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Abstract

Background: The monitoring and analysis of quasi-periodic biological signals such as electro-

cardiography (ECG), intracranial pressure (ICP), and cerebral blood flow velocity (CBFV) waveforms

plays an important role in the early detection of adverse patient events and contributes to improved care

management in the intensive care unit (ICU). This work provides a quantitative evaluation of existing

computational frameworks for the automatic extraction of peaks within ICP waveforms.

Methods: Peak detection techniques based on state-of-the-art machine learning models were eval-

uated in terms of robustness to varying levels of noise. Evaluation was performed on a dataset of ICP

signals assembled from 700 hours of monitoring from 64 neurosurgical patients. The groundtruth of

the peak locations was established manually on a subset of 13, 611 pulses. Additional evaluation was

performed using a simulated dataset of ICP with controlled temporal dynamics and noise.

Results: The quantitative analysis of peak detection algorithms applied to individual waveforms

indicates that all techniques provide acceptable accuracy (RMSE ≤ 0.15) without noise. In presence

of higher level of noise, however, only Kernel ridge regression and Random forest remains below that

error threshold while the performance of other techniques significantly deteriorates. Our experiments

also demonstrated that tracking methods such as Bayesian inference and LSTM can be applied in a

continuous fashion and provide additional robustness in situations where single pulse analysis methods

tend to fail such as in presence of missing data.

Conclusion: While machine learning-based peak detection methods require manually labeled data

for training, these models outperform conventional signal processing ones based on handcrafted rules

and should be considered for peak detection in modern frameworks. In particular, peak tracking methods

that incorporate temporal information between successive periods of the signals have demonstrated in

our experiments to provide more robustness to temporary artifacts that commonly arise as part of the

monitoring setup in the NICU.
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I. INTRODUCTION

The monitoring of quasi-periodic biological signals such as arterial blood pressure (ABP),

intracranial pressure (ICP), and electrocardiography (ECG) plays a fundamental role in the study

of numerous disorders and diseases. These biological signals have something in common; they

all exhibit characteristic variations that can be used by clinicians as markers of physiological

change and provide additional insights through further analyses. This comparative study focuses

on the ICP waveform which is a quasi-periodic signal. As visualized in Figure 1, each pulse

can be associated with three peaks due to its triphasic nature [1]. Therefore, ICP morphological

analysis often relies on the identification of these three peaks. Based on their latency (i.e., time)

and elevation (i.e., height), it is possible to characterize the morphology over time and then

compute statistics of the ICP waveform for a particular time interval. We provide in this paper

a comparative analysis of techniques for the detection of the three peaks across the periods of

the signal.

The study of the variations of the ICP signal is particularly important for patients of the NICU

treated for traumatic injury (TBI) as the morphological variations observed in the ICP waveform

may reveal the compensatory ability of the brain in presence of cerebrovascular disruptions.

Several computational frameworks have been developed to study how the changes observed in

the morphology of the ICP signal are associated with the development of cerebral vasospasm [2],

intracranial hypertension [3, 4], and abrupt changes in the cerebral blood carbon dioxide (CO2)

levels [1, 5], and changes in the craniospinal compliance [6]. In addition to average change of

the ICP, studies [7, 8] have linked the morphology of the ICP waveforms with the prognosis of

patients with a head injury. Hence, exploring ICP morphological characteristics such as peaks

may help monitor pathophysiological intracranial changes.

Traditionally, peak detection in biological signals has been achieved using signal processing

methods, including threshold-based and filtering methods [9], [10]. More recently, machine

learning (ML)-based methods [11], [12] have been developed to solve this problem. ML methods

are usually built on top of signal processing methods to obtain more robustness to noise by

capturing the characteristics of the peaks and adapting to the noise profile of the signal that is

specific to the context in which it is acquired. There exists a wide range of machine learning

models available, including Neural Network, Random Forest, support vector machines (SVM),

long short-term memory (LSTM), etc. In the context of ICP analysis, these models can be
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Fig. 1: Example of continuous real-time monitoring of ICP waveform from a patient in the NICU. The three peaks

within each triphasic waveform are depicted by red dots.

grouped into two main categories depending if they are processing a single pulse at a time, or if

they are processing the continuous signal instead. It remains unclear, however, which methods

are the best performing ones on ICP signals.

In this study, we provide a comparative study of ICP peak detection methods. After a technical

review and description of the literature, we describe our peak detection experiments performed

on real and simulated ICP datasets.

II. STATE-OF-THE-ART

A. Summary

Peak detection techniques can be grouped into two categories depending if they are processing

individual waveforms or if, instead, they are utilizing temporal patterns from previous waveforms

to identify peaks in the current waveform. Traditionally, peak detection on individual waveforms

has been achieved using signal processing techniques. In that scenario, it is common to assume

that a peak is simply a local extrema of the curvature of the signal. In the context of peak detection

in biomedical signals such as ICP, however, the presence of artifacts and noise makes the

recognition of peaks very challenging when only relying on signal processing methods. To tackle

this problem, researchers have developed peak detection techniques based on machine learning.

These techniques have demonstrated significant promises to provide more robust detection of

peaks in biomedical signals.

Because strong correlation may exist between the peak locations of successive waveforms,

tracking techniques such as Kalman filter, LSTM, Bayesian inference, or MOCAIP can be used
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to capture the temporal information between successive pulses to refine the location of the peaks.

We review in the following sub-sections the techniques available in the literature to perform peak

detection on individual (Section II-B) and continuous (Section II-C) waveforms.

B. Peak detection on individual waveforms

Peak detection is assumed here to be performed on individual ICP pulses previously segmented

from continuous ICP waveforms [10, 13]. In particular, we divide the individual pulses methods

into two sub-groups depending if they are based on signal processing only or if they utilize

machine learning models during processing.

1) Signal-processing techniques: In signal processing, it is common to think of peak detection

as a search for a local extrema in the curvature of the signal. Most of signal-based methods utilize

the local structure of the signal to identify the peaks. Among them, we identify threshold-based

processes [14, 15], derivative-based techniques [16], and transform domain techniques [17–

19]. Other methods perform peak detection by incorporating a larger context to describe the

signature of each peak within the beat, which includes intensity weighted variance [20], filter-

based techniques [21, 22], histogram-based techniques [23, 24], techniques using entropy [25],

momentum [26], stochastic resonance [27], higher-order statistics [28], nonlinear energy oper-

ator [29], empirical mode decomposition [30]. More advanced techniques such as the wavelet

transform and entropy of coefficients [31, 32] have also achieved promising results.

While peak detection techniques purely based on signal processing perform well on a wide

range of applications, they encounter significant challenges when applied to real-world ICP data

due to the variability across subjects, motion artifacts, and hardware acquisition noise that is

characteristic of ICP waveforms. These challenges have pushed researchers to utilize techniques

that are more robust to these variations, as described in the next sub-section.

2) Machine learning-based techniques: Machine learning-based methods formalize peak de-

tection as a regression analysis problem between the input ICP waveform and the location of

each peak. This section gives an overview of ML methods that have been used to detect ICP

peaks and will be evaluated in our experiments. These methods include Spectral Regression

(SR) [33], Neural Networks (NN) [34], Support Vector Machines (SVM) [35], and Extremely

Randomized Decision Trees (Extra-Trees) [36].

Spectral Regression (SR). The SR algorithm [33] is an nonlinear regression method that

incorporates graph-based analysis with linear regression. The objective is to learn a regression
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model that outputs similar predictions ŷi for input samples xi that are near each other in a graph

representation. The regression model is obtained by minimizing the following measure φ:

φ =
n

∑

i,j=1

(ŷi − ŷj)
2 Wi,j (1)

where Wi,j is the affinity matrix W ∈ R
n×n that assigns a value to Wi,j to indicate the similarity

of the two input samples xi, xj .

During learning, SR searches for vectors {α̂0, α̂1, . . . , α̂d} to minimize the remaining Sum of

Square Error (SSE),

α̂j = argminα

n
∑

i=1

(αTxi − y
j
i )

2 (2)

where y
j
i signifies the i-th element of the j-th eigenvector ej of the affinity matrix W .

Though SR is proposed to solve linear problems, it can be extended to nonlinear problems

through a kernel projection, which projects the original observation xi into a higher dimensional

using a nonlinear kernel. In the kernel version, refered to as Kernel Spectral Regression (KSR),

the observations xi in Eq.(2) are replaced by the projected vectors in Eq.(3). In this study, we

use the Radial Basis Function (RBF) kernel,

R(xi, xj) = exp(−β||xi − xj||
2), β > 0 (3)

Neural Networks (NN). Neural networks is another very popular machine learning model

that can be used to infer peak locations from an ICP waveform. Numerous neural networks

architectures exist, we focus here on a feed-forward network that comprises input, hidden, and

output layers. The Levenberg-Marquardt algorithm [37] was used for its efficiency in training

moderate-sized NNs. The SSE is used as the fitness function V :

V =
N
∑

i=1

(xiout − xiin)
2 (4)

where ei = xiout − xiin is the bias between outputs and inputs, N is the number of inputs.

Supper Vector Machine (SVM). A support vector machine (SVM) [35] is a supervised

learning method that constructs a set of hyperplanes in a high-dimensional space. SVM has been

proven to be an effective tool in real-value function estimation. In the context of regression, SVM

(also called support vector regression (SVR)) uses a n-dimensional tube to fit the data. During

learning, the optimization process adopts an ǫ-insensitive loss function, penalizing predictions that

are farther than the threshold ǫ from the desired output. The value of ǫ determines the diameter
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of the tube; a smaller value indicates a lower tolerance for error and affects the smoothness of

the overall predictions. For regression problems, the goal of SVM is to identify the parameters

of a set of hyperplane(s)/tube(s) that best fit the data. After training, a prediction can be obtained

for a new input vector xj ,

f(x) =
n

∑

i=1

(α+

i − α−
i )R(x, xj) + b (5)

where α+, α− represents the learned dual coefficients, R(x, xj) is the response of the RBF kernel

(Eq. 3) of the point xj , and b is the bias.

Extremely Randomized Decision Trees (Extra-Trees). Extra-Trees [36] is a regression

method based on an ensemble of randomized decision trees. The learning of a randomized

decision tree is performed by starting at the root node of the tree and successively splitting

its left and right sub-trees. Each split (i.e. threshold) is obtained by sampling according to a

Gaussian distribution estimated from the training samples. The process is repeated iteratively

until a node has constant output values for all the training inputs. By building a large number

of randomized decision trees (e.g. N > 100), the model can make predictions by using a new

input through each tree and computing the average prediction across all the trees.

C. Peak Tracking on Continuous Waveforms

Although peak detection on individual pulses can achieve reasonable accuracy by either

identifying the signal signature of these peaks or learning a regression model between the

waveform and the peak location with machine-learning, processing individual pulses has some

limitations. Hardware noise and human disturbance (such as motion artifacts) are inevitable in a

clinical environment. These may cause distortion or even temporary loss of ICP waveform,

making it challenging to detect and track peaks over time based solely on a single pulse.

Achieving continuous and real-time analysis of ICP waveforms is a high-level requirement of ICP

monitoring in the NICU. We provide here a description of techniques that have been developed

to process the continuous ICP signal and locate the peaks using temporal properties between

successive beats as prior information, effectively tracking them across different periods. In the

following, we describe Kalman filtering [38], Bayesian tracking [39], and LSTM [40], and

MOCAIP [41].
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Kalman filtering. The Kalman filter algorithm [42] is a recursive algorithm that estimates

the distribution of unknown variables from the measured noisy data. After several iterations,

the estimated value is expected to converge to the actual value of the unknown variables; the

location of the peaks in our case. The process is efficient as it only needs the current measured

input, the previous state, and the uncertainty state matrix to calculate the predicted value when

the subsequent measurement is observed. The Kalman filter is composed of a prediction and an

updating step.

During the prediction step, the state variable x̂−
k and its covariance Pk are predicted.

x̂−
k = Ax̂k−1 +Buk (6)

P−
k = APk−1A

T +Q (7)

where A is the state-transition matrix, B is the control-input model, and Q represents the

covariance of the noise.

During the updating step, these estimates are evaluated using a weighted average, such that a

greater weight is set to estimations with greater confidence,

Kk = P−
k HT (HP−

k HT +R) +Q
−1

(8)

x̂k = x̂−
k +Kk(zk −Hx̂−

k ) (9)

Pk = (I −KkH)P−
k (10)

where H represents the observation matrix, x̂−
k and x̂k are the prior and posterior state estimates

at step k. zk and uk are the measurements and the control vectors at step k, and K represents

the Kalman filtering gain.

Bayesian tracking. Nonparametric belief propagation (NBP) [43] is a probabilistic inference

algorithm applied in computer vision to track the movements of people, animals, robots, cars,

etc. We previously used NBP [39] to track ICP peaks in real-time. Bayesian inference associates

continuous probability distributions as the location of each peak.

During detection, NBP utilizes a dynamic graph where nodes represent the location of each

peak. Information between the different peaks of a current pulse, and between the peaks at

the prior time point are progapated in the graph via a message-passing algorithm called Belief

propagation. At the n-th iteration, the message m passed from node a to b is expressed as:

mn
a,b(xa)←

∫

φa,b(xa, xb)φa(xa, ya)
∏

c∈Ca\b

mn−1

c,a (xa)dxa (11)
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where xa ∈ x represents the hidden variable at node a. Ca\b represents the set of nodes connected

to a (except node b). φa(xa, ya) is the observation potential between hidden variable xa and

observation variable ya of node a, φa,b(xa, xb) is the compatibility potential between hidden

variables xa and xb. After several iterations, the approximation of nth iteration p̂n(xa|y) converges

to the true marginal distribution p(xa|y) is:

p(xa|y) ∼ p̂n(xa|y)← φa(xa, ya)
∏

b∈Ca

mn
a,b(xa) (12)

In NBP, the message ma,b(xa) is expressed as a mixture of D kernels:

ma,b(xa) =
1

D

D
∑

i=1

ωi
aN(xa;µ

i
a,Σ

i
a) (13)

where ωi
a is the weight of the i-th kernel with mean µi

a and variance Σi
a. D is the number of

particles used for estimation. The observation potential is represented as weighted mixtures of

Gaussian density functions.

Long short time memory (LSTM). LSTM [40] is a type of recurrent neural network (RNN)

which allows information to persist inside the network via loops in its architecture. LSTMs are

particularly well suited to represent time series such as ICP waveforms. A LSTM cell is defined

by a state that changes according to three types of gates:

• Input Gates it ∈ R
N update the state of the cell and decide which values should be updated.

• Forget Gates ft ∈ R
N are used to select relevant information with respect to a previous

state.

• Output Gates ot ∈ R
N determine the final cell state and the output value.

Given an input sequence x = {x1, x2, . . . , xT} of length T with corresponding memory cell

unit Ct ∈ R
N and hidden unit ht ∈ R

N at time t, the parameters of the model are updated

sequentially, as follows:

ft = σ(Wf .[ht−1, xt] + bf ) (14)

it = σ(Wi.[ht−1, xt] + bi) (15)

ot = σ(Wo[ht−1, xt] + bo) (16)

C̃t = tanh(Wc.[ht−1, xt] + bC) (17)

Ct = ft ∗ Ct−1 + it ∗ C̃t (18)

ht = ot ∗ tanhCt (19)
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The function σ(x) = (1+ e−x)−1 used to compute ft, it, ot is a sigmoid whose values lie within

the range [0, 1]. In addition to input, forget, and output gates previously described, the LSTM

makes use of a memory cell unit Ct obtained from the sum of the previous memory cell unit

Ct−1 modulated by ft, and a function of the current input xt and previous hidden state ht−1

modulated by the input gate it. The output gate ot is then used to determine what parts should

be considered and then multiplied with the tanh of the memory cell state Ct to produce the

hidden unit ht. By learning how much of the memory cell state Ct should be transferred to

the hidden state ht based on the input xt and previous state, this structure allows the LSTM to

capture complex temporal dynamics such as the ones present across ICP waveforms.

MOCAIP algorithm. The Morphological Clustering and Analysis of ICP Pulse (MOCAIP) [41]

framework was designed to extract morphological variations of ICP pulses. MOCAIP utilizes

a Gaussian distribution as prior model for the peak location. The detection of ICP peaks is

performed through the three main following steps:

• Pulse segmentation: The continuous ICP signal is segmented into a series of individual

pulses using a dedicated algorithm [44] that utilizes ECG QRS markers [45]. A hierarchical

clustering algorithm is utilized to extract a representative pulse over a segment of 1 minute.

• Peak candidates detection. Candidate peaks are detected on the ICP pulse using its second

derivative. They are extracted from the convex region and the concave region on the

ascending edge of the signal or the concave part and the convex part on the falling edge of

the signal.

• Peak Designation. The three peaks are selected from the set of candidate peaks such that

they maximize the likelihood to belong to a previously trained Gaussian mixture model (i.e.

prior model).

III. RESULTS

A. Experiment #1: Peak Detection in Individual Waveforms

The RMSE of six peak detection algorithms on individual waveforms is reported in Table I

after a 10-fold cross-validation. The table summarizes the results for each of the three peaks.

Each sub-table corresponds to the performance with respect to one of the peaks. The fourth

sub-table represents the average performance across all peaks. The columns correspond to the

different noise levels (from 0 to 15%). The RMSE values were mapped to a color such that blue

indicates lower error, and yellow indicates higher error.
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On average, the results on the clinical dataset shows that the error is the smallest for p2,

followed by p1, and finally, p3. This is because the position of p2 is more stable than other

peaks. In the absence of added noise, KSR, LSTM, and Random forests perform best (RMSE =

0.08) when considering the average of the three peaks. In the presence of noise, the estimated

error of KSR is the smallest (RMSE = 0.13) as it appears to be less affected by noise. As

expected, the RMSE of all algorithms increase as a result of the noise level. We note that all

algorithms do not grow at the same rate with respect to the noise. For example, the error of

Spectral/Ridge regression and Neural network increase at a rate much higher that other methods

which might indicate over-fitting.

Similarly, Table II provides the results after evaluating the peak detection methods on the

simulated dataset. When the error is averaged over the three peaks, KSR offers the best perfor-

mance among the six algorithms regardless of the level of noise. The RMSE of Spectral/Ridge

regression, LSTM, Neural network, and Random forests are significantly higher (RMSE ≥ 0.29)

and are greatly affected by noise. From the results summarized in Table I and Table II, we

conclude that KSR performs better than the other algorithms.

B. Experiment #2: Peak detection in Continuous ICP

The results of the peak tracking methods (Bayesian tracking, Kalman Filter, LSTM, and

MOCAIP) on continuous ICP are illustrated in Figure 2 and Figure 3. In Figure 2, each plot

includes the latency of the peak with noise (gray) and the filtered position of the tracking

algorithm (color curves). These curves are repeated for each of the three peaks (p1, p2, and p3),

which can be judged according to the value range of its Y -axis. Figure 3 displays the results in

terms of the elevation of the first peak. For better visibility, we opted to only show the tracking

of the first peak as all peaks tend to be within the same elevation range in our simulated dataset.

The accuracy of each tracking algorithm can be observed based on how close the estimate

is from the groundtruth (shown in Figure 6 (b)). The tracking results of the Bayesian tracking

and Kalman filtering framework on the three peaks closely follows the original peak latency.

Although the signal is affected by noise, the tracking results still reflect the trend of the original

position very well. We can conclude that the tracking algorithm effectively tracked the continuous

waveform under this noise setting (i.e. 5%). The tracking result of LSTM is not so consistent

with the grountruth location, and its tracking result behaves differently for each peak and in

different periods. The tracking result of p1 is better than that of p2 and p3. For p3, the detection
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Peak 1 Noise 0% Noise 5% Noise 10% Noise 15%

Ridge Regression 0.13 0.15 0.19 0.25

Kernel Ridge Regression 0.10 0.11 0.13 0.16

SVM 0.09 0.11 0.19 0.23

LSTM 0.15 0.13 0.15 0.20

Neural Network 0.11 0.32 0.44 0.53

Random Forests 0.09 0.11 0.13 0.15

Peak 2 Noise 0% Noise 5% Noise 10% Noise 15%

Ridge Regression 0.12 0.23 0.43 0.63

Kernel Ridge Regression 0.07 0.07 0.08 0.11

SVM 0.07 0.09 0.14 0.17

LSTM 0.12 0.13 0.15 0.17

Neural Network 0.09 0.16 0.19 0.22

Random Forests 0.09 0.10 0.12 0.13

Peak 3 Noise 0% Noise 5% Noise 10% Noise 15%

Ridge Regression 0.10 0.16 0.25 0.36

Kernel Ridge Regression 0.07 0.08 0.10 0.12

SVM 0.07 0.10 0.17 0.22

LSTM 0.12 0.14 0.16 0.19

Neural Network 0.09 0.36 0.53 0.62

Random Forests 0.07 0.12 0.16 0.19

All Peaks Noise 0% Noise 5% Noise 10% Noise 15%

Ridge Regression 0.12 0.18 0.29 0.42

Kernel Ridge Regression 0.08 0.09 0.10 0.13

SVM 0.08 0.10 0.17 0.20

LSTM 0.13 0.13 0.15 0.18

Neural Network 0.10 0.28 0.39 0.45

Random Forests 0.08 0.11 0.14 0.16

TABLE I: Performance of peak detection algorithms in terms of RMSE after evaluation on clinical ICP data with

varying noise levels (from 0 to 15%).

is poor at the beginning and end of the tracking. The inconsistency in the initial part could be

caused by the initialization phase of the LSTM. Finally, the tracking result of MOCAIP captures

the overall variations of the peak location but does not offer the same level of granularity than

other techniques. This is because MOCAIP is based on a clustering process to achieve peak

detection. The input data is obtained by using a 1-min cluster average. However, it is worth

mentioning that MOCAIP does not require a training process.

1) Missing data: The tracking results in presence missing data are illustrated in Figure 4,

where the blue curve represents the waveform with missing segments, and the red represents
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Peak 1 Noise 0% Noise 5% Noise 10% Noise 15%

Ridge Regression 0.25 0.35 0.47 0.61

Kernel Ridge Regression 0.25 0.26 0.28 0.32

SVM 0.26 0.23 0.26 0.33

LSTM 0.27 0.27 0.27 0.27

Neural Network 0.22 0.33 0.33 0.33

Random Forests 0.27 0.28 0.28 0.28

Peak 2 Noise 0% Noise 5% Noise 10% Noise 15%

Ridge Regression 0.10 0.11 0.12 0.13

Kernel Ridge Regression 0.07 0.07 0.07 0.08

SVM 0.10 0.11 0.11 0.13

LSTM 0.24 0.29 0.36 0.45

Neural Network 0.27 0.33 0.33 0.33

Random Forests 0.30 0.30 0.29 0.30

Peak 3 Noise 0% Noise 5% Noise 10% Noise 15%

Ridge Regression 0.14 0.14 0.14 0.14

Kernel Ridge Regression 0.12 0.13 0.14 0.16

SVM 0.14 0.15 0.15 0.16

LSTM 0.18 0.18 0.18 0.18

Neural Network 0.24 0.31 0.31 0.32

Random Forests 0.26 0.27 0.27 0.28

All Peaks Noise 0% Noise 5% Noise 10% Noise 15%

Ridge Regression 0.16 0.20 0.24 0.29

Kernel Ridge Regression 0.15 0.15 0.16 0.18

SVM 0.17 0.16 0.18 0.21

LSTM 0.23 0.24 0.27 0.30

Neural Network 0.24 0.32 0.32 0.33

Random Forests 0.28 0.28 0.28 0.29

TABLE II: Performance of of peak detection algorithms in terms of RMSE after evaluation on simulated ICP

waveforms with varying noise levels (from 0 to 15%).

the inferred output using one of the tracking algorithms. To enhance contrast, only tracking

results for the missing data are displayed. The missing data segments are randomly distributed

in the whole waveform range. In most cases, the tracking algorithm recovers the missing data

by effectively capturing the trend of the data.

By observing the output predictions of the MOCAIP algorithm, we can see it can approximate

the trend of the peak position even when data was missing. Although MOCAIP does not follow

the details of the changes, it is still useful to get an approximate estimation for missing data

segments. On the other hand, LSTM provides a more refined estimate of the missing data. It
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Fig. 2: Tracking result on an simulated ICP dataset with 5% additive noise. Color curves represent the filtered

peak latency on our simulated dataset using 4 different tracking models: Bayesian tracking, Kalman filter, LSTM,

MOCAIP.

should also be pointed out that only LSTM and MOCAIP algorithms are used for missing data

simulation because both Bayesian tracking and Kalman filter frameworks rely on the input for

tracking, and the frameworks will not work when no input data is provided.

IV. DISCUSSION

Over the last two decades, machine learning algorithms have produced significant breakthrough

in a wide range of domains. We demonstrated in this study the ability of several machine learning

models to achieving high accuracy in a peak detection problem on a quasi-periodic signal; the

intracranial pressure signal (ICP). Among the evaluated techniques, the peak detection error
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Fig. 3: Tracking result on an simulated ICP dataset with 5% additive noise. Color curves represent the filtered

elevation of the first peak on our simulated dataset using 4 different tracking models: Bayesian tracking, Kalman

filter, LSTM, MOCAIP.

of Kernel spectral regression (KSR) was the lowest, whether based on simulated or clinically

acquired data.

We provided comparative results regarding tracking methods used to perform continuous

filtering of the peaks. Bayesian inference, Kalman Filtering, LSTM and MOCAIP algorithms

can be used to incorporate the temporal dependence of neighboring pulses in the peak prediction

process. The results of our experiments show that such frameworks are particularly robust to

noise and missing data.

ICP pulses arise from the blood pressure variation in the cerebral vasculature. In an ICP

pulse, the specific distribution of sub-peaks is affected by capillary, arterial, and venous blood

pressure pulses and their interactions with three major intracranial parts, including the brain
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Fig. 4: Tracking result of peak waveform with 5% noise added (blue represents the peak waveform with noise,

green represents the original peak waveform, and red represents the simulation result of the tracking algorithm).

tissue, the cerebral vasculature, and the cerebrospinal fluid circulatory system. Consequently,

it is conceivable that ICP pulse morphological changes may provide reasonable indications of

changes in these compartments. Also, these changes can be triggered by various pathological

incidents, such as the narrowing cerebral arteries (vasospasm) after subarachnoid hemorrhage

and the development of mass-occupying lesions after a brain injury. Therefore, the long-term

continuous monitoring and recording of the ICP waveform provide the changing trend of the

patient’s physical condition, which is helpful for doctors to conduct pathological analysis of

the state. Moreover, the tracking algorithm can predict the position of the ICP peak in a short

period, which is also helpful for predicting the development of the disease in the clinical setting.

In addition, given the interaction between biological signals, further study on the relationship

between ICP and other biological signals to assist ICP waveform analysis is another direction

to improve peak detection technology.

All the data and code used as part of our experiment will be made publicly available on the lab

website of Prof. Scalzo (http://www.fabiens.net). To the best our knowledge, this would become

the first publicly available and curated dataset of ICP signals with both simulated and clinical

sources. This is provided with the hope that the data and experimental protocol can serve a as

benchmark for the development and evaluation of future peak detection methods in ICP.
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V. CONCLUSION

This paper demonstrates that tracking of ICP waveform morphology can be performed in

real-time with high accuracy using machine learning models such as Kernel spectral regression

(KSR), Support vector machine (SVM), and LSTM. The acquisition of the ICP signal in a neuro-

intensive care unit (NICU) is often associated with signal loss and severe artifacts. To address

these issues, our study demonstrated that peak detection models can be coupled with tracking

models such as Kalman filter and Non-parametric Bayesian inference to obtain robustness to

temporary signal loss. Although these tracking frameworks are demonstrated on ICP waveforms,

they could in principle be used as part of the detection process of other quasi-periodic biological

signals, such as ECG and CBFV.

VI. METHODS

A. Problem formulation

When acquired at a high enough frequency, ICP signals typically exhibit a sequence of

waveform pulses such that each pulse includes three peaks, as illustrated in Figure 5. We

decompose the peak detection process on a raw signal by assuming that the continuous ICP

waveform has been segmented into a set of individual beats (s1, s2, . . . , sn) using a standard

beat segmentation algorithm [10, 13]. This is generally achieved with very high accuracy -

especially when the ECG signal is available. Assuming a segmented ICP waveform, we focus

on two formulations of the problem of peak detection. In the first case, we consider the task of

detecting the three peaks within a single ICP pulse. In the second case, the peak detection is

achieved by a tracking algorithm that exploits the estimated position of the peaks from previous

pulses. In both formulations, a peak location is defined in terms of its temporal location l ∈ R

and intracranial pressure elevation e ∈ R, such that pi∈1,2,3 = {l, e} denotes the i-th peak of the

pulse. The goal is to obtain automatically the position of the peaks in each beat si using a peak

detection algorithm Pd, which can be denoted as Pd(si) = {p1, p2, p3}.

B. ICP Data

1) Clinical dataset: The dataset of ICP signals used in this study was collected from 64

patients receiving treatment for various ICP-related disorders in the NICU. Acquisition of the

ICP was achieved using intraparenchymal microsensors placed in the right frontal lobe. The
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raw ICP waveform was recorded continuously at a sample rate of either 240Hz or 400Hz. 153

segments of ICP signal lasting almost five hours were extracted. ICP and ECG signal were then

pre-processed to segment individual beats to produce a set of 14,230 raw pulses. Among them,

13,611 valid pulses were obtained and formed the clinical dataset used for our simulation. The

dataset is particularly challenging because there is a large variability in the ICP signals due to

the condition of each patient.

Three experienced researchers established the groundtruth by reviewing each ICP pulse and

manually assigning the position of the three peaks. Specifically, the task of the researcher was

to select the right peak candidates for each peak (p1, p2, and p3) among those automatically

detected at curve inflections. Researchers cross-validated their results and, if necessary, they

harmonized them using the annotation of the previous and following pulses as reference. For

a few difficult cases where the researchers could not agree on the position of some peaks, the

pulse was removed from the dataset. This procedure ensured that the groundtruth is not biased to

a specific researcher. A custom-made annotation tool allowed for flagging missing peaks. Within

our dataset, p1 was missed in 1, 717 pulses, p2 was missed in 265 pulses, and p3 was missed

in 34 pulses. Data from two patients was removed due to the device malfunction. The data

was acquired at the Ronald Reagan medical center at the University of California, Los Angeles

(UCLA) and the UCLA Internal Review Board (IRB) approved the usage of this archived dataset.
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2) Simulated dataset: To verify the effectiveness of the peak detection algorithms under

controlled variability, we created a simulated dataset of ICP waveforms. A probabilistic generative

model was used to simulate realistic shape variations of an ICP pulse. The model was formalized

as a Gaussian Mixture model (GMM) composed of three Gaussian components. The Gaussian

Mixture model is a linear combination of Gaussian distributions:

p(x) = ΣK
k=1πk N (x|µk,Σk) (20)

where πk is the weight associated with the k−th component, and the number of components K

was set to 3 in our experiments. The parameters πk, µk,Σk were fitted using the clinical data

using a random sample of 1, 500 ICP waveforms.
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Fig. 6: Illustration of simulated ICP waveforms from our GMM generative model (a) and corresponding latency

for the 3 peaks (p1, p2, p3) over a sequence of generated data (b).

A series of pulses was then generated from this GMM model by incorporating an independent

temporal change ci∈1,2,3 = sin(z) on the mean of each component µk ∈ R
2. The model of the

temporal dynamic was formalized as a sine wave function whose value ck was added to its

corresponding mean µk. It should be noted that two independent sine functions were used: one

that acts on the latency and the other on the pressure of each peak. The generative model was

then used to reconstruct individual waveform pulses at a data sampling rate is 400Hz. The range

of the sine wave was constrained by the fluctuation range observed in our clinical datasets.

Figure 6 illustrate the variations induced by the sine wave on the latency of the three peaks.
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C. Experiments

Our experiments aim at comparing the accuracy of several machine learning models in locating

the peaks within the ICP signal. For both the clinical and simulated datasets, we evaluate the

accuracy of the models in detecting the peaks under a varying amount of noise. We also perform

evaluations to evaluate robustness to missing data.

1) Experiment #1: Peak Detection in Individual Waveforms: The evaluation performed

as part of this experiment is carried out on individual waveforms where the input provided to

the regression model does not include any context or waveforms from previous time-points. The

algorithms evaluated in our benchmark are spectral regression (SR), Kernel spectral regression

(KSR), Neural networks (NN), Support vector machines (SVM), and long short-term memory

models (LSTM).

A 10-fold cross-validation is performed separately on the clinical and simulated datasets. The

ICP waveforms with missing peaks were included as part of the experiments. However, the

missing peaks were ignored from the computation of the error. For both datasets, the input

provided to the machine learning algorithms is the ICP waveform re-sampled at 400Hz. The

root mean square error (RMSE) is used as metric of accuracy and computed per peak and for

each algorithm,

RMSE =

√

∑n

i=1
(yi − ŷi)2

n
(21)

where yi represents the i-th observation, ŷi is the prediction of yi for the given model, and n

denotes the total number of observations. The average error is computed across the 3 peaks

between the actual value of the peaks yi = (p1, p2, p3) and the prediction ŷi = (p̂1, p̂2, p̂3) of the

regression method.

The monitoring of ICP can be adversely impacted by various noise and artifacts (including

electromagnetic interference from other equipment, and self-noise). In practice, it is manifested

by abnormal fluctuations in the ICP waveform. To reflect these signal perturbations and evaluate

the robustness of peak detection algorithm to them, we create noisy replication of our ICP

datasets by adding varying levels of noise (from 5 to 15%) on the original ICP waveform.

2) Experiment #2: Peak detection in Continuous ICP: In this second experiment, the

evaluation is conducted on a series of ICP pulses. In particular, we assume that a regression

algorithms first predicts the position of the 3 peaks. Such prediction, which is affected by

noise and artifacts, is then filtered using a trakcking algorithm to obtain a refined position
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of the peaks by utilizing temporal dependencies between succesive ICP pulses. The tracking

algorithms evaluated are MOCAIP, Nonparametric Bayesian tracking, Kalman filter, and LSTM.

The regression model used to obtained candidate peaks on single waveforms is KSR. Similarly

to our previous experiment, we repeat the evaluation by adding various levels of noise (5 to

15%) to the simulated data.

In some cases, the patients movement or other physiological activities will cause loss of

connectivity, resulting in data loss in the ICP waveform. In the absence of signal, traditional ICP

peak detection algorithms based on a single waveform will fail. To simulate this situation, we

modified the simulated dataset such that some intervals are set to null. This helps verify whether

tracking algorithm can utilize prior information to keep track of the peak over time. To simulate

the missing ICP waveform, we divide the simulated waveform into several groups, and two or

three missing segments of various lengths (2 to 4 pulses missing) are produced in each group

to ensure the randomness of the missing situation and the dispersion of its distribution in the

whole waveform.
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