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Abstract
Organic UV-filters, including 4-hydroxybenzophenone (4-HBP) and 2,4-dihydroxybenzophenone (BP-1), are
persistent emerging contaminants whose presence in the environment poses a threat to aquatic
organisms due to their endocrine disruptor’s properties. For this reason, finding suitable technological
processes for their safety and efficient removal from the environment represent a priority for the scientific
community. To the author’s knowledge, until now, there are no studies reporting the biodegradation of 4-
HBP and BP-1 by a single bacteria strain. In this paper, there were tested the 4-HBP and BP-1
biodegradation potential of two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and
two Gram-negative (Salmonella typhimurium and Serratia rubidae).

The 4-HPB biodegradation process was observed only in the presence of Gram-negative bacterial strains.
Thus, the biodegradation rates of 4-HBP reached up to 12.7% after 24h of incubation in presence of
Salmonella thyphimurium and up to 24.0% after 24h of incubation with Serratia rubidae. Staphylococcus
aureus was able to biodegrade 26.7% of BP-1, while Salmonella thiphymurium was able to biodegrade
14.7% of BP-1 after 24h of incubation. Their biodegradation products generated during the 4-HBP
biodegradation process by Serratia rubidae were analyzed through LC-MS/MS analysis. The
(bio)degradation products were benzophenone and a multi-hydroxylated derivative of 4-HBP and the
degradation pathways were proposed. The data obtained in this study gave important information
regarding the 4-HBP and BP-1 potential biodegradation by single bacterial strains.

1. Introduction
Benzophenone-type UV filters are chemical substances used extensively in sunscreens and other personal
care products such as body lotions, shampoos, lipstick and skin creams to protect lips, hair and skin
against the solar irradiation (Mao et al., 2019). Due to their extensively applications, organic UV filters and
their metabolites may be released into environment through human activities or through wastewater
treatment plant effluent discharges, which are not always capable of completely remove these micro-
pollutants. In recent years, many studies reported the presence of organic UV filters, including 2-hydroxy-
4-methoxy-benzophenone (BP-3), 4-hydroxibenzophenone (4-HBP) and 2,4-dixydroxybenzophenone (BP-
1), in concentration levels ranging from nanograms per liter to microgram per liter in surface waters and
sediments (Chiriac et al., 2021; O'Malley et al., 2021; Fagervold et al., 2019; Apel et al., 2018; Tsui et al.,
2019; Mitchelmore et al., 2019), wastewaters and sewage sludge (Chiriac et al., 2021; Wu et al., 2018;
Mao et al., 2019; O'Malley et al., 2019). The major concern regarding these chemical compounds is
related to the easiness with which they can bioaccumulate in living organisms, especially due to the
negative properties they can have: alter sex hormonal balance, affect endocrine signaling and impede
reproductive capacity. In the last decade, organic UV-filters were discovered more often bioaccumulated in
aquatic organisms, such as: coral (Tsui et al., 2017; Fel et al., 2019; Mitchelmore et al., 2019; He et al.,
2019; Stien et al., 2020), dolphin (Alonso et al., 2015; Gago-Ferrero et al., 2013a) fishes (Horricks et al.,
2019; Araújo et al., 2018; Lu et al., 2018; Gago-Ferrerro et al., 2015), algae (Teoh et al., 2020; Zhong et al.,
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2019; Mao et al., 2017; Mao et al., 2018; Seoane et al., 2017), benthic mollusks (Vidal-Linan et al., 2018;
Giraldo 2017).

The frequent and increasing determination of organic UV filters leads to the need of fast and efficient
methods capable to eliminate them before they reach the environment. Many degradation studies are
focusing on BP-3 and only very few on BP-1 or 4-HBP. The most common methods for removing these
emerging organic micropollutants from environment are, photodegradation (Luo et al., 2019; Vione et al.,
2013; Gong et al., 2015), ozonation (Gago-Ferrero et al., 2013b; Guo et al., 2016), electro-Fenton
degradation (Ye et al., 2019), persulfate-based oxidation (Pan et al., 2017) and chlorination (Lee et al.,
2020; Manasfi et al., 2017). Compared to chemical methods, biological treatment is a more economical,
environmentally friendly alternative and has gained very high public acceptance (Nita-Lazar et al., 2016a,
b). Biological treatment is one of the most important method of removing organic pollutants in a
wastewater treatment plant (Ponce-Robles et al., 2018). The biodegradation process involves the total or
partial removal of organic chemicals by transforming them into substances less dangerous for the
environment. These processes are based on microorganisms existing in natural ecosystems that can
degrade and eliminate organic pollutants using them as growth substrates. Until now, activated sludge
and anaerobic digested sludge were used as inoculum for BP-3 biodegradation (Liu et al., 2012b). White
rot fungus, Trametes versicolor, proved to be very efficient for BP-3 biodegradation (Badia-Fabregat et al.,
2012; Rodríguez-Rodríguez et al., 2014). Moreover, fungal treatment managed to degrade more than 99%
of both BP-3 and BP-1 in less than 24 h (Gago-Ferrero et al., 2012).

However, according to the authors' knowledge, there are no reports in the literature regarding the
degradation of 4-HBP or BP-1 by a single bacterial strain. Unveiling bacterial strains capable of efficient
degradation of emerging organic pollutants such as 4-HBP and BP-1, could be useful for increasing the
wastewater treatment plants removal capacity, by bioaugmentation or other bioremediation process.

The aim of this study was to find single bacterial strains with the ability to degrade two of the most
common UV filters which are often found in wastewater treatment plants: 4-HBP and BP-1, without
additional carbon sources and to evaluate, for the first time, the tolerance to 4-HBP and BP-1 stress of
gram-negative and gram-positive bacteria strains. Moreover, removal efficiency and biodegradation
kinetic parameters were determined and a possible (bio)degradation pathway was discussed.

2. Material And Methods

2.1. Chemicals
4-HBP and BP-1 (analytical grade > 99%) were purchased from Sigma-Aldrich (Germany). The acetonitrile
HPLC-gradient grade and Formic acid were acquired from Sigma-Aldrich (Germany). Gram-negative
bacterial strain Salmonella thyphimurium- ATCC 14028 and gram-positive bacterial strain Enterococcus
faecalis - ATCC 29212 were purchased from ATCC (American Type Culture Collection), while gram-
negative bacterial strain Serratia rubidae and gram-positive bacterial strain Staphylococcus aureus were
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obtained from our bacterial data bank collection. Solid growth medium - soybean agar tryptone (Oxoid,
UK) and liquid growth medium - lauryl sulfate broth, used for bacterial growth, were acquired from
Himedia Laboratories Pvt. Ltd.

2.2. Biodegradation assays
For biodegradation studies, the bacterial strains were initially seeded on a solid nutrient medium (soy
agar tryptone) and incubated at 37°C for 24 hours. After incubation, one colony of each bacterial strain
was transferred to specific liquid culture medium - lauryl sulfate broth (tryptose 20g/L, lactose 5g/L,
sodium chloride 5g/L, dipotassium phosphate 2.75g/L, monopotassium phosphate 2.75g/L, sodium
lauryl sulfate 0.1g/L) and incubated at 37°C. Incubation in liquid medium was performed for 24h in an
incubator under gentle rotation 130 rpm) (New Brunswick Scientific, Innova 44). Bacterial growth was
spectrophotometrically measured by optical density (OD) detection at 600 nm wavelength using the UV-
VIS spectrometer (VWR International, USA). A 10ml of 0.2 OD 600nm bacterial inoculum were incubated
in presence of lauryl sulfate broth medium containing 10 mg/L BP-1 or 4-HBP, then incubated in sterile
condition up to 24h at 37°C and 130 rpm. Growth inhibition rate was calculated based on bacterial
density, measured as optical density at 600 nm.

2.3. Chemical analysis
The concentration of 4-HBP and BP-1 was quantified by liquid chromatography tandem mass
spectrometry (LC-MS/MS). Experiments were carried out in triplicates and control experiments without
bacterial inoculation were performed under the same conditions.

Standard solutions (without the bacterial strain incubation), control samples (bacterial strain incubated in
liquid culture medium and 4-HBP or BP-1 in liquid culture medium) and test samples (bacterial strains
incubated in presence of 4-HBP or BP-1) were collected and compared at 0h, 6h and 24h in liquid culture
medium - lauryl sulfate broth. LC-MS/MS analysis was performed using an Agilent 1260 series LC system
(Agilent, Waldbronn, Germany) coupled with an Agilent 6410B triple-quadrupole mass spectrometer with
electrospray ionization source (ESI). The chromatographic separation was done on a hydrophobic
chromatographic column (Luna(C18), 150 x 2.0 mm, 3.0 µm, Phenomenex) maintained at 30°C, with
suitable guard column. The mobile phase consisted of 0.15% formic acid in ultrapure water (A) and
Acetonitrile (B) 40/60 v/v, in isocratic mode. The flow rate of the mobile phase was 0.2 mL/min and the
injection volume 1 µL. Determination of chemical concentration and metabolite formation were done in
SCAN operation mode. Full-scan chromatograms were recorded, using the electrospray ionization source
in both negative and positive modes, respectively. The scan ranged between 80 and 400 Da. Parameters
of the ionization source were: capillary voltage (5000V), drying gas temperature (300°C), drying gas flow
(8 L/min) and nebulizer pressure (40 psi). For quantification of 4-HBP, BP-1 and unknown metabolites, the
retention times of samples collected after specific hours (0h, 6h and 24h) were matched and compared
for areas. 4-HBP and BP-1 peaks were observed at 7.6 and respectively 8.3 min retention times in
standard solutions (Fig. 1) control samples and test samples (data not shown).
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The preparation method for standard solutions, control samples and test samples focused on proteins
precipitation with Acetonitrile to reduce the matrix effect that may interfere with mass spectrometric
detection. Thus, 200 µL aliquots of the all samples were deproteinized with 400 µL Acetonitrile. The
mixtures were vortexed for 1 min and then centrifuged (5 min at 14000 rpm). After centrifugation, the
supernatant was transferred to the LC-MS injection vial.

4-HBP and BP-1 removal efficiencies (%) were calculated with the following equation:

Removalefficiency(%) = 100 ×
(CMB − CT)

C0

1

Where CMB represented the concentration of 4-HBP or BP-1 in liquid culture medium at different sampling
times, CT represented the 4-HBP or BP-1 in treatment medium at each sampling time and C0 was the
initial concentration of 4-HBP or BP-1.

3. Results And Discussion

3.1. 4-HBP and BP-1 effect on Gram-positive and negative
bacterial strains
Four bacterial strains, two Gram-negative and two Gram-positive strains were incubated in presence of
organic UV filters, 4-HBP or BP-1. The impact of organic UV filters on the bacterial strains was different
based on the timing and strains, where the growth curves were more robust in case of gram-negative
bacteria incubated in presence of both 4-HBP (Fig. 2) and BP-1 (Fig. 3), compared with gram-positive
bacteria.

Salmonella thyphimurium had a robust growth in the first 2h of incubation in the presence of 4-HBP
followed by a less increase growth phase after 4h to 6h of incubation (Fig. 2a), compared with Serratia
rubidae which had an exponential growth throughout the entire test period (Fig. 2b). Enterococcus
faecalis had a slightly decrease after 6h contact with 4-HBP (Fig. 2c) compared with Staphylococcus
aureus (Fig. 2d), however both gram-positive bacteria recorded a lower growth rate compared to gram-
negative ones.

According with Turner et al. (2000), within the stationary phase of growth, the cell phenotypes of bacterial
species could oscillate due to the increase of cell heterogeneity. Moreover, numerous bacterial strains,
including Salmonella thyphimurium has been reported as being able to cope environmental pressures by
expression of specific genes (Child et al., 2002).

Gram-negative bacteria incubated in the presence of BP-1 had a continuous growth compared to Gram-
positive bacteria, which had a longer lag time (Fig. 3a and 3b). Overall growth profile of all for bacterial
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strains in presence of organic UV filters had the same growth pattern as the control samples, indicating
that organic UV filters did not significantly modify the growth pattern of the analyzed bacterial strains.
The overall growth inhibition was up to 16% for Salmonella typhimurium incubated in presence of 4-HBP,
which pointed to the hypothesis that bacterial strains could metabolize the organic UV filters.

3.2. Bacterial biodegradation potential of organic UV filters,
4-HBP and BP-1
The assay of bacterial incubation in presence of the organic UV filters continued with the quantitative
monitoring of 4-HBP and BP-1 from the bacterial broth in which incubation took place. The control
monitoring of organic UV filters was performed in absence of bacterial strains (data not shown). The
abiotic degradation of 4-HBP was around 6%, while the BP-1 abiotic degradation was up to 2.6% during
24h of incubation. Overall the abiotic degradation was not significant, but there were taken into
consideration when biodegradation results were analyzed.

Experiments performed in the presence of gram-positive bacteria, Staphyloccocus aureus and
Enterococcus faecalis, showed the biodegradation degree of 4-HBP was less than 4%, in addition to the
abiotic degradation percentage. A longer incubation time did not enhance the biodegradation (Fig. 4a).

In contrast, both gram-negative bacterial strains, Salmonella typhymurium and Serratia rubidae, were
efficient in 4-HBP removal after 6h of incubation. The highest degradation degree was recorded in the
presence of Serratia rubidae, up to 24%, while Salmonella typhimurium managed to biodegrade only
12.7% of 4-HBP (Fig. 4a). In both experiments, the biodegradation degree wasn’t significantly increased
after 6 hours of incubation. The results were analyzed after subtracting the abiotic degradation values.

Experiments performed in the presence of the gram-positive bacteria Staphyloccocus aureus resulted in a
steady decrease of BP-1 concentration throughout the entire test period. About 27% of BP-1 was
degraded by strain Staphyloccocus aureus in 24h (Fig. 4b). BP-1 removal efficiencies of only 3% were
achieved by incubation with Enterococcus faecalis, after the correction with abiotic degradation was
made. Serratia rubidae achieved to remove only 6% of BP-1 after 12h of incubation, while for Salmonella
thyphimurium, the removal efficiency was up to 15% of the initial amount of BP-1 after 24h of incubation
(Fig. 4b). All values reported were corrected with abiotic degradation results.

It was observed that after 6h incubation time both Salmonella thyphimurium and Serratia rubidae were
able to metabolize 4-HBP, in contrast to BP-1. We assume that the lower removal efficiency of BP-1 after
12h incubation was due to expression of efflux pumps described as the key mechanism of resistance in
bacteria. Therefore, the efflux pumps allowed the microorganisms to regulate their internal environment
by removing toxic substances, metabolites and quorum sensing signal molecules out of the cell (Pearson
et al., 1999).

There is only one study in the literature in which the authors reported the degradation of an organic UV
filter, BP-3 by a single bacterial strain, namely Methylophilus sp. strain FP-6. In that study Methylophilus
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sp efficiently removed about 65% of BP-3 after 8 days, using methanol as additional carbon sources (Jin
et al., 2019).

3.3. Kinetics biodegradation of 4-HBP and BP-1
Both UV-Filters biodegradation kinetics was simulated and all experiments found to be fitted with second-
order model, in which the time (t) dependence of the concentration (C) variation is given by the Eq. 2:

1
[C] =

1
[C]0

+ kt

2

Where C0 is the initial concentration and k is the biodegradation rate constants.

The half-life of biodegradation (t1/2) for both UV-Filters by gram-positive and gram-negative bacterial
strains was estimated from k, using the following equation:

t 1
2

=
1

k[C]0

3

Two-gram positive bacterial strain, meaning Staphylococcus aureus and Enterococcus faecalis and two
gram-negative bacterial strain, Serratia rubidae and Salmonella thyphimurium, were tested for their ability
to degrade 4-HBP and BP-1. The kinetic parameters are summarized in Table 1. 4-HBP was resistant to
biodegradation by both Staphylococcus aureus and Enterococcus faecalis, the higher removal rate being
only up to 3%. The observed rate constants (k) of 4-HBP degradation were determined to be 4.64 × 10− 4

h− 1 for Staphyloccocus aureus and 2.37 x 10− 5 h− 1 for Enteroccocus faecalis, respectively. The half-life
(t1/2) values were calculated as 11.1 days for the interaction of 4-HBP with Staphylococcus aureus and
17.4 days for the interaction with Enterococcus faecalis.

Table 1. Second-order rate constant (k) and half-life (t1/2) for biodegradation of 4-HBP and BP-1 by
bacterial strains
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Compound Bacterial strain Removal
efficiency (%)

Kinetics
order

R2 k t1/2
(days)

4-HBP Staphyloccocus
aureus

3.75 2nd order 0.9685 4.64x104 11.1

Enterococcus
faecalis

0.96 2nd order 0.9117 2.37x104 17.4

Salmonella
typhimurium

12.7 2nd order 0.9034 8.61x104 5.5

Serratia rubidae 24.03 2nd order 0.9363 1.58x103 2.6

BP-1 Staphyloccocus
aureus

26.7 2nd order 0.9894 1.56x103 2.5

Enterococcus
faecalis

2.5 2nd order 0.9487 2.14x104 19.7

Salmonella
typhimurium

14.7 2nd order 0.9308 6.91x104 6.03

Serratia rubidae 3.40 2nd order 0.9088 2.82x104 17.1

The biodegradation of 4-HBP by the gram-negative bacterial strains exhibit the highest rate constant
values: 1.58 x 10-3 h-1 for Serratia rubidae and 8.61 x 10-4 h-1 for Salmonella thyphimurium. The half-life
(t1/2) values of 4-HBP biodegradation by Serratia rubidae and Salmonella thyphimurium were estimated

at 2.6 days and 5.5 days respectively. The correlation coefficient (R2) values ranged from 0.90 to 0.97,
which indicate a good relationship between the biodegradation data and the second-order kinetic model.

Unlike 4-HBP, for which biodegradation has been favored by gram-negative bacterial strains, the
degradation of the BP-1 no longer depended on the type of bacteria used. The higher degradation rates
were obtained for Staphyloccocus aureus and Salmonella typhimurium, with the second-order
degradation rate constant of 1.56x103 and 6.91x104, respectively. Based on the half-life time calculated
values, it takes approximatively 2.5 days for Staphyloccocus aureus to biodegrade half of BP-1 amount
and 6.03 days for Salmonella typhimurium to biodegrade half of the same amount of BP-1. For the other
two tested bacterial strain, Enterococcus faecalis and Serratia rubidae, the BP-1 biodegradation was very
small (up to 3.4%). The biodegradation rate constant of Enterococcus faecalis was 2.14x104, while the k
value of Serratia rubidae incubated with BP-1 was 2.82x104. The half-life of BP-1 biodegradation by
Enterococcus faecalis was estimated as 19.7 days while by Serratia rubidae was determined as 17.1
according to the BP-1 degradation curves. High correlation coefficient values were also obtained for the
second-order kinetic degradation model of BP-1 by all bacterial strains, with values ranged between 0.90
and 0.99.
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The half-life values are similar with those reported for BP-3 degradation by Methylophilus sp. strain FP-6,
which was estimated as 2.95 days under optimum culture conditions (Jin et al., 2019).

3.4 (Bio)degradation products and proposed degradation
pathway
The highest biodegradation of BP-1 was obtained in presence of Salmonella typhimurium and
Staphyloccocus aureus and the next step was to analyzed the mass spectra of BP-1, in order to identify
its possible by products. Although the BP-1 concentration decreased during the biodegradation assays,
no biodegradation product could be observed on the spectra (data not shown). Possible explanations of
no biodegradation products detection could reside either on the low sensitivity of the SCAN method or on
obtaining biodegradation compounds with molecular masses smaller than the tested SCAN range,
between 80 and 400 Da.

The analysis of the 4-HBP mass spectra after Salmonella typhimurium and Serratia rubidae incubation
was more successful in biodegradation products identification compared to BP-1 biodegradation. As
shown in the chromatograms of Figure 5, only 4-HBP (tR=7.6 min) was observed before starting the
biodegradation experiments.  The peak area of 4-HBP was observed to decrease after 6h of both bacterial
treatment and in their absence (only in the liquid medium), but much more slowly. After 6 hours of
incubation the chromatographic peak width corresponding to 4-HBP increases which suggesting the
formation of an unknown degradation product (DP1) at the same retention time with 4-HBP for both
gram-negative bacterial strains (Figure 5B and Figure 5C). The same thing was also observed for the
experiment which does not contain the biotic factor (Figure 5A), which means that this unknown
compound results from the abiotic degradation. However, as it can be seen in Figure 5C, LC-MS/MS
analysis showed one unknown chromatographic peak (DP2) after 24 hours of incubation, indicating the
formation of a degradation product of 4-HBP by Serratia rubidae (tR=8.6 min). The intermediate derived
from 4-HBP were further determined through MS spectrum obtained from LC (ESI)-MS/MS (Figure 5).

Based on the molecular ion masses from MS fragmentation, the molecular ion peaks [M+H] + of
compounds DP1 and DP2 were 184.0 Da (molecular weight 183.0) and 310.1 Da (molecular weight
309.1), respectively (Fig. 6). It was proposed that 4-HBP could be transformed into benzophenone (DP1)
through dihydroxylation under abiotic condition. Multi-hydroxylated intermediate (DP2) was formed in the
presence of the Serratia rubidae bacterial strain by successive hydroxylation of 4-HBP. In a similar study,
performed with BP-3, it was reported that the reaction between hydroxyl radical and benzene ring is
performed in a gradual way, leading to the formation of mono-, di- and tri-hydroxylated BP-3 analogs (Guo
et al., 2016). Based on the identified products, (bio)transformation pathways of 4-HBP under biotic and
abiotic condition have been proposed in Figure 6.

Conclusion
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In this study, we investigated the effect of 4-HBP and BP-1 on the growth of four single bacterial strains,
gram-positive (Staphylococcus aureus and Enterococcus faecalis) and two gram-negative (Salmonella
typhimurium and Serratia rubidae), and evaluated their ability of biodegrade 4-HBP and BP-1 in culture. 4-
HBP reached about 12.7% after 24 hours of incubation with strain Salmonella thiphymurium and about
24.0% after 24 hours of incubation with Serratia rubidae. The half-life (t1/2) of 4-HBP biodegradation was
estimated as 5.5 days for Salmonella thyphimurium and 2.6 days for Serratia rubidae. Degradation of 4-
HBP by strain Serratia rubidae resulted in the formation of one biodegradation products and a
biodegradation pathway was proposed, while for Salmonella thyphimurium, no biodegradation product
was observed.

The degradation achieved for BP-1 was 26.7% for Staphylococcus aureus and 14.7% for Salmonella
thyphimurium, while for the other two bacterial strains, the degradation was less than 5%. The
biodegradation half-life of BP-1 was determined to be 2.5 days for Staphylococcus aureus and 6.03 days
for Salmonella thyphimurium. No biodegradation products were observed during the biodegradation
processes. The obtained data provides the first proof that single bacterial strains can degrade 4-HBP and
BP-1 and can be successfully involved in bioaugmentation processes.

Future researches will be focused on longer incubation time of bacteria in presence of UV filters to
highlight the expression of genes encoding proteins.
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Figures

Figure 1

TIC Scan chromatograms registered in positive mode for a. 4HBP and b. BP1 in standard solution.
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Figure 2

4-HBP impact on bacterial growth. Gram-negative bacteria a, Salmonella typhimurium and b, Serratia
rubidae and Gram-positive bacteria c, Staphylococcus aureus and d, Enterococcus faecalis. Control,
bacteria incubated without 4-HBP. All studies represent one of three independent experiments.
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Figure 3

BP-1 impact on bacterial growth. Gram-negative bacteria a, Salmonella typhimurium and b, Serratia
rubidae and Gram-positive bacteria c, Staphylococcus aureus and d, Enterococcus faecalis. Control,
bacteria incubated without BP-1. All studies represent one of three independent experiments.

Figure 4

Biodegradation of a, 4-HBP and b, BP-1 by gram-positive and gram-negative bacterial strains. All studies
represent one of three independent experiments.
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Figure 5

A: Mass spectra of 4-HBP and abiotic degradation product in liquid medium at 0h, 6h and 24h; B: Mass
spectra of 4-HBP and degradation product by Salmonella typhimurium at 0h, 6h and 24h; and C: Mass
spectra of 4-HBP and degradation product by Serratia rubidae at 0h, 6h and 24h.
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Figure 6

Proposed pathway for the biotic degradation of 4-HBP by Serratia rubidae strain and abiotic degradation
in liquid medium
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