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Abstract 
Background: The latest development of COVID-19 spread in Indonesia has reached 311,176 cases, with 11,374 
patients died, updated on October 6, 2020. Unfortunately, these numbers continue to overgrow, and no drug has 
yet been approved for effective treatment. This study aims to determine the potential candidate compounds in 
Indonesian herbal medicine as a COVID-19 supportive therapy using a machine learning and pharmacophore 
modelling approach.  
Methods: For the machine learning approach, we used three classification methods that have different ways in 
decision making, such as Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Random Forest 
(RF). Moreover, for the pharmacophore modelling approach, we performed a structure-based method on the 3D 
structure of the main protease SARS-CoV-2 (3CLPro) and used the SARS, MERS, and SARS-CoV-2 repurposing 
drugs known from the literature as data sets on the ligand-based method. Finally, we used molecular docking to 
analyse the interactions between the 3CLpro protein (main protease) and 14 hit compounds from the Indonesian 
Herbal Database (HerbalDB) and Lopinavir as a positive control.  
Results: The machine learning approach with SVM, RF, and MLP methods and pharmacophore modelling 
approach were used for screening in herbal compounds obtained from HerbalDB. Based on the screening on 
HerbalDB using these two prediction approaches, we got 14 hit compounds. We then performed molecular 
docking to determine the interaction of these compounds with the main protease SARS-CoV-2 as an inhibiting 
agent. From the molecular docking analysis, it was found that six potential compounds as the main proteases of 
the SARS-CoV-2 inhibitor, i.e. Hesperidin, Kaempferol-3,4'-di-O-methyl ether (Ermanin); Myricetin-3-
glucoside, Peonidine 3-(4’-arabinosylglucoside); Quercetin 3-(2G-rhamnosylrutinoside); and Rhamnetin 3-
mannosyl-(1-2)-alloside. 
Conclusions: We used layered virtual screening with machine learning and pharmacophore modelling approaches 
that could provide more objective and optimal virtual screening and avoid subjective decision making on research 
results. Herbal compounds from various plants have potential as antiviral candidates for SARS-CoV-2. Based on 
our research and literature study, one of Indonesia's potential commodity crops is Psidium guajava (guava), and 
people can use it directly as a preventive effort. 
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Background 
The new coronavirus, called SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), was first identified 
in Wuhan, China, in December 2019 [1]. SARS-CoV-2 belongs to the Coronaviridae family, a single-stranded 
RNA virus (+ ssRNA) that is widespread among humans and other mammals, causing a wide range of infections 
from common cold symptoms to fatal illnesses, such as severe respiratory syndrome [2,3]. The latest development 
of COVID-19 spread in Indonesia has reached 311,176 cases, with 11,374 patients died, updated on October 6, 
2020 (data taken fromhttps://www.worldometers.info/coronavirus/country/indonesia/). Unfortunately, the 
infected numbers continue to overgrow, and there are no drugs approved yet as an effective treatment. Therefore, 
the need to discover and develop drugs to treat the Coronavirus Disease 2019 (COVID-19) is urgent. 
  
There are two categories of anti-coronavirus therapy depending on the target, one act on the human immune 
system or human cells, and the other one is on the coronavirus itself. In terms of the human immune system, the 
innate immune system response plays an essential role in controlling the replication and infection of coronavirus 
and to enhance the immune response [4]. Blocking the signalling pathways of human cells required for virus 
replication may exhibit a specific antiviral effect. The therapies that work on the coronavirus itself include 
preventing the synthesis of viral RNA by acting on the genetic material of the virus, inhibiting virus replication 
through acting on critical enzymes of the virus, and blocking the virus from binding to human cell receptors or 
inhibiting the viral assembly process by working on several structural proteins  [5]. 
  
Exploring new medicines for emerging and rapidly spreading diseases such as SARS-CoV-2 could be carried out 
through drug repurposing strategy to bypass the pre-clinical steps that usually require laborious works and resources 
[6]. Drug repurposing is conducted by finding new efficacy of registered drug compounds. Drug repurposing can 
be typically performed by analysing the interaction of compounds drugs with proteins related to the diseases (Drug-
Target Interaction or DTI), then predicting new DTIs in which the interactions are previously unknown [7,8].  Drug 
repurposing is commonly done on conventional medicines. However, in Indonesia, in which people are more 
familiar with using herbal to care their health in daily life, we also need to consider developing agents from herbal, 
which could be utilised by the people. 
 
To support the drug repurposing strategy and help reduce the time and cost of laboratory experiments, we 
used a virtual screening as one method of computer-aided drug design [9]. The virtual screening process 
usually works by identifying the ability of structures to bind each other, for instance, the drug compound 
and its protein targets. Virtual screening is usually based on compound similarity or database docking [10]. 
However, cheminformatic studies found that computer science approaches, such as pharmacophore analysis 
[9] and some machine learning techniques are useful in identifying the interaction between drug and its 
protein targets [10–12],  
 
Fitriawan et al. [10] has developed a deep learning classification model for Nicotinamide Adenine 
Dinucleotide (NAD) protein target problem and used PubChem fingerprints as a feature. Meanwhile, 
Dhanda et al. [11] used a combination of hybrid fingerprint models to develop a Support Vector Machine 
(SVM) prediction for drugs compound. The research from Liu [12] used different approaches for combining 
the classifier, called ensemble machine learning. Johnson and Maggiora [13] analysed chemical compounds 
similarity that compounds with similar structures tend to have similar properties. Utilising this concept, 
adding a machine learning method could improve the performance in finding the drug compounds. 
 
In this study, we research to find potential candidate compounds in Indonesian plants as anti-SARS-CoV-2 with 
the primary objective for prevention and possible for curation by using big data analysis and machine learning 
and compared with the pharmacophore modelling approach. The compounds and proteins, as the overlapping 
results between the machine learning approach and pharmacophore modelling approach, were validated using 
molecular docking. The results of this study produced several potential compound candidates that could be used 
as preventive purposes because the candidate plants (especially commodity crops) could be easily used directly 
by the community. 
 
  
Methods 
In this study, we combined two approaches of screening, by machine learning and pharmacophore modelling. The 
compounds that overlap from two approaches were further analysed using molecular docking. The graphical 
method in this study is represented in Fig. 1. 
 
 
 



Machine Learning Approach 
There are four steps in DTI prediction using machine learning approach. This process started with a literature 
study to collect drugs and protein targets interaction from public research notes and public domain database as 
the training dataset. The chemical structure features and genomic sequence features were then extracted from 
drugs and protein targets collected in the previous step. Next, the training datasets were tuned to get the 
hyperparameters which used later to generate the models. The last step was to utilise the predictive models to 
make predictions for herbal compounds data set. The machine learning approach was conducted on Intel (R) Xeon 
(R) Silver 4110 CPU @ 2.10GHz; 65.58 GB  memory. All data and source codes of the machine learning approach 
used in this research can be accessed at https://github.com/TropBRC-BioinfoLab/virtual-screening-covid19. 
 
Data Acquisition  
The original datasets used in this study that consisted of drugs and protein targets were obtained from Li and 
Clercq [6] and Wu et al. [5] in 2020. There are 81 virus-based drugs (Additional File 1), 17 human-based drugs 
(Additional File 2), 15 host-based proteins and eight virus-based proteins (Table 1). Wu et al. [5] systematically 
analysed proteins encoded by the SARS-CoV-2 gene, compared them to the target proteins from other 
coronaviruses, and predicted their structure using homology modelling. Also, Li and Clercq [6] investigated the 
potential for reusing antiviral agents based on the therapeutic experience with two infections caused by other 
coronaviruses. The antiviral drugs’ potential in [6] and [5] were determined by a significant binding affinity score 
on drug-target interaction. To extend the exploration of drug-target interactions, we input protein targets and drugs 
into SuperTarget web resources [13]. The outputs of SuperTarget were not only the interactions between drugs 
and protein targets but also the new protein targets and new drugs (Table 2) that were not previously mentioned 
in [5] and [6]. The total number of data obtained from literature and SuperTarget is 119 drugs, 335 protein targets, 
and 685 interactions (Additional file 3). Moreover, the total possible interaction that might exist is 119 drugs*335 
targets = 39,865 interactions. Thus, the total dataset is 39,865 samples that consist of 685 samples with positive 
interactions and 39,180 samples with unknown interactions (negative).  
 
As described before, this study aims to find the potential compound in Indonesian plants as anti-SARS-CoV-2 
with the primary objective of prevention. Thus, we collected 400 Indonesia herbal compounds obtained from 
HerbalDB [13] as a testing dataset. This dataset has no label. Our proposed model would predict the labels positive 
or negative. 
 
Drug-Target Representation 
In DTI prediction, the input data required the numerical representations of compounds and proteins on the 
classification model. The compound descriptors are the Simplified Molecular-Input Line-Entry System 
(SMILES). By using SMILES, the fingerprint of a chemical structure can be obtained to represent compounds 
effectively. Fingerprint (FP) is the encoding of a compound into a Boolean FP vector representing the existence 
of a substructure within the compound's molecule.  PubChem [14] issued 881 structural keys. This structural key 
is used as a compound similarity measure for similar compounds searching on their website 
http://pubchem.ncbi.nlm.nih.gov.  
 
PubChem fingerprint was chosen because it contained the ability to explain more characteristics of a compound. 
Moreover, the PubChem fingerprint consisted of 881 0/1 features. It meant this characterization only needs one 
bit of storage for every feature in a compound while used other kinds of features that at least using float might 
need up to 32 bit for one feature. This small size of fingerprint helps to accelerate the machine learning process. 
PubChem fingerprint uses a substructure key-based on the 2D structure of a compound that is also used for 
similarity search [15], the same as the purpose of this paper, which finds a similar herbal compound from existing 
compound-protein interaction. Another research about database fingerprint (DFP), which includes PubChem 
fingerprint, stated that DFP is enough for compound data sets representation [16].   
 
The simplest of protein descriptors is amino acid composition. There are 20 components, each of which is 
represented using a single letter code. However, the weakness of amino acid composition descriptors is that the 
same amino acid composition may correspond to diverse sequences as sequence order is lost [17]. The Dipeptide 
Composition (DC) can cover the sequence order information. Thus, this study used Dipeptide Composition (DC) 
as a protein descriptor. Dipeptides are combinations of 2 amino acid components (such as AA, AR, AN, AD, AC). 
DC converts protein sequences into 400 features. DC can be defined by (1). 
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Where dep(i) is the i-th dipeptide of 400 dipeptides, Xdep(i) represents the ratio of occurrences of dep(i), ndep(i) is 
the number of occurrences of dep(i), and N is the sum of occurrences of all dipeptides.  
 
This study used DC as a protein descriptor. The reason for using DC is that it is easily extracted from protein 
sequences, consists of 400 features that cover characteristics of a protein, and can obtain good performance in the 
problem of classification or prediction [18]. Ong et al. [19] comparatively evaluated the effectiveness of the 
protein descriptor-sets using the same machine learning method and parameter optimization algorithm and 
examined whether the combination of descriptor improved the predictive performance. In this study, Ong et al. 
[19] used six individual descriptor-sets, including DC and four combination sets. The results show that all 
descriptors used in the study generally obtain good and similar performance. Moreover, the use of combination 
descriptor-sets only gives slightly better prediction than the use of individual descriptor-sets.  
 
In this research, PubChem fingerprint and dipeptide descriptor were used as the drug compound features, and the 
protein target features, respectively. PubChem fingerprint was acquired using PubChemPy library in Python, 
while the dipeptide descriptor was calculated using protr package in R. Each record consists of 881 compound 
fingerprints and 400 protein dipeptide descriptors total features to represent the DTI samples is 1281 features.  
 
Machine learning methods 
We used three machine learning methods that have different ways of deciding to build a model for classifying 
objects into the appropriate class in the binary classification problem. The SVM makes a decision based on 
hyperplane [20] (Fig. 2). The hyperplane is obtained by minimizing the maximum distance of hyperplane and 
support vector (margins) with a minimum error that can be calculated based on the following equation: 
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with 𝑤 as weight vector, 𝑏 as bias score, and 𝜀 as a minimum error from the calculation [56]. 
 

 
To avoid misclassification of each training sample, the Regularization parameter (C parameter) is introduced to 
optimize the margin. The Eq. 2 can be improved as following [21] : 
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where 𝜙(𝑥&) maps 𝑥& into a higher dimensional space and C > 0 is the regularization parameter. The problem on 
Eq. 3 considers a high dimensional data. Due to the possible high dimensionality of the vector variable w, solve 
the following dual problem. [21] Using the primal-dual relationship, the optimal 𝑤 is  
 

𝑤 = ∑ 𝑦&𝛼&E
&F7 𝜙(𝑥&),     (4) 

 
and the decision function is  
 

𝑠𝑔𝑛(𝑤B𝜙(𝑥) + 𝑏) = 𝑠𝑔𝑛(∑ 𝑦&𝛼&E
&F7 	𝐾(𝑥&, 𝑥) + 𝑏),   (5) 

 
The fitting model can be obtained by tuning the regularization parameter and the parameter of the kernel (K) used 
in training. In this research, we used the RBF kernel, which is defined as [22] : 
 

𝐾(𝑥&, 𝑥) = exp	(−𝛾‖𝑥& − 𝑥‖8),     (6) 
 

Where 𝑥 is the data, 𝑖 is the dimension and 𝛾 is a free parameter. The 𝛾 parameter from Eq. 6 and regularization 
parameter C from Eq. 3 need to be decided before training the data. To find the best score for the parameter (C,	𝛾), 
we used the grid search with 5-cross validation [23].  
 
The second machine learning method used in this study was Random Forest (RF). RF was a bagging-type 
ensemble of uncorrelated decision trees that trains several trees in parallel and used voting or the majority decision 
of the trees as the final decision [24]. Random forest (RF) constructed a large number of decision trees based on 
averaging random selection of predictor variables. When constructing the trees, whenever a split is considered, a 
random selection of m predictors was selected as a subset of split candidates from the complete set of predictors. 



The fitting model can be obtained by tuning hyperparameters. The important hyperparameters included the 
number of subsamples of the original features used to build each decision tree (mtry) and the weight assigned to 
each class. We used grid search with 5-cross-validation when conducting tuning hyperparameter optimization to 
ensure that the random forest was exposed to all the statistical distributions in the training dataset. 
 
The third machine learning method used in this research was Multi-Layer Perceptron (MLP). MLP works based 
on an artificial neural network [25]. In the MLP, the input was first transformed using a non-linear transformation. 
The input nodes in the input layer provided information from the outside to the network. The hidden layer nodes 
performed computations and transfer information from the input nodes to the output nodes. An MLP can have one 
or more hidden layers. In this research, we used two hidden layers. Lastly, the output nodes were responsible for 
computation and transferring information from the network to the outside. The optimal model can be obtained by 
tuning hyperparameters such as hidden layer size, activation function, optimizer, and class weight. The fitting 
model can be obtained by minimizing error or loss function. By using these different methods, it was expected that 
the more optimal screening results could be obtained than those of using only one method. Each model had a 
different range of results. Thus, we could reduce the number of the potential compound candidate by analysing 
the overlap of prediction results from those three machine learning methods.   
 
Building prediction model 
The first step of this building model was normalization. First of all, the drug compounds and target data that had 
already combined was normalized and split. The training dataset consisted of 685 samples with interactions 
(positive class) and 39,180 samples with those unknown interactions (negative class). Thus, this dataset was 
actually unbalanced with the ratio between positive and negative dataset of 1:57. The random oversampling with 
the replacement was applied to the 685 positive datasets to obtain 10,578 samples of positive data.  
 
Moreover, the random under-sampling was applied to 39,180 negative datasets to reduce this dataset to 30% of 
the total negative dataset, to 11,754 samples of negative data. Thus, we had a total of 22,332 samples. This 
sampling was done five times to get five random datasets. Thus, we had five datasets that each of them consisted 
of 22,332 samples. Next, we randomly have chosen 70% of the total samples as a training dataset and 30 % of 
them as validation dataset. In the feature space, we had five matrixes of 15,632 x 1281 as the training set and 
6,700 x 1281 as a validation set.  
 
One of these five datasets was tuned for Multilayer Perceptron (MLP), Random Forest (RF), and Support Vector 
Machine (SVM) using grid search technique with 5-fold cross-validation implemented using the grid search 
function from the scikit-learn package in Python [26].  Grid search then saved the best parameters tuned based on 
the result of AUC from the cross-validation used inside the function. Four other models were built with the 
hyperparameter tuned from the first model. Next, the resulted models of each method were validated using the 
validation data set. The performance results, including accuracy, precision, recall, f-measure, and Area Under 
Curve (AUC) were calculated. Fig. 3 shows the schema of our approach.  
 
Predicting Indonesia herbal compound 
The prediction of Indonesia herbal compound was conducted using five models of each method (MLP, RF, SVM). 
We use Indonesia herbal compounds collected from HerbalDB database [27]. These herbal compounds had no 
label. Thus we predicted their interaction with the protein target using the validated model proposed in this study. 
For each method,  the prediction result was obtained from the average probability score of the five prediction 
models.  The herbal compounds that were predicted to have interactions with the protein target at least by two 
methods or have the average probability score ≥ 0.5 would be used for further analysis (Fig. 4). 
 
Pharmacophore Modelling 
Pharmacophore is defined by the interaction patterns of bioactive molecules with their target represented by a 
three-dimensional (3D) abstract feature arrangement that determines the types of interaction rather than specific 
functional groups. These types of interaction can, for example, include the formation of hydrogen bonds, charged 
interactions, metal interactions, or hydrophobic (H) and aromatic (AR) contacts [28]. Pharmacophore models can 
be generated using two different approaches depending on the input data used for model construction. In the 
structure-based approach, the interaction pattern of a molecule and its targets are directly extracted from the target 
ligand complex that is determined experimentally [29]. In the case of ligand-based modelling, the three-
dimensional (3D) structures of two or more known active molecules are aligned, and common pharmacophore 
features shared among these training set molecules are identified. In the ligand-based approach, all the general 
chemical features of the pharmacophores should be considered essential, whereas in the structure-based approach 
it can be considered whether the chemical features of a molecule are directly involved in the ligand-binding or 
not [30]. 



In the pharmacophore modelling approach, we used two methods, namely Structure-Based Drug Design (SBDD) 
and Ligand-Based Drug Design (LBDD) using LigandScout 4.3 software [31] (One month-free trial). Based on a 
comparative analysis of 8 pharmacophore tools such as Catalyst, MOE, Pharmer, Unity, POT, LigandScout, 
Pharao, Phase, we have analysed the compound library enrichment. The analysis of algorithm combinations shows 
that LigandScout is capable of improving the enrichment of other algorithms. In particular, LigandScout seem to 
be complementary as there is an improvement of both enrichment factors if it used in a consecutive screening 
pipeline [32]. 
 
Pharmacophore modelling methods was conducted on macOS Mojave version 10.14.6; 2,3GHZ Intel Core i9 
Processor; and 16 GB 2400 MHz DDR4 memory. For structure-based methods, we used the 3D structure of 
SARS-CoV-2 main protease, which could be downloaded from Protein Data Bank (PDB) with ID code 6LU7 
[33].  We chose the pharmacophore sites of the native ligand and identified the pharmacophore features. Next, 
LigandScout performed screening of medicinal plant compounds from HerbalDB based on the similarity of 
pharmacophore of the native ligand of SARS-CoV-2 main protease.  
  
Moreover, for the LBDD method, we collected 45 known SARS, MERS, and SARS-CoV-2 repurposing drug 
therapies from literature and used them as data sets (Additional file 4). The molecules were downloaded from 
PubChem or prepared using MarvinSketch [34] and saved in .sdf format. The molecules were then separated into 
training and test set, 15 molecules as a training set and 30 molecules as a test set using 
sklearn.model_selection.train_test_split method in Python. For the pharmacophore modelling validation we adapt 
the methods from Wolber and Langer, 2015 and Seidel T, 2017 [31] [35]. To validate the pharmacophore model 
results, we did a validation process using decoy molecules that were generated using DUDE 
(www.dude.docking.org). We used DUDE to create decoy because DUD-E is one of the largest databases publicly 
available that offers the possibility to assess Virtual Screening programs efficiency in discriminating ligands from 
inactive compounds [36]. We prepared a library database in Screening Perspective for active (test set), and decoy 
set molecules and saved the library in .ldb format. Then, we screened active compounds (test set) and decoys 
based on each 10-models of 3D pharmacophore. When the screening process was finished, a hit list of molecules, 
that matches the pharmacophore, was shown in the Library View. Parameters of validation (ROC, AUC and EF) 
were calculated to choose the best model [37–39]. Pharmacophore models that gave the best score of validation 
parameters were used for virtual screening against Indonesian medicinal plant compounds database (HerbalDB) 
[27].  
 
Molecular Docking 
In the molecular docking step, we used hit compounds candidates yielded by two approaches, machine learning 
and pharmacophore modelling, and used macromolecules of SARS-CoV-2 main protease (PDB ID: 6LU7). 
Molecular docking was conducted on macOS Mojave version 10.14.6; 2,3GHZ Intel Core i9 Processor; and 16 
GB 2400 MHz DDR4 memory. To validate the molecular docking, we did the redocking process of 6LU7 native 
ligand in AutoDock4 [40] software. The docking parameters used in this step is Lamarckian genetic algorithm 
[41] with default docking parameter; binding site coordinates x=-9.732, y=11.403, and z=68.925; grid box size 
40 x 56 x 40. Autodock uses a Lamarckian Genetic Algorithm (LGA), which introduces local search based on the 
traditional genetic algorithm, making it more efficient in figuring out the optimal docking [42]. With these 
parameters, we got the RMSD value of native ligand as < 2 Å [43] and then applied these parameters for other 
ligands. Docking results were carried out based on scoring and posing functions. Docking interactions were 
clustered to decide the Gibbs energy (ΔG) and optimum docking energy conformation and ligand-residue 
interaction were considered as the fine-docked pose.   
 
 
Results 
Machine Learning 
In the training phase, we conducted the hyperparameter tuning for each method (RF, MLP, and SVM) to get the 
optimal prediction model. The hyper-parameter used for each method (MLP, RF, and, SVM) can be seen in 
Additional file 5. The performance prediction model calculated using validation dataset was showed in Table 3. 
The accuracy and f-measure of the model of each method were high, around 98%, respectively. It meant that 
random over-sampling and random under-sampling could perform well.  
  
Next, the models that had been optimized and validated used to predict 400 Indonesia herbal compound collected 
from HerbalDB. [17] Table 4 showed some predicted results of herbal compounds that target 3CLPro, PLPro, and 
RdRp.  The remaining prediction results can be seen in Additional file 6. These candidate compounds have the 
potentiality to be compared to the pharmacophore modelling results. Some potential compounds resulted from a 



machine learning approach and pharmacophore modelling approach were further analysed using molecular 
docking. 
  
Pharmacophore Modelling 
Structure-based Drug Design (SBDD) Methods 
For SBDD methods, we analysed 3CLpro (main protease) protein in its 3D structure (PDB ID: 6LU7) using 
LigandScout software. The complex of main protease-ligand and its pharmacophore features are shown in Fig. 5a 
and 5b, respectively. Based on that pharmacophore feature, we screened herbal compounds from the HerbalDB 
database. From this screening, we got eight hit compounds consists of Kaempferol 3,4'-di-O-methyl ether 
(Ermanin); 4-Methylpentyl glucosinolate; 6-alpha-Hydroxyadoxoside; Laurotetanine; Orientanol E; 5-Methoxy-
8-O-beta-D-glucosyloxypsoralen; Rhamnetin 3-mannosyl-(1-2)-alloside; and 5,7,3',4'-Tetrahydroxyflavanone 
7-alpha-Larabinofuranosyl-(1-6)-glucoside. 
 
Ligand-based Drug Design (LBDD) Methods 
From LBDD analysis, we got ten pharmacophore models, and then we validated to get the best pharmacophore 
model using decoy compounds. The validation parameters were AUC100% and EF1%, the pharmacophore feature of 
the best pharmacophore model and its validation parameters are shown in Figure 6. The best pharmacophore 
model is model 4 with hit rate 27.17% (520 hits from total 1914 compounds (30 actives and 1,884 decoys)), 
AUC100% 0.77 and EF1% 13.4 and it has five pharmacophore features consists of three hydrogen bond acceptor (HBA) 
and two hydrogen bond donor (HBD). From the best pharmacophore model that was generated in the previous 
step, then we screened against herbal compounds from HerbalDB and got top 30 hit compounds. The top 30 of 
hit compounds are shown in Table 5. 
  
Molecular Docking 
Before we started to dock the hit compounds to 3CLpro protein, we have redocked the native ligand to 3CLpro 
binding site, to confirm the suitability of the docking algorithm for virtual screening. The RMSD of re-docking 
of 6LU7 native ligand was 0.34 Å, respect to the co-crystallized one. Although neither an effective antiviral drug 
nor a vaccine against COVID-19 is currently available, several reports suggested that HIV-1 protease inhibitors, 
such as Lopinavir, have the potential as SARS-CoV-2 protease inhibitor [6]. In an attempt to have reference values 
(positive control), we decided to consider Lopinavir as comparative standards for the molecular docking. Based 
on machine learning, structure-based and ligand-based pharmacophore results, we got 14 hit compounds that 
overlap from machine learning and pharmacophore modelling approach. Then we used molecular docking to 
analyse the interaction between 3CLpro (main protease) protein in its 3D structure (PDB ID: 6LU7) with 14 hit 
compounds and used Lopinavir as a positive control (Table 6). 
 
From the molecular docking results, the tested compounds showed various binding energies (ΔG). Compounds 
that have binding energy close to Lopinavir (positive control) are Hesperidin, Kaempferol-3,4'-di-O-methyl 
ether (Ermanin); Myricetin-3-glucoside, Peonidine 3-(4’-arabinosylglucoside); Quercetin 3-(2G-
rhamnosylrutinoside); and Rhamnetin 3-mannosyl-(1-2)-alloside. Hesperidin shows the lowest binding 
energy (-8.72 kcal/mol) and close to Lopinavir binding energy (-9.41 kcal/mol). As seen in Fig. 7, Lopinavir has 
hydrogen bond with Glu166, which Glu166 is an essential residue for keeping the S1 pocket in the right shape 
and the enzyme in the active conformation [44]. Hesperidin, Kaempferol-3,4'-di-O-methyl ether (Ermanin), 
Quercetin 3-(2G-rhamnosylrutinoside), Peonidine 3-(4’-arabinosylglucoside), Quercetin 3-(2G-
rhamnosylrutinoside), and Rhamnetin 3-mannosyl-(1-2)-alloside have the hydrogen bond with Glu166 residue as 
well. Lopinavir also has binding interaction with the catalytic dyad (Cys-145 and His-41) of SARS-CoV-2, as 
well as other six compounds.  The catalytic dyad is functionally essential residues (Cys-145 and His-41) that 
displayed stable behaviour [45].  
 
 
Discussion 
The SARS-CoV-2 virus is still emerging around the world. The number of infected people continues to overgrow, 
and still no definitive therapy that has been approved for effective treatment. Finding broad-spectrum inhibitors 
that could reduce the effects of coronavirus infection in human remains a challenging research focus. Given the 
time-consuming nature of developing and registering antiviral drugs, drug repurposing is one of shortcut to cure 
the disease. For most of these drugs that have been prepared, they have sufficient experience and dosage, and their 
safety and ADME situation are well known. 
 
Despite continuing the research of conventional medicine, Indonesia that has mega biodiversity has potential 
herbal compounds as SARS-CoV-2 inhibitor for an alternative. In order to get the potential herbal compounds by 



using a computational approach, we have to be careful about the research methods. We should not use our self-
preferential in certain herbal, because it would lead to a subjective decision on the research results. Especially 
when the computational approach only uses molecular docking method. While molecular docking is a powerful 
tool for pharmaceutical research after decades of development, there is a limitation of docking accuracy due to 
relatively simple scoring functions.  
 
Additionally, entropic factors are generally not captured well by scoring based on a single structure. As a result, 
structure-based ligand screening by docking often generates a large number of false positive hits [46]. To 
minimize the false positive hits by conducted research with molecular docking only, we tried to use two different 
approaches in generating the prediction model before we did the virtual screening on HerbalDB compounds. In 
this study, we used machine learning and pharmacophore modelling methods that are complementary to each 
other to generate more accurate prediction model.  
 
The machine learning approach was used to perform big data analysis DTI dataset that collected from literature 
and public domain database. This approach used pharmacological features obtained by integrating both the 
chemical space of compounds and the omics space of target proteins [47]. Cheminformatic studies found that 
machine learning approaches, such as similarity measure [48], bipartite graph [49] and some classification 
techniques were useful in finding interaction between drug and its protein targets [11,50]. Most of the 
classification model was built for single-target protein drug problems. For instance, Support Vector Machine 
(SVM), as one of machine learning methods, it can be employed to classify whether a compound is drug-like or 
non-drug like [11]. Decision Tree and Neural Network had also been attempted to distinguish the drug-like 
compounds from the non-drug like compounds [51–53]. These approaches showed a maximum accuracy up to 
83% from a large dataset. In this study, the enhancement of those machine learning methods was done to classify 
whether a drug compound s with protein target or not.  
 
Dealing with the issue of high dimensional data in the feature space formed by the fingerprint of compounds and 
the dipeptide descriptors of proteins, many papers show the effectiveness of the embedded capacity of several 
classifiers [54] such as SVM [55], neural network-based algorithm (MLP) [56], and decision tree-based algorithm 
(RF) [57] to discard input features. Embedded methods had the advantage that they include interaction with the 
classification model [54]. In the Random Forest method, we tuned mtry that indicated a random selection 
of m predictors as a subset of split candidates from the full set of predictors when building trees. Thus, in RF, the 
high dimensionality is reduced by choosing mtry smaller than the number of features. However, for MLP and 
SVM, Even though both of them were able to handle non-linearity (SVM with the kernel; MLP with multilayers), 
they are still vulnerable to spurious correlation. It meant there were some features that appeared to be highly 
correlated in training data, but less sensitive in real prediction using testing data. The prediction model generated 
by SVM showed the tendency. Although all model generated by three methods (MLP, RF, dan SVM) had high 
accuracy in the validation step, the SVM failed to predict herbal compound. Only very view herbal compound 
can be predicted by SVM compared to MLP and RF.   
 
The unbalanced dataset probably also contributed to the performance of SVM. The random oversampling was not 
adequate to improve the performance of SVM because the number of different support vectors did not increase. 
Thus, the hyperplane was not improved. Oversampling with replacement did not affect the distribution of support 
vector but affected class probability. Therefore, in this case, RF is more robust than other methods because the 
oversampling increased the class probability that was required for splitting when building the tree.  
 
However, although the prediction model constructed by SVM could not perform well in predicting herbal 
compound, our criteria determined that the herbal compounds candidate should be predicted to at least by two 
methods or should have the average probability score ≥ 0.5. Moreover, the predicted results would be filtered 
again by comparing to ligand-based and structure-based pharmacophore methods. Thus, our approach provided 
layered filtering in order to conduct more objective and optimal virtual screening. As stated in [58], machine 
learning approach can be used to predict the DTI with insufficient known ligands. 
 
A pharmacophore is the pattern of features of a molecule that is responsible for a biological effect, which captures 
the essential notion that a pharmacophore is built from features rather than defined chemical groups. Every type 
of atom or group in a molecule that exhibits specific properties related to molecular recognition can be reduced 
to a pharmacophore feature. These molecular patterns can be labelled as hydrogen bond donors or acceptors, 
cationic, anionic, aromatic, or hydrophobic, and any possible combinations. Pharmacophore models are very 
suitable as queries for virtual screening of databases. Pharmacophore models are often utilised as a filter to identify 
compounds that fulfil simple geometric and chemical functionality requirements of the query, before more 
complicated and computationally demanding approaches such as molecular docking [59]. Thus, using two 



approaches in the methodology, i.e. machine learning and pharmacophore modelling, will lead us to increase the 
confidence level of the predicted compounds candidates.  
 
Based on the virtual screening on HerbalDB using two prediction approaches, we got 14 compounds that overlap 
from two method results. Molecular docking algorithms are often calibrated against experimental ligand-protein 
complex training sets, and the accuracy of these docking programs is often highly dependent on the training sets 
used [58]. In this case, it is essential to ensure that the docking software used for virtual screening can replicate 
the binding mode of a known experimental inhibitor for the enzymes studied. From molecular docking analysis, 
we got six potential compounds, i.e. Hesperidin, Kaempferol-3,4'-di-O-methyl ether (Ermanin); Myricetin-3-
glucoside, Peonidine 3-(4’-arabinosylglucoside); Quercetin 3-(2G-rhamnosylrutinoside); and Rhamnetin 3-
mannosyl-(1-2)-alloside, that predicted could inhibit the 3CLpro protein of SARS-CoV-2.  
 
After we got this result, we further checked the previous studies to find the biological activities of each compound, 
so that this research can be useful for the community. We also tried to find from commodity crops. One of the 
commodity crops in Indonesia is Guava (Psidium guajava) that can be harvested continuously in one year. In 
Indonesia, production of guava in the year 2018 is 230,697 tons, with growth rate from the year 2017 to 2018 is 
15.06% [60]. Guava is consumed not only as food but also as a traditional medicine in subtropical areas around 
the world due to its pharmacologic activities. Based on Herbal Regulation as Healthy Supplement for Fighting 
COVID-19 in Indonesia published by The Indonesian Food and Drug Authority (BPOM) (May, 2020), we can 
consume Psidium guajava (Guava) 1-4 fruits per day (55-100 gram/fruit) which contain vitamin C 228.3 mg in 
100 gram fruit. For the administration, Guava can be eaten directly or processed as juice. There is no case for 
toxicity for long term consumption, overall this herbal is safe to use as daily nutritional supplement [61]. Phenolic 
compound from Guajava has been proved as immunomodulator and antioxidant [62,63].  
 
Guava is well known has several flavonoids compounds, i.e. myricetin, quercetin, luteolin, kaempferol, 
isorhamnetin [64], and Hesperidin [65]. These compounds were also shown in our result, although without the 
aglycones. Luteolin is known as a furin protein inhibitor [66] which is predicted to be one of the enzymes that 
break down Coronavirus S (spike) protein as in MERS into units S1 and S2 [67]. In the S1 unit, there is a Receptor 
Binding Domain (RBD) where the ACE2 peptidase binds so that the virus can bind to the host [67]. Hesperidin / 
Hesperitin compounds in the in silico study are known to inhibit RBD domain binding of the SARS-COV-2 Spike 
protein with ACE2 receptors in humans so that it is predicted to inhibit the entry of the SARS-COV-2 potentially 
[5]. It is also known that luteolin is a neuraminidase inhibitor as well as oseltamivir which is currently one of the 
drugs used in the CDC protocol. Hesperitin (the form of hesperidin aglycone) and quercetin are known to also act 
as inhibitors of 3Clpro [68,69]. Other compounds in guava such as myricetin are known to act as SARS 
coronavirus helicase inhibitors [70]. The kaempferol has the potential to be a non-competitive inhibitor of 3CLPro 
and PLpro as well as quercetin [71]. Another interesting thing is that kaempferol acts as a modulator of autophagy, 
which can be utilised in strategies to inhibit SARS-COV-2 virus. 
 
 
Conclusions 
We used layered virtual screening with machine learning and pharmacophore modelling approaches that could 
provide more objective and optimal virtual screening and avoid subjective decision making on research results. 
Herbal compounds from various plants have potential as antiviral candidates for SARS-CoV-2. Based on our 
research and literature study, one of Indonesia's potential commodity crops is Psidium guajava (guava), and 
people can use it directly as a preventive effort. 
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Graphical methods of this study 

 
 
 
 

 
 

Fig. 2 Support vector machine method (x is the data, w is the weight vector, b is the bias score, ε is the 
minimum error) [72] 



 
 

Fig. 3 The scheme of training and validating model of our proposed machine learning approach  
 
 
 
 
 
 
 

 
Fig. 4 The scheme of predicting Indonesia herbal compound using the optimal and validated model that had 
generated by RF, MLP, and SVM in training and validation phase. The class probability score was averaged 
from three methods. The counter was conducted to indicate the number of methods which predict positive 

results. The decision was determined based on the criteria of the class probability ≥ 0.5  or at least predicted by 
two methods. 

 
 



 
Fig. 5 a) 3D structure complex of the main protease and its ligand, b) pharmacophore feature of the native 

ligand in the main protease 
 
 
 
 
 
 
 
 

 
Fig. 6 Pharmacophore model from LBDD analysis. a) Pharmacophore feature of the best pharmacophore model, 

b) validation parameters of the best pharmacophore model.  
 



 
Fig. 7 Interaction of ligands with receptor (3CLpro / main protease); red quarter circles were residue of protein 
that have non-covalent bond interaction with ligand; residues that written in green colour were residue which 
had hydrogen bonds interaction with ligand (written with its distance as well). a) Lopinavir; b) Hesperidin; c) 

Kaempferol-3,4'-di-O-methyl ether (Ermanin); d) Myricetin-3-glucoside; e) Peonidine 3-(4’-
arabinosylglucoside); f) Quercetin 3-(2G-rhamnosylrutinoside); g) Rhamnetin 3-mannosyl-(1-2)-alloside 

(visualization software using LigPlot [73]) 
  



Tables 
 
Table 1 List of Potential Protein Target Related to COVID-19 

Virus-based protein Host-based protein 

PDB/Uniprot ID Protein Reference Uniprot name Uniprot 
ID 

Protein Reference 

6LU7:A 3CLPro  [5] ACE2 Q9BYF1 ACE2  [53] 

PLpro_SARS-
CoV-2 

PLPro  [5] AKT1 P31749 AKT  [47] 

K4LC41 
 

 
  

   
PYRD Q02127 DHODH  [54] 

yp_009725307.1 RdRp  [5] PPIA P62937 
   

PPIG Q13427 

6M0J:E Spike-
ACE2 

 [5] FKBP5 Q13451 

6LZG:A FKBP4 Q02790 

6VSB FKBP2 P26885 

6M0J:A 
 

 
  

   
CYP5 P52013 PPIASE  [50] 

   
FKB1B P68106 

   
PPIB P23284 

   
PPIC P45877 

   
PPIH O43447 

   
FKB1A P62942 

   
IL6RB P40189 IL-6  [52] 

 
 
  



Table 2 List of Potential Drug Explored from SuperTarget Database 

Drug Protein Target 

Moexipril hydrochloride ACE2 

Arsentrioxide AKT1 

Arthrocine 

Celecoxib 

Erlotinib 

Gefitinib 

Imatinib Mesylate 

Lapatinib ditosylate 

Simvastatin 

Sorafenibum 

Sunitinib 

Atovaquone PYRD, PPIA, PPIG 

Essigsaeure 

Huanghuahaosu 

Hydroxycinchophene 

Leflunomide 

Rapamycin FKBP5, FKBP4, FKBP2, FKB1B, FKB1A 

Athylenglykol FKBP4 

Methylsulfinylmethane 

Dithiothreitol CYP5_CAEEL 

Carboxypyrrolidine PPIB, PPIC, PPIH 

Pimecrolimus FKB1A 

Tacrolimus 

Thiabendazole 

 
 

  



Table 3 The performance of each model calculated  using 30% of dataset that was excluded from training set  
Method Performance Measure Value 

Multilayer Perceptron (MLP) 
  
  
  
  

AUC 0.98405  

F-measure 0.98254 

Precision 0.96628 

Recall 0.99936 

Accuracy 0.98321 

Random Forest (RF) AUC 0.98734 

F-measure 0.98608 

Precision 0.97255 

Recall 1 

Accuracy 0.98665 

Support Vector Machine (SVM) 
  
  

AUC 0.99919 

F-measure 0.99911 

Precision 0.99847 

Recall 0.99975 

Accuracy 0.99915 

  
 
 
 
Table 4 The Predicted Potential Compounds Targeting 3CLPro, PLPro, and RdRp 

No Protein Target Herbal Compound 
1.  3CLPro Amaranthine, Methylthio, Arabinopyrano, Peonidin-3, Quercetin-3, Sinigrin, 

Heperidine, Myricetin-3, (+)-2,3-Dihydro-9-hydroxy, Cyanidin-3, Scutellarein, 
Spiraeoside, Glucoputran, Isoforskolin, Kaempferol-3 

2. PLPro Methylthio, Sinigrin, Glucoputran 
3. RdRp Methylthio, Arabinopyrano, Peonidin-3, Quercetin-3, Theviridoside, Sinigrin, 

Heperidine, Myricetin-3, (+)-2,3-Dihydro-9-hydroxy, Cyanidin-3, Catalpol, 
Scandoside, Scutellarein, Spiraeoside, Geniposide, Oleoside, Majoroside, 
Glucoputran, Isoforskolin, Kaempferol-3 

 
 
  



Table 5 The top-30 of hit compounds from LBDD methods 
No Name Compound No Name Compound 

1 Kaempferol 3-alpha-D-arabinopyranoside 16  Catalpol 

2 Isoforskolin  17  Cyanidin-3-sophoroside-5-glucoside 

3 Glucoputranjivin 18 (+)-2,3-Dihydro-9-hydroxy-2 [1-(6-
sinapinoyl)beta-D-glucosyloxy-1-methylethyl]-7H-
propanoat 

4  Loganic Acid 19  Myricetin 3-glucoside 

5  Majoroside 20  Hesperidin 

6  Oleoside 21  Azadirachtin A 

7  Geniposide 22  1-Caffeoyl-beta-D-glucose 

8  Glucobrassicin 23  Sinigrin 

9  Spiraeoside 24  Theviridoside 

10  Alizarin 25  Quercetin 3-(2G-rhamnosylrutinoside) 

11  Morindone 26  Peonidin 3-(4’arabinosylglucoside) 

12  Casuarinin 27  trans-p-Sinapoyl-b-D-glucopyranoside 

13 Scutellarein-6,4’-dimethyl ether-7-(6”-
acetylglucoside) 

28 6,8-Di-C-beta-D-arabinopyranosyl apigenin 

14  Scandoside methyl ester 29 8-Methylthio-octyl glucosinolate  

15  beta-Glucogallin 30  Amaranthine 
 
 
  



Table 6 Molecular docking results of 14 hit (overlapped) compounds against the main protease of SARS-CoV-2 
No Compound name Binding Energy (ΔG) 

(kcal/mol) 
Sources 

1 Cyanidin-3-sophoroside-5-glucoside -6.52 Brassica Oleracea [79]; 
Ipomoea Batatas[80]; 
Raphanus Sativus [81] 

2 Geniposide -7.04 Gardenia jasminoides [82] 

3 Hesperidin -8.72 Psidium guajava [65] 
Citrus aurantium [83] 

4 Isoforskolin -6.88 Coleus forskohlii [84] 

5 Kaempferol 3,4'-di-O-methylether (Ermanin) -8.51 Zingiber aromaticum [85] 

6 Majoroside -7.03 Plantago major [86] 

7 Myricetin-3-glucoside -8.26 Moringa oleifera [87] 

8 Oleoside -6.52 Oleaceae familia (e.g. 
Jasminum sambac) [88] 

9 Peonidine 3-(4’-arabinosylglucoside) -8.52 Ipomoea fistulosa [89] 

10 Quercetin 3-(2G-rhamnosylrutinoside) -8.56 Clitoria Ternatea [90] 

11 Rhamnetin 3-mannosyl-(1-2)-alloside -8.48 Moringa oleifera [91] 
Cassia alata [92] 

12 Sinigrin -5.19 Brassica nigra [93] 

13 Spiraeoside -7.97 Filipendula ulmaria [94] 

14 Theviridoside -7.13 Thevetia peruviana [95] 
15 Lopinavir -9.41 Antiviral drug (positive 

control) 
 
 
 


