, and redispersed samples appear qualitatively similar to the original samples.

While SEM and TEM are commonly employed to assess redispersion quality, these methods present inherent challenges associated with sample preparation that can induce agglomeration in fibrils. In this work, we confine ourselves to evaluations in suspension/wet state, which are more easily applicable from an industrial perspective. Therefore, besides visually inspecting the suspensions, samples are evaluated through gravitational settling experiments and UV-vis transmittance and compared to the original, never-dried samples.

Suspension stability:

Achieving stable redispersed suspensions with low energy requirements is crucial for industrial applications. Suspension stability can be assessed through settling behavior, which is measured by the change in the dispersed phase's height over time. Past research has shown that suspension stability is influenced by the size of colloidal particles, where larger particles settle faster (Kumagai et al. 2019). The equilibrium height of the suspension further provides insight into its stability, with smaller height changes indicating a more stable suspension (Li et al. 2020). In our study, we evaluate suspension stability using two parameters: (a) the fractional change in height at equilibrium, and (b) the time it takes to reach 90% of the equilibrium height or t_90. We also consider the effect of redispersion time on these parameters.

Figures 5(a) and 5(b) show the normalized change in height over time for 60% fines and 90% fines suspensions, respectively. These graphs reveal a general trend where the height change follows an exponential curve and asymptotically approaches the equilibrium height in approximately 0.5h for 60% fines and 6 h for 90% fines. Interestingly, the 90% fines samples display a delayed settling initially, unlike
their 60% counterparts, visible as an extended “tail” at the graph’s start. We extract the fractional change in height at equilibrium and t90 from these experimental data for further analysis.

Fractional change in height (h/H) at equilibrium

To establish a baseline for these suspensions, we compare the suspension stability of the original 60% and 90% fines samples (at 0.1 wt.% CNF). Figures 5(c) and 5(d) illustrate the height changes for 60% fines and 90% fines, respectively. We find that the normalized change in height, h/H, for 60% fines is 0.45 ± 0.05, while it is 0.24 ± 0.03 for 90% fines. A higher height change for 60% fines implies weaker suspension stability compared to the 90% fines suspension.

As we conducted redispersion in two steps, we ran settling experiments at both stages to understand the influence of redispersion time on suspension stability. Figures 5(c) show the fractional change in height at equilibrium for the dewatered samples of 60% fines redispersed for 1 and 5 min. For suspensions redispersed for 1 min, we find that the equilibrium change in settling heights for the dewatered samples aligns within 1 standard deviation of the original samples’ values. Two-population t-tests confirm that we cannot statistically differentiate the means of the dewatered samples from the original sample at the limit of p-value < 0.05 (see Online Resource 1 for details). For the 5-min redispersion, the height change in settling for all dewatered samples stays within the statistical bounds, similar to the original sample.

For 90% fines, we notice that 1-min redispersion leads to a suspension with stability inferior to the original suspension. This inference is based on the higher fractional change in equilibrium height observed in the dewatered samples, as shown in Fig. 5(d). When we redispense these samples for 5 min, the suspension stability matched the original sample, as seen in Fig. 5(e) and confirmed by the two-population t-test (see Online Resource 1: SI-Table 2). We speculate that samples with higher fines percentages for stronger hydrogen bonds among fibrils, requiring more energy for complete redispersion compared to the 60% fines samples.

Time to reach 90% of equilibrium height: t90

The 60% fines settle much quicker compared to 90% fines, showing t90 values of 0.22 ± 0.05 h. and 5.06 ± 0.20 h. respectively. This can be attributed to the higher percentage of fibrils in dimensions > 200µm in the 60% fines. As larger particles settle faster, this leads to quicker settlement times to reach equilibrium, indicating lower suspension stability.

Figures 5(e) present the t90 values for all dewatered samples redispersed for 1 and 5 min for 60% fines. For 1 min redispersed samples, the t90 values for 15 wt.% and 25 wt.% samples align with 1 standard deviation of the original 60% suspension. Two-population t-tests with respect to the original suspension verify that their means are similar within the statistical limit (see Online Resource 1: SI-Table 2). However, we note that the mean for the sample dewatered to 35 wt.% (redispersed for 1 min) falls outside the lower bound of 1 standard deviation of the original suspension. This suggests that the 35 wt.% samples reach the equilibrium height relatively faster than the original sample. However, the two-population t-test
suggests that we can still consider the means similar within the statistical limit, so we cannot definitively claim 35 wt.% suspensions’ poor stability.

The t90 values for 5-min redispersion for 60% fines samples show similar behavior to their corresponding 1-min data. Hence, a higher redispersion time does not affect the suspension settling time for the 60% fines samples. In the case of 90% fines samples, after redispersion for 1 min, the dewatered suspensions reach equilibrium height faster than the original samples. This results in lower t90 values for these suspensions compared to the original suspension, as shown in Fig. 5(f). For samples redispersed for 5 min, we observe settling times comparable to the original sample. The t90 values for all dewatered samples align with the original 90% fines, as confirmed by the two-population t-test for these samples (see Online Resource 1: SI-Table 2).

Impact of Redispersion Time

Based on the above discussion, we note that for 60% fines, both the change in height at equilibrium and t90 for all dewatered samples statistically align with the original sample for both 1-min and 5-min redispersions. Thus, 1 min redispersion suffices to achieve a suspension with stability comparable to the original suspension for 60% fines. A longer redispersion time does not enhance suspension stability.

For 90% fines samples, 1 min of redispersion for all dewatered samples results in higher fractional changes of equilibrium height with lower t90 values, indicating inferior suspension stability to the original suspension. However, 5 min redispersion times yield statistically similar fractional changes in height at equilibrium and t90 for the dewatered sample suspensions compared to the original suspension. We must note here that for samples dewatered within 10 wt.%, 1 min redispersion times are sufficient to achieve stable suspensions comparable to the original suspension, as reported in our previous work (Ringania et al. 2022). Thus, for samples dewatered above 15 wt.% CNF, we recommend a 5-min redispersion to achieve stable suspensions.

In conclusion, our study systematically evaluates the suspension stability of dewatered CNF samples with 1 and 5 min redispersion times. For 60% fines, a 1 min redispersion suffices to achieve suspensions with stability similar to the original suspension, while we recommend a 5-minute redispersion for 90% fines samples dewatered above 15 wt.% CNF to attain stable suspensions. These findings offer valuable insights into the redispersion process and its impact on suspension stability, facilitating further research and practical applications in the CNF suspensions field.

UV-vis transmittance spectroscopy

UV-vis spectra are instrumental in evaluating suspension quality by assessing its transparency and opacity. The interaction between incident light and particles within a suspension – either through scattering or absorption – determines the amount of UV-vis light transmitted through the suspension. Factors such as particle size, concentration, pH, and temperature influence the UV-vis transmittance and a higher particle concentration often results in decreased light transmission (Masy and Cournil 1991).
Assuming constant conditions, UV-vis transmittance spectra can help detect particle agglomerations, as they directly related to particle width (Carr and Hermans 1978). Recent studies have used turbidity and/or UV-vis transmittance to compare the quality of CNF suspensions and films (Shimizu et al. 2016; Desmaisons et al. 2017; Sharma et al. 2021; Brännvall and Aulin 2022). We adopt this robust and fast method UV-vis transmittance method in our work to compare and detect agglomeration in redispersed dewatered suspensions with original samples. However, it is important to note that secondary absorption and scattering can obscure transmittance readings in high-concentration suspensions. Therefore, we work with low concentrations of CNF (0.01 wt.% CNF) to avoid such complications.

To elucidate the effect of fines percentage on transmittance spectra, we first conducted wavelength sweeps on samples with various fines percentages (see Online Resource 1: SI-Fig. 6). The transmittance exhibited a wavelength-dependent increase from 350 nm to 800 nm. However, it must be noted that there is no linear dependence of transmittance on fines % as evidenced by the data at 550nm (Online Resource 1: SI-Fig. 7). The 90% fines sample had a lower transmittance than the 60% fines sample, likely due to higher particle density and morphology in the former, resulting in increased scattering (see Fig. 1). Transmittance is influenced by various system properties including particle density, size, pH, and temperature. While we might control these parameters during our experiments, differences in particle size and level of fibrillation due to varying fines percentage in our samples might significantly impact transmittance in ways beyond this study's scope. Therefore, we compare redispersed suspensions with original samples to accurately assess potential agglomeration.

We present the transmittance values at 550 nm for 60% fines samples dewatered to 15 wt.%, 25wt.%, and 35wt.% CNF, then redispersed for 1 min and 5 min are presented, in Fig. 6(a). Transmittance data for wavelength sweep from 300–800 nm is presented in the Online Resource 1: SI-Fig. 8 and SI-Fig. 9. We observe that the transmittance for all the dewatered samples remains identical, reinforcing our earlier finding that a 1 min redispersion is sufficient for 60% fines. Statistical limits confirm the similarity in transmittance for all dewatered samples (two-population t-test in the Online Resource 1: SI-Table 2), implying no significant agglomeration, and successful redispersion comparable to the original suspension.

Figure 6(b) shows the transmittance value at 550nm for the 90% fines samples, dewatered to various final CNF wt.% and redispersed for 1 min and 5 min. We find similar transmittance values for a given dewatered sample at both redispersion times, contrasting the different settling behavior observed at these times (two-population t-test in the Online Resource 1: SI-Table 2). Even at 1 min redispersion time, no agglomeration is triggered for dewatered samples. However, based on settling experiments, we recommend a 5 min redispersion for these samples to achieve stability similar to the original suspension. Thus, for accurate evaluation, it is recommended to perform various tests in conjunction when comparing suspension stability for redispersed samples with the original suspension.

Conclusion
This study examined the effects of fines percentage in CNFs on ultrasonic drying and dewatering efficiency using a custom-built platform. We found that the 90% fines samples took 20% longer to dry, suggesting higher water retention than the 60% fines samples. The water removal process unfolded in two phases, with the higher fines percentage suspension demonstrating lower water removal rates in the first phase due to increased hydrogen bonding sites. The water removal rate, however, became invariant with fines percentage in the second phase, when about 50% of the water was removed. We speculate this occurs because accessing higher hydrogen bonding sites becomes challenging as fibrils pack together with progressing dewatering.

Our systematic dewatering and redispersion study assessed redispersibility and suspension stability based on settling behavior and UV-vis transmittance. We took as-received suspensions of both 60% and 90% fines, dewatered them to 15, 25, and 35 CNF wt.%, and redispersed them to 0.01wt% CNF. Our results showed a difference in the normalized change in height for 60% and 90% fines suspensions, indicating varying suspension stability. For 60% fines samples, a 1 min redispersion was sufficient, while a 5 min redispersion was recommended for 90% fines samples to achieve stability similar to the original suspension. This difference in redispersion time requirements could be attributed to higher hydrogen bonding among fibrils in samples with a higher fines percentage.

We also employed UV-vis transmittance spectroscopy to detect agglomerations in redispersed suspensions. The transmittance values for both 60% and 90% fines samples were found to be similar to their respective original suspensions, suggesting no significant agglomeration was triggered upon dewatering and the subsequent redispersion.

Declarations

Acknowledgment

The authors would like to acknowledge the support from Renewable Bioproducts Institute and the Brook Byers Institute for Sustainable Systems at Georgia Tech, Atlanta, USA. The authors would also like to thank the team from the Process Development Centre at University of Maine, Dr. Colleen Walker, Dr. Douglas Bousfield and Donna A. Johnson, for providing samples.

Conflicts of interests

The authors declare no conflict of interest.

Availability of data and material

Additional information is provided as supplementary information.

Consent for publication

The authors consent for publication by the journal.
References

Footnotes

1. Dewatering in our work is defined as concentrating the suspension by removal of water from the system to various solid wt. %.
 Complete drying in our work in defined as the state of the sample when all the water has been removed from the system and the final wt. is equivalent to the solid wt. content of the initial suspension.

Figures
Figure 1

Phase contrast microscopy images of CNF samples captured using optical microscope (Nikon ECLIPSE Ti2-U, using 20X objective lens and phase 1 contrast filter). The samples are at 0.01 wt.% CNF diluted using DI water. Higher density of smaller fibrils observed in 90 % fines as compared to the 60% fines. The red arrows point toward longer fibrils seen in 60% fines while higher density of smaller fibrils is seen in 90% fines sample.
Figure 2

Schematic demonstrating the ultrasonic water removal process using a vibrating mesh transducer (VMT). High frequency vibration of the metal mesh pushes the water through the mesh leaving the fibrils behind. (b) Schematic of the static ultrasonic drying platform. (c) Timelapse of the drying process for both fines percentages at various time points. The timepoints are at 0, 0.1, 0.5 and 1 fraction of the total time taken to dry each sample. The red line depicts the CNF sample circumference as the drying process progresses with higher shrinkage observed for 60% fines. The yellow dotted circle and box represents the mesh circumference.
Figure 3

(a) Normalized wt. of CNF sample (b) water removed measured at 30 sec intervals for both fines percentages as drying progressed. Two phases for water removal are observed: in phase I water removed from 60 % fines is higher than 90% fines sample whereas in phase II the water removed from both fines percentage becomes similar. The shift from phase I to phase II coincides with the point when 50% of the water is removed from the system. The points when the system reaches 15wt.%, 25wt.% and 35wt.% CNFs are also marked showing the non-linearity of wt.% fraction change with water removed from the system.

Figure 4

Redispersed suspensions at 0.1 wt.% dilutions are shown for samples dewatered to various wt.% CNF along with the original sample for both fines percentages. On visual inspection, the dewatered
Suspensions looked very similar to the original suspension with no visible agglomeration observed. Scale bar: the diameter of each beaker is 2.27 cm.

Figure 5

Gravitational settling experiments for samples dewatered to various wt.% and redispersed for 1 min and 5 min. General trend for fractional change in height of the suspension as settling progressed under gravity.
for the original sample compared to samples dewatered to 25wt.% CNF for (a) 60% fines (b) 90% fines. The inset in (a) shows H: the original height of the suspension, and h: change in height of the suspension as settling progressed as depicted by the clear liquid at top. Fractional change in height at equilibrium (c) 60% fines and (d) 90% fines. Time taken to reach 90% of the equilibrium height (e) 60% fines and (f) 90% fines. The blue bar represents the standard deviation for the original data sample. The grey dotted lines represents the approximate t_{90} points.

Figure 6

UV vis Transmittance % at 550nm wavelength for samples dewatered to various CNF wt.% and redispersed for 1 min and 5 min for (a) 60% fines and (b) 90% fines along with the original suspension. All suspensions are diluted to 0.01wt.% CNF before performing the transmittance experiments. The blue bars represent the standard deviation of the original sample data.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Movie1.mp4
- Movie2.mp4
- Movie3.mp4
- Movie4.mp4
- Movie5.mp4
- Movie6.mp4
- Movie7.mp4
• OnlineResource1.docx
• OnlineResource2.docx