Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells

Tian Chen
Sun Yat-sen University

Ben Wen
Sun Yat-sen University

Qixin Yin
Sun Yat-sen University

Ruohao Lin
Sun Yat-sen University

Shengcai Zhu
University of Nevada, Las Vegas https://orcid.org/0000-0003-3311-6723

Pingqi Gao
Sun Yat-sen University https://orcid.org/0000-0001-8845-4645

Jiangsheng Xie (✉ holden1987@163.com)
Sun Yat-sen University

Article

Keywords:

 Posted Date: June 22nd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3065194/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Nature Communications on September 30th, 2023. See the published version at https://doi.org/10.1038/s41467-023-41853-y.
Abstract

Defects passivation has been widely devoted to improving the performance of formamidinium lead triiodide (FAPbI₃) perovskite solar cells; however, the effect of various defects on the α-phase stability is still unclear. Here, using density functional theory, we first reveal the degradation pathway of the FAPbI₃ perovskite from α to δ phase and investigate the effect of various defects on the energy barrier of phase transition. The simulation results predict that iodine vacancies are most likely to trigger the degradation, since they obviously reduce the energy barrier of α-to-δ phase transition and have the lowest formation energies at the perovskite surface. A water-insoluble PbC₂O₄ compact layer was introduced on the perovskite surface to largely suppress the α-phase collapse through hindering the iodine migration and volatilization. Furthermore, this strategy largely reduced the interfacial nonradiative recombination and boosted the efficiency of the solar cells to 25.39% (certified 24.92%). Unpackaged device can maintain 92% of its initial efficiency after operation at maximum power point under simulated air mass 1.5G irradiation for 550 h.

Introduction

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has reached a certified record value of 26%¹. Since 2015, the state-of-the-art PSCs prefer to adopt formamidinium lead triiodide (FAPbI₃) perovskite as light absorption layer since it possesses the excellent thermal-stability and has a preferred bandgap closer to the Shockley-Queisser limit²⁴. Unfortunately, the FAPbI₃ films thermodynamically undergo a phase transition from the black α-phase to a yellow non-perovskite δ-phase at room temperature⁵⁶. To avoid formation of the δ-phase, various complex perovskite compositions have been developed. The most common strategies to overcome this problem is mixing FAPbI₃ with a combination of methylammonium (MA⁺), cesium (Cs⁺) and bromide (Br⁻) ions⁷⁹. Nevertheless, mixed perovskites suffer an enlarged bandgap and light-induced phase segregation which will considerably compromise the performance and operational stability of the resulting PSCs¹⁰¹². Recently, it is demonstrated that the pure FAPbI₃ single crystal without any alloying can own excellent stability due to its excellent crystallinity and low defects¹³¹⁴. Thus, defects reduction through improving the crystallinity of bulk FAPbI₃ is an essential strategy for achieving efficient and stable PSCs²¹⁵. However, degradation to undesirable yellow hexagonal non-perovskite δ-phase during the operation of FAPbI₃ PSCs can still occur¹⁶. This process is generally initialized from the surfaces and grain boundaries, which is more vulnerable under water, heat and light due to the exist of numerous defect sites¹⁷. Consequently, surface/grain boundary passivation is required to stabilize the black-phase FAPbI₃¹⁸. Many strategies of defects passivation, including introducing low dimensional perovskite, Lewis acid/base molecules and ammonium halide salts et al., have achieved great progress for the formamidinium PSCs¹⁹²². To date, almost all studies focus on the role of various defects in determining the optoelectronic properties, such as carrier recombination, diffusion lengths and energy band structure.
in solar cells22-24. Such as using density functional theory (DFT), the formation energies and trap level of various defects are theoretically predicted, which has been widely used to guide the practical passivation design25-27. The device stability generally seems to improve as the defects decrease. However, the impact mechanism of various defects on the phase-stabilities and optoelectronic properties should be completely different in formamidinium PSCs. To our knowledge, a fundamental understanding of how the defects induce the cubic-to-hexagonal (\(\alpha\)-to-\(\delta\)) phase transition and the role of surface passivation on phase stability of \(\alpha\)-FAPbI\textsubscript{3} perovskite are still not well-known.

Herein, by using DFT, we first reveal the degradation pathway of the FAPbI\textsubscript{3} perovskite from black \(\alpha\)-phase to yellow \(\delta\)-phase and the effect of various defects on the energy barrier of \(\alpha\)-to-\(\delta\) phase transition. It is predicted that the I vacancies, which are easily generated during the film preparation process and device operation, are most likely to trigger the \(\alpha\)-to-\(\delta\) phase-transition. Thereby, we introduced a water-insoluble and chemically-stable lead oxalate (PbC\textsubscript{2}O\textsubscript{4}) compact layer on the top of FAPbI\textsubscript{3} through in-situ reaction. The lead oxalate surface (LOS) suppressed the formation of I vacancies and retarded the migration of I ion under stimuli of heat, light and electric field. As a result, the LOS largely reduced the interfacial nonradiative recombination and boosted the efficiency of FAPbI\textsubscript{3} PSCs to 25.39\% (certified 24.92\%). Unpackaged LOS devices maintained 92\% of their initial efficiency after operation at maximum power point (MPP) under simulated air mass (AM) 1.5G irradiation for over 550 h.

Results

First-principles calculations studies

First, we performed first-principles calculations to find the degradation pathway of FAPbI\textsubscript{3} perovskite transition from \(\alpha\) to \(\delta\)-phase. From the detailed phase transition process, it is found that the transition of a 3D corner sharing [PbI\textsubscript{6}] octahedron in cubic \(\alpha\)-phase FAPbI\textsubscript{3} to a face-sharing 1D line [PbI\textsubscript{6}] octahedron in hexagonal \(\delta\)-phase FAPbI\textsubscript{3} is enabled by breaking 9 Pb-I bonds in the first step (Int-1) with energy barrier as high as 0.62 eV/cell, as shown in Fig. 1a. By the octahedrons shear along [01] direction, the hexagonal short chains extend from 1x1 to 1x3, 1x4, and eventually transit to \(\delta\)-phase. The orientation relation of the whole pathway is (011)\textsubscript{\(\alpha\)}/(001)\textsubscript{\(\delta\)}+[100]\textsubscript{\(\alpha\)}/[100]\textsubscript{\(\delta\)}. While from the energy profile, we can find that after the \(\delta\)-phase FAPbI\textsubscript{3} nucleation, the energy barrier become lower relative the \(\alpha\)-phase in the following steps, meaning the phase transition will speed up. Obviously, if we want to inhibit the \(\alpha\)-phase degradation, the manipulation of the first step of phase transition is critical.

Then, we systematically investigated the effect of various native point defects (including anti-site occupations of Pb\textsubscript{FA}, I\textsubscript{FA}, Pb\textsubscript{i}, and I\textsubscript{Pb}; interstitials of Pb\textsubscript{i}, and I\textsubscript{i}; vacancies of V\textsubscript{Pb}, V\textsubscript{FA}, and V\textsubscript{Pb}), which were regarded as the key factor to trigger the phase degradation at atomic and energy level, as shown in Fig. 1b. Interestingly, not all the defects will reduce the energy barrier of \(\alpha\)-to-\(\delta\) phase transition (Fig. 1b). We believe that the defects which both have low formation energy and reduce the energy barrier of \(\alpha\)-to-\(\delta\) phase transition are considered to be harmful to the phase-stability. As previous reports, Pb-rich surface is
typically considered in efficient formamidinium PSCs28. Thus, we focused on the (100) surface with PbI\textsubscript{2} termination in a Pb-rich condition. The defect formation energies of native point defects on the surface are shown in the Fig. 1c. Considering the energy barrier (EB) of phase transition and formation energy (FE), these defects were divided into three types. Type-I (Low EB-High FE): Although I\textsubscript{Pb}, V\textsubscript{FA} and V\textsubscript{Pb} largely reduce the energy barrier of phase transition, they have high formation energies. Thus, we thought these types of defects have limited effect on the phase transition since they rarely formed. Type-II (High EB): The Pb\textsubscript{I}, I\textsubscript{FA} and Pb\textsubscript{FA} antisite defects will not be detrimental to the phase-stability of α-FAPbI\textsubscript{3} perovskite due to the improved energy barrier of α-to-δ phase transition. Type-III (Low EB-Low FE): V\textsubscript{I}, I\textsubscript{i} and Pb\textsubscript{i} defects with relatively low formation energies will induce the degradation of the black phase. Since the V\textsubscript{I} has lowest FE and EB, it is believed that the most effective strategy for suppressing the α-to-δ phase transition is reducing the I vacancies.

Then, we designed a PbC\textsubscript{2}O\textsubscript{4} compact layer on the FAPbI\textsubscript{3} surface to reduce the V\textsubscript{I} generation and I migration. The PbC\textsubscript{2}O\textsubscript{4} is chemically stable and insoluble in water that can protect the perovskite surface from the moisture corrosion. The solubility of PbC\textsubscript{2}O\textsubscript{4} in water is merely 0.00065 g liter-1, which is even lower than that of PbSO\textsubscript{4}29. The compact and uniform LOS can be mildly prepared on the perovskite film through in-situ reaction (see below). By the DFT calculation, we found that the LOS not only increases the V\textsubscript{I} defect formation energy from 0.69 eV to 1.53 eV (Fig. 1d), but also improves the activation energies for I migration on the surface and migration escaping the surface (Fig. 1e). For the first step, the I ion migrate on the perovskite surface leaving V\textsubscript{I} in the lattice site with an energy barrier of 0.61 eV; while the activation energy for I ionic migration increase to 1.28 eV after introducing LOS due to the steric-hindrance effect. For the I ionic migration escaping the perovskite surface, the energy barrier in LOS is also higher than that in control sample (Fig. 1e). The schematic views of I ionic migration path in the control and LOS FAPbI\textsubscript{3} are shown in Fig. 1f and g, respectively. The simulation results illustrate that the LOS can suppress the V\textsubscript{I} defects formation and I volatilization, which will in turn hinder the α-to-δ phase transition nucleation.

Characterization of lead oxalate on the perovskite surface

The reaction between the oxalic acid and FAPbI\textsubscript{3} perovskite was tested. After mixing oxalic acid and FAPbI\textsubscript{3} solution, a large amount of white-colored sediment was yielded, as shown in Supplementary Fig. 1. The powder products were identified as the PbC\textsubscript{2}O\textsubscript{4} materials through X-ray diffraction (XRD) patterns (Supplementary Fig. 2) and fourier transform infrared spectroscopy (FTIR) (Supplementary Fig. 3). We found that oxalic acid can be dissolved in isopropanol (IPA) well at room temperature with a solubility of approximately 18 mg mL-1, as shown in Supplementary Fig. 4. It is beneficial to the post-treatment, since the IPA as a general passivation solvent is not destructive to the perovskite layer in short time30. Thus, a thin and compact PbC\textsubscript{2}O\textsubscript{4} can be rapidly generated on the perovskite films through spin-
coating the oxalic acid solution on perovskite. The thickness of the PbC$_2$O$_4$ layer can be carefully controlled by the reaction time and precursor concentration.

The scanning electron microscopies (SEM) of control and LOS perovskite films are shown in Fig. 2a and b. The results show that the perovskite surface morphology maintained well and a mass of small particles deposited on the surface of crystalline grain, which should be the PbC$_2$O$_4$ layer generated through in-situ reaction. The oxalic acid treated films have a slight smoother surface (Supplementary Fig. 5) and a larger water contact angle than the control films (Supplementary Fig. 6). Cross-sectional high-resolution transmission electron microscopy (HR-TEM) was used to distinguish the surface product layers. As compared to the control film (Fig. 2c), a uniform and compact thin layer with a thickness of around 10 nm on the top of LOS perovskite could be clearly discerned (Fig. 2d). X-ray photoemission spectroscopy (XPS) measurements were carried out to characterize the perovskite surface composition after oxalic acid treatment, as shown in Fig. 2e-g. In Fig. 2e, the C 1s peaks around 284.8 eV and 288.5 eV belonged to the specific signals of C-C and FA, respectively. Compared with the control film, an additional peak at 289.2 eV attributed to the C$_2$O$_4^{2-}$ was observed in the LOS film. In the O 1s spectra, the LOS perovskite exhibited to three chemically distinct O 1s peak at 531.7 eV, 532.5 eV, and 533.4 eV corresponding to the O atoms of deprotonated COO, C=O and OH components of the intact oxalate group31 (Fig. 2f). For the control sample, only a slight O 1s peak is observed which can be attributed to the chemisorbed oxygen on the surface. The characteristic Pb 4f$_{7/2}$ and Pb 4f$_{5/2}$ were located at 138.4 eV and 143.3 eV for the control film, respectively. We observed that the LOS perovskite shows a ~0.15 eV shift of the Pb peaks toward larger binding energies, which indicates the stronger interaction between C$_2$O$_4^{2-}$ and Pb atom (Fig. 2g).

Stabilizing the pure α-phase FAPbI$_3$

Based on DFT results, V_I defects and I migration are theoretically predicted to be liable to induce the α-to-δ phase transition. Previous reports have demonstrated that a fast release of I$_2$ from the FA-based perovskite films during light soaking, after exposing films under the stress of light and heat$^{32-34}$. To confirm the lead oxalate stabilizing effect on the α-phase perovskite, we immersed the control and LOS perovskite films into the transparent glass bottle filled with toluene, respectively, and then illuminated them under 1-sun illumination for 24 h. The ultraviolet-visible (UV-Vis) absorption of the toluene solution was measured, as shown in Fig. 3a. It is observed a much lower I$_2$ absorption intensity in the LOS perovskite case in comparison with the control sample, illustrating that the compact LOS could largely suppress the release of I$_2$ from the perovskite films during light soaking. The photograph of the aged control and LOS perovskite films is shown in the inset of Fig. 3b and c. The LOS perovskite still maintained black while most region of the control film has already turned yellow. The UV-visible absorption spectra of the immersed films were presented in Fig. 3b and c. We observed that the absorption corresponding to the α-phase in control film showed an obvious decrease. The XRD measurement was carried out to record the crystal structure evolution. A strong yellow δ-phase signal
(11.8°) was observed in the control perovskite after 24 h illumination while the LOS perovskite still maintained the black phase well (Fig. 3d).

We performed scanning electron microscopy (SEM) measurements to observe the microstructure changes of perovskite films after 24 h illumination, as shown in Fig. 3e and f. For the control film, the large crystal grains were seriously damaged and converted to small needles which are consistent to the morphology of δ-phase FAPbI₃ product¹⁷ (Fig. 3e). For the LOS film, the perovskite crystal grains maintained well (Fig. 3f). The results confirmed that the loss of I obviously induced the transition from black to yellow phase while the PbC₂O₄ stabilized the black phase through impeding the I loss. Owing to the much higher vacancy density at the surface than in the bulk of the grains³⁵, this phase transition is more likely to happen at the surface of the grains along with the release of iodine and the generation of Vᵢ. As the DFT predicted, the PbC₂O₄ could suppress the formation of Vᵢ defects and block the I ions migration at the perovskite surface.

In addition, we studied the effect of PbC₂O₄ layers on the moisture resistance of perovskite films in ambient air (30%-60% relative humidity). As presented in Supplementary Fig. 7, the LOS perovskite still remained black after 12 days, while the control film has already turned yellow. In XRD measurements, the control film exhibited strong peak at 11.8° corresponding to δ-phase FAPbI₃ while the LOS perovskite maintained most of black α-phase (Supplementary Fig. 8).

Carrier extraction and photovoltaic performance

The steady-state photoluminescence (PL) and time-resolved PL (TRPL) were performed to investigate the passivation effect of PbC₂O₄ on the perovskite surface. Fig. 4a shows the LOS film has an enhanced PL intensity. The carrier lifetimes were determined through fitting the TRPL decays to a mono-exponential function (Fig. 4b). The LOS film shows a carrier lifetime of 5.2 μs which is much longer than the control film with a carrier lifetime of 0.9 μs, demonstrating the reduced nonradiative recombination at the surface.

To study the effect of lead oxalate layer on the device performance, a conventional n-i-p structure of FTO/TiO₂/SnO₂/perovskite/spiro-OMeTAD/Au was adopted. The thickness of PbC₂O₄ was carefully optimized through regulating the oxalic acid concentrations to well balance the defect passivation and charge transport (Supplementary Fig. 9). The typical current density-voltage (J-V) curves of the control and LOS devices are shown in Fig. 4c, with the extracted parameters given in Supplementary Table 1. The control device had a maximum power conversion efficiency (PCE) of 23.43% (22.94%) with a current density (J_sc) of 25.75 mA cm⁻² (25.74 mA cm⁻²), an open-circuit voltage (V_oc) of 1.16 V (1.16 V) and a fill factor (FF) of 78.40% (76.69%) from reverse (forward) scan. In comparison, the LOS PSCs had a maximum PCE of 25.39% (24.79%) with a J_sc of 25.77 mA cm⁻² (25.77 mA cm⁻²), a V_oc of 1.18 V (1.18 V) and an FF of 83.50% (81.52%) from reverse (forward) scan. The LOS device achieved a certified photovoltaic performance of 24.92% at a credible third-party photovoltaic laboratory (Supplementary
Fig. 10). The external quantum efficiency (EQE) yielded an integrated J_{sc} of 24.90 mA cm$^{-2}$ for the control and 25.18 mA cm$^{-2}$ for the LOS PSCs, respectively, which matched well with the measured J_{sc} under AM 1.5G standard spectrum (Fig. 4d). A statistical distribution of the measured PCE of the control and LOS PSCs are shown in Supplementary Fig. 11.

As shown in Fig. 4e, the relationship between V_{oc} and light intensity was investigated to further ensure the effect of PbC$_2$O$_4$ on trap-assisted surface recombination. The slope of the fitting line for LOS device was 1.16 $k_B T/q$, which was lower than that of control device (1.31 $k_B T/q$), confirming that LOS was beneficial to suppress the trap-assisted surface recombination. We employed the space charge-limited current (SCLC) technique to quantitatively measure the defect densities of the perovskite films through measuring the dark I-V curves of hole-only devices (ITO/PEDOT:PSS/perovskite/spiro-OMeTAD/Au), as shown in Fig. 4f. The trap densities were calculated through employing the formula of $N_t \approx 2\varepsilon_0\varepsilon V_{TFL}/eL^2$, where ε is the relative dielectric constant of perovskite film, ε_0 is the vacuum permittivity, V_{TFL} is the trap filled limit voltage, e is the charge, and L is the thickness of the perovskite film (650 nm). The defect density of LOS device was calculated to be 1.450 x 1015 cm$^{-3}$, which was lower than that of the control device with 1.795 x 1015 cm$^{-3}$.

Stability of PSCs

The unencapsulated devices were tested at the maximum power point (MPP) under full-sun illumination in a nitrogen atmosphere to explore its long-term operational stability (Fig. 5a). As a result, the LOS device maintained 92% of its maximum efficiency after 550 h, while the control device degraded to 60% of its initial performance. The elemental distributions in the aged device were measured by time-of-flight secondary-ion mass spectrometry (ToF-SIMS) measurement (Fig. 5b and c). Large accumulations of iodine can be seen for the control device along the top gold region. The inert gases protected condition ruled out environmental degradation factors, such as moisture and oxygen, indicating that intrinsic mechanisms (i.e., ion migration) were responsible. According to the ToF-SIMS results, I$^-$ and AuI$_2^-$ ions were found in the Au electrode, indicating that I diffused from perovskite to Au. Both the signal intensities of I$^-$ and AuI$_2^-$ ions in control device were approximately ten times higher than those of LOS sample. Previous reports demonstrated that the ion penetration can lead to rapid degradation in hole conductivity of spiro-OMeTAD and chemical corrosion of the top electrode layer, which deteriorates the interface contact in the devices36,37. We peeled the Au electrode and washed the spiro-OMeTAD layer from the substrates by chlorobenzene solution. Then, we performed grazing incidence x-ray diffraction (GIXRD) characterization on the films (Fig. 5d). The results showed that an obvious diffraction peak located at 11.8° corresponding to δ-phase in the control film while there was no new peak in the LOS sample. It demonstrated that the massive loss of I ions from the control films induced the generation of δ-phase while this process was obviously suppressed in the LOS films.
The temperature dependent conductivity was measured to confirm that ion migration can be suppressed by the PbC$_2$O$_4$ (Supplementary Fig. 12). The activation energy (E_a) for the ion migration was determined by measuring the conductivity (σ) changes of FAPbI$_3$ films at different temperatures (T) with the Nernst-Einstein relation: $\sigma T = \sigma_0 \exp(-E_a/k_B T)$, where σ_0 is a constant, k_B is the Boltzmann's constant. We derived E_a values from the slope of the ln(σT) versus 1/T of 0.283 eV for the control and 0.419 eV for the LOS device.

Discussion

In summary, we give the theoretical framework for revealing the degradation pathway of the FAPbI$_3$ perovskite and the effect of various defects on the energy barrier of α-to-δ phase transition. Among these defects, I vacancies are theoretically predicted to be liable to induce the α-to-δ phase transition. The water-insoluble and chemically stable PbC$_2$O$_4$ compact layer was introduced to stabilize the α-phase FAPbI$_3$ through suppressing the formation of I vacancies and migration of I ion. The strategy largely reduced the interfacial nonradiative recombination and boosted the efficiency of the solar cells to 25.39% with improved operation stability. Our results provide the guideline for achieving efficient and stable formamidinium PSCs through inhibiting the defect-induced α-to-δ phase transition.

Methods

Materials

Titanium (IV) isopropoxide (TTIP, 99.999%) was purchased from Sigma-Aldrich. Hydrochloric acid (HCl, 35.0-37.0%) and ethanol (anhydrous) were purchased from Guangzhou Chemicals. The SnO$_2$ (15 wt% colloidal dispersion tin(IV) oxide) was purchased from Alfa Aesar. Lead (II) iodide (PbI$_2$, 99.99%) was purchased from TCI Shanghai (China). Formamidinium iodide (FAI, \geq 99.5%), Formamidinium chloride (FACl, \geq 99.5%), methylamine hydrochloride (MACl, \geq 99.5%), 2,2',7,7'-tetakis-(N,N-di-p-methoxyphenylamine)-9,9'spirobifluorene (Spiro-OMeTAD, \geq 99.5%), bis(trifluoromethane) sulfon imide lithium salt (Li-TFSI, 99.95%), 4-tertbutylpyridine (tBP, 96%) were purchased from Xi’an Polymer Light Technology Corp. (China). N,N-dimethylformamide (DMF, 99.8%), dimethyl sulfoxide (DMSO, 99.9%), isopropanol (IPA, 99.8%), chlorobenzene (CB, 99.8%), acetonitrile (ACN) were purchased from Sigma-Aldrich. All chemicals were used as received without any other refinement.

Device fabrication

The ITO or FTO substrates (1.5 \times 1.5 cm2) were cleaned ultrasonically with detergent, acetone, and ethanol for 10 min, respectively, then drying under nitrogen flow. A dense blocking layer of TiO$_2$ was deposited onto FTO substrate by spray pyrolysis using titanium diisopropoxide bis(acetylacetonate) in ethanol (1/25, v/v) at 500 °C for 60 min. The SnO$_2$ colloidal dispersion was diluted with deionized water in a volume ratio of 1:5. The clean substrate that treated under UV-Ozone for 20 min was spin-coated with
a thin layer of SnO₂ nanoparticle film at 4000 rpm for 30 s, then it was preheated at 150 °C for 30 min. For the perovskite precursor solution, 275.2 mg FAI, 737.6 mg PbI₂, and FACl (20% mol) were dissolved in an DMF/DMSO (15/1) mixed solvent. The perovskite layer was fabricated by spin-coating 40 μL perovskite precursor solution on top of the UV-Ozone treated SnO₂ layer at a speed of 5000 rpm for 25 s in ambient air. At 5 seconds from the last, 50 μL MACl IPA solution (4 mg mL^{−1}) as an antisolvent was rapidly dropped onto the substrate. Then the as fabricated film was annealed at 150 °C for 20 min, and followed by annealing at 100 °C for 10 minutes. After the perovskite film was cooled down to room temperature, H₂C₂O₄ solution (1, 2, 4 mg in 1 mL IPA) was spin-coated at 4000 rpm for 30 s for passivating perovskite surface. The spiro-OMeTAD solution prepared by mixing 72.3 mg spiro-OMeTAD, 1 mL CB, 27 μL tBP and 17.5 μL Li-TFSI (520 mg in 1 mL acetonitrile) was spin-coated on the films at 4000 rpm for 30 s. Finally, 100 nm Au layer was evaporated under vacuum at rates of 0.05 nm s^{−1} (0~1 nm), 0.1 nm s^{−1} (2~15 nm) and 0.5 nm s^{−1} (16~100 nm).

Device characterization

The J-V characteristics of perovskite solar cells were measured using a Keithley 2400 meter under the illumination of the solar simulator (SS-X50) at a light intensity of 100 mW cm^{−2} as checked with a calibrated standard silicon solar cell. Unless otherwise stated, the J-V curves were all measured in a nitrogen-filled glovebox with forward and reverse scan modes (voltage steps of 20 mV and a delay time of 10 ms). The J-V of the best-performing device swept with antireflective coatings. EQE measurements were performed in ambient air using a PVE300-IVT210 system (Industrial Vision Technology (s) Pte Ltd) with monochromatic light focused on a device. For the device stability, the test of the non-encapsulated solar cell was carried in a nitrogen glove-box under 100 mW cm^{−2} without UV filter. The ToF-SIMS was measured by PHI nanoTOFII Time-of-Flight SIMS. The depth profiling was obtained through a 4 KV Ar ion gun of 400 × 400 μm area.

Film characterization

X-ray photoelectron spectroscopy (XPS) measurement was carried out on a Thermo-VG Scientific (ESCALAB 250) system with a monochromatized Al Kα (for XPS mode) under a pressure of 5.0 × 10^{−7} Pa. Scanning electron microscopy (SEM) was performed on a JEOL-JSM-6330F system. The surface morphology and roughness of the perovskite film were collected by atomic force microscope (AFM) (Bruker Dimension FastScan). High-resolution transmission electron microscopy (HR-TEM) was performed on FEI titan Themis STEM. Space charge limited current (SCLC) was recorded on Keithley 2400 meter. Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) decay for carrier lifetime were measured via a Photoluminescence Spectrometer FLS 1000. Fourier transform infrared spectroscopy (FTIR) was performed by Thermo-Fisher Nicolet NXR 9650 system.

Pathway sampling
In this work, we utilized the SSW pathway sampling method to explore the phase transition pathway of α-phase to δ-phase. In the SSW method, the movement on the potential surface is guided by the random soft mode (second derivative) direction, which is capable to explore potential energy surface exhaustively and unbiasedly. In this work, the pathway sampling is carried out in a 72-atom supercell, and more than 100 pairs of initial state/final state (IS/FS) are collected in DFT level. Based on the IS/FS pairs datasets, the pathways connecting the initial structure and the final structure can be determined in an atom-to-atom correspondence, then the transition state can be seamlessly located by using the variable-cell double-ended surface walking approach (VC-DESW). After transition state searching, the lowest energy barrier pathways can be determined by sorting the energy barriers.

DFT calculations

All DFT calculations were performed using VASP (5.3.5 version), where the electron-ion interaction of C, N, H, Pb and I atoms were represented by the projector augmented wave (PAW) scheme. The exchange-correlation functional was described by the generalized gradient approximation in the Perdew-Burke-Ernzerhof parametrization\(^{35}\). The energy cutoff of the plane wave was set to 400 eV. The Monkhorst-Pack k-point mesh is set to (2×2×1). For all the structures, both lattice and atomic positions were fully optimized until the maximal stress component is below 0.1 GPa and the maximal force component below 0.02 eV/Å.

Declarations

Acknowledgements

The authors would like to thank Shenzhen Fundamental Research Program (JCYJ20200109142425294), the National Natural Science Foundation of China (no. 22005354), and Guangdong Basic and Applied Basic Research Foundation (no. 2019A1515110905) for financial support.

Author contributions

J. X. and P. G. supervised the work. J. X. and T. C. conducted the idea and designed the experiments, and prepared the manuscript. S.Z. conducted the DFT calculations. T. C. conducted most of the experiments and characterizations. B. W., Q.Y., and R. L. assisted with experiments and device fabrication. P. G. contributed to the revision of the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence and requests for materials should be addressed to Jiangsheng Xie.

References
Figures

Figure 1

First-principles calculations studies. **a** The phase transformation process from left to right is black-phase FAPbI$_3$ (α-phase), the first interrupting of Pb-I bonds (Int-1), further breaking of Pb-I bonds (Int-2, Int-3, and Int-4), and yellow-phase FAPbI$_3$ (δ-phase). **b** The energy barrier of α-to-δ phase transition of FAPbI$_3$ based on various native point defects. **c** The defect formation energies of native point defects on the Pb-rich perovskite surface. The abscissa is energy barrier of α-to-δ phase transition and the ordinate is the formation energy of defects. **d** The defect formation energies of V$_I$ in control and LOS FAPbI$_3$. **e** The I$_I$ ion migration barrier in control and LOS FAPbI$_3$. **f, g** The schematic views (left: top views; right: cross-section views) for the phase transformation process.
views) of ionic migration (orange balls) in f control and g LOS FAPbI₃ (gray, lead; purple (orange), iodine (mobile iodine); brown, carbon; light blue, nitrogen; red, oxygen; light pink, hydrogen).

Figure 2

Morphology and XPS spectra of control and LOS perovskite films. a, b Top-view SEM images of a control and b LOS perovskite films. c, d Cross-sectional high-resolution transmission electron microscopy (HR-TEM) of c control and d LOS perovskite films. e-g High-resolution XPS of e C 1s, f O 1s and g Pb 4f for the perovskite films.
Figure 3

Stability test of the FAPbI$_3$ films. a UV-vis absorption spectra of the toluene solutions in which control and LOS films were immersed under 1-sun illumination for 24 h. Inset is the picture of the vials in which each film was immersed into an equal volume of toluene. b, c UV-vis absorption spectra of b the control and c LOS films before and after immersed under 1-sun illumination for 24 h. Inset is the picture of the tested films. d XRD patterns of the control and LOS films before and after exposing for 24 h. e, f SEM images of e the control and f LOS films after exposing for 24 h.
Figure 4

Carrier extraction and photovoltaic characteristics. a, b PL of a steady-state PL and b time-resolved PL spectra of perovskite films on glass substrates. c $J-V$ curves of devices (FTO/TiO$_2$/SnO$_2$/perovskite/spiro-OMeTAD/Au). d EQE spectrum and J_{sc} integrated from the EQE spectrum of the best-performing devices. e Light-intensity dependence on V_{oc} plots for the perovskite devices. f The typical SCLC analysis with the hole-only device of ITO/PEDOT:PSS/perovskite/PCBM/Au. V_{TFL} is the trap filled limit voltage. From the data we calculated the trap densities (N_t).
Figure 5

Stability of control and LOS PSCs. **a** Continuous MPP tracking for 575 h of unsealed devices in a nitrogen atmosphere under 1-sun illumination without UV filter. **b, c** ToF-SIMS of the **b** I⁻ and **c** AuI₂⁻ ions distributions in the control and LOS MPP-aged devices. **d** GIXRD of the perovskite films after MPP test.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementaryinformation.docx