Influence of bleaching gels formulated with nano-sized sodium trimetaphosphate and fluoride on the physicochemical, mechanical, and morphological properties of dental enamel

Amanda Scarpin Gruba
São Paulo State University (UNESP)

Gabriel Pereira Nunes
São Paulo State University (UNESP)

Mariana Takatu Marques
São Paulo State University (UNESP)

Marcelle Danelon
São Paulo State University (UNESP)

Renata de Oliveira Alves
São Paulo State University (UNESP)

Priscila Toninatto Alves de Toledo
São Paulo State University (UNESP)

André Luiz Fraga Briso
São Paulo State University (UNESP)

Alberto Carlos Botazzo Delbem
São Paulo State University (UNESP)

Research Article

Keywords: Tooth Bleaching Agents, Hydrogen Peroxide, Phosphates, Sodium Fluoride, Esthetics, Nanoparticles

Posted Date: May 22nd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2905282/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

Read Full License
Abstract

Objectives

To evaluate in vitro the effects of sodium fluoride (F) and nano-sized sodium trimetaphosphate (TMPnano) added to a 35% hydrogen peroxide (H$_2$O$_2$) bleaching gel on the color alteration, enamel mechanical and morphological properties, and H$_2$O$_2$ transamelodentinal diffusion.

Materials and Methods

Bovine enamel/dentin discs (n = 180) were divided according to the bleaching gel: 35% H$_2$O$_2$ (HP); 35% H$_2$O$_2$ + 0.1% F (HP/F); 35% H$_2$O$_2$ + 1% TMPnano (HP/TMPnano); 35% H$_2$O$_2$ + 0.1% F + 1% TMPnano (HP/F/TMPnano) and 35% H$_2$O$_2$ + 2% calcium gluconate (HP/Ca). The gels were applied 3 times by 40 min; once each 7-day. Color alteration (ΔE and ΔE$_{00}$), whitening index (ΔWI$_D$), surface (SH) and cross-sectional hardness (ΔKHN), surface roughness (Ra), and transamelodentinal diffusion were determined. Enamel surfaces were evaluated by Scanning Electron Microscopy (SEM) and X-ray Dispersive Energy (EDX). Data were submitted to ANOVA, followed by the Student-Newman-Keuls test (p < 0.05).

Results

ΔE, ΔE$_{00}$, and ΔWI$_D$ were similar among the evaluated gels that produced a bleaching effect after enamel pigmentation (p < 0.001). Mineral loss (SH and ΔKHN), Ra, and H$_2$O$_2$ diffusion were lower for HP/F/TMPnano; the HP and HP/Ca groups presented the highest values (p < 0.001). For SEM/EDX, surface changes were observed in all bleached groups, but less intense with TMPnano.

Conclusions

Gels containing F/TMPnano do not interfere with the bleaching effect and reduced enamel demineralization, roughness, H$_2$O$_2$ diffusion, and morphological changes.

Clinical Relevance:

Whitening gels containing F/TMPnano can be used as a new strategy to increase safety and maintain clinical performance.

1. Introduction

A pleasant or attractive smile is the key to acceptance in interpersonal relationships between individuals in society [1]. In addition, the smile is regarded as one of the most important facial expressions and
denotes essentiality to express friendship, agreement, and appreciation [1, 2]. Thus, dental bleaching is one of the most requested clinical procedures [3, 4] and has become a popular option for patients with dental discoloration [3, 5]. In the office technique, hydrogen peroxide (H₂O₂) is used as a high-concentration bleaching agent (35–40%) [6, 7]. However, despite the great aesthetic satisfaction that the procedure provides, it is known that whitening can also cause undesirable changes in the dental structure [5, 8, 9].

Studies have shown that the greater the concentration of H₂O₂ and the time of exposure of the dental tissue to the bleaching gel [10, 11], the greater the changes in mechanical properties [5, 9], such as mineral loss [6, 9, 12], morphological changes [12, 13], increased roughness [5] of dental enamel, as well as effects that extend to the pulp tissue [8, 14, 15], mainly due to dissociation into reactive oxygen species and other powerful oxidizing agents [10, 11], which culminates clinically in the high rates of sensitivity reported by patients [3, 16]. Even with such inconveniences, in-office bleaching remains the main aesthetic clinical conduct required by patients [1]. In this context, new whitening protocols and approaches have been sought to minimize such therapy harms. Among possible alternatives, the addition of remineralizing agents, such as phosphate salts, to bleaching gels has been studied [6, 9, 17].

Among the available phosphate salts, sodium trimetaphosphate (TMP) has good adsorption on tooth enamel and benefits such as the ability to reduce H⁺ diffusion and facilitate calcium and phosphate diffusion [18, 19] and the ability to bind to OH⁻ groups [6, 19]. Thus, micrometric TMP associated with sodium fluoride (F) has been tested in bleaching gels [6, 17, 20], where it was possible to observe a reduction in mineral loss, diffusion, and transamelodentinal cytotoxicity of H₂O₂ and with similar whitening efficacy of the product [6, 17]. A strategy to further optimize the effect of TMP would be its use in nanoparticulate size, as shown in model studies of caries and dental erosion [18, 21, 22], where the combination of TMP on the nanometer scale (TMP nano) with F provided a superior effect than the use of micrometric TMP [21, 22]. Thus, considering the promising effects of nano-sized TMP on tooth structure, it is assumed that TMP nano could further reduce the diffusion of products derived from H₂O₂ degradation and consequently minimize changes in dental substrates resulting from the bleaching procedure.

Furthermore, it is known that the use of fluoride toothpaste during bleaching treatment has the potential to reduce adverse effects on the morphology and properties of dental tissues, whether applied before [23] or during the bleaching regimen [17, 24]. However, no study so far has evaluated the effect of associating TMPnano with F to the whitening gel, as well as being subjected to a clinical condition in which patients make daily use of fluoridated toothpaste. Thus, the aim of this study was to evaluate, in vitro, the effects of F and TMPnano added to a 35% H₂O₂ bleaching gel on color alteration, enamel mechanical and morphological properties, and H₂O₂ transamelodentinal diffusion. The null hypothesis of the study was that bleaching gels containing 35% H₂O₂ and F/TMPnano showed no difference in promoting the bleaching effect, reducing mineral loss, morphological appearance, roughness, and transamelodentinal diffusion compared to the bleaching gel containing only 35% H₂O₂.
2. Materials and Methods

2.1. Formulation of fluoride toothpaste, bleaching gels, and determination of experimental groups

The toothpaste had the following composition: titanium dioxide, carboxymethyl cellulose, methyl p-hydroxybenzoate sodium, saccharin, peppermint oil, glycerol, abrasive silica, sodium lauryl sulfate, deionized water, and F at the concentration of 1100 ppm fluoride (Merck, Darmstadt, Germany) [18, 21]. The total (TF) and ionic (IF) fluoride concentrations were evaluated [18, 21] using a fluoride ion-specific electrode (Orion 9609 BN, Orion Research Inc., Beverly, Mass., USA) coupled to an ion analyzer (Orion 720 A⁺, Orion Research Inc.) previously calibrated with five standard solutions (0.25, 0.5, 1.0, 2.0, and 4.0 µg F/mL). The total and ionic fluoride concentrations (TF and IF) (mean [SD]; ppm F; n = 3) were, respectively, 1117.1 [26.2] and 1105.2 [19.8]. All of the experimental and commercial bleaching gels had a final pH of approximately 7.0. The pH (mean [SD]; n = 3) of the 1100 ppm fluoride toothpaste was 7.0 [0.2].

The bleaching gels were prepared in each application session since there were no stabilizers in their composition. The basic components of the gels were comprised of thickener (12% Carbopol), bleaching agent (35% H₂O₂), glycerin and water (qs), and NaOH (4 molar) required to maintain a pH of approximately 7.0. Depending on the experimental group, 0.1% sodium fluoride (F) and/or 1% nano-sized sodium trimetaphosphate (TMPnano) was added (synthesis and characterization of the TMP nano based on the study by Danelon et al. [21]; and the concentration used based on the previous study by Akabane et al. [6]). A commercial (marketplace) bleaching gel containing 35% H₂O₂ and 2% calcium gluconate, neutral pH (Whiteness HP Blue, FGM, Joinville, SC, Brazil) was used as the positive control. Thus, five experimental bleaching gels were defined: 1) 35% hydrogen peroxide (HP); 2) H₂O₂ + 0.1% F (HP/F); 3) H₂O₂ + 1% TMP nano (HP/TMPnano); 4) H₂O₂ + 0.1% F + 1% TMPnano (HP/F/TMPnano); 5) H₂O₂ + 2% calcium gluconate (HP/Ca). The sample size per group was 12 enamel/dentin discs, which was based on a previous study [6], adopting surface and cross-sectional hardness as primary outcomes, mean the difference between groups (10 and 2800, respectively), standard deviation (4 and 1500, respectively) an α error of 5% and a β error of 10%. Disks were randomly divided (Excel, Microsoft Corporation, USA) among the 5 experimental groups (n = 12).

2.2. Color alteration analysis

2.2.1. Preparation and pigmentation of enamel/ dentin discs

Enamel/dentin discs (5.7 mm diameter x 3.5 mm thick) were obtained from bovine incisor teeth using an 8 mm diameter grinding wheel under water cooling (4º C). Then, the discs were cleaned in deionized water and stored in a physiological saline solution containing 0,1% thymol at 4ºC [6].
After the initial reading of the color values, determined according to the Commissione Internationale de l’Eclairage (CIE L* a* b* color system), the discs were stored in microtubes (Kasvi K6-0150, 1.5 mL, São José dos Pinhais, PR, Brazil) containing 1 mL of room temperature black tea infusion for pigmentation. The infusion was made with 1.6 g of black tea (Chá Matte Leão, Curitiba, PR, Brazil) for every 100 mL of deionized water [25]. The pigmentation process was monitored for 6 days, and the infusion was changed daily. Then, a new reading of the color values was determined by the CIE L* a* b* [6, 25].

2.2.2. Bleaching gel and toothpaste treatments

The enamel/dentin discs were treated with a slurry of toothpaste prior to the study and during the 21-day time of the experiment. To prepare the slurry, the toothpaste was weighed daily, placed in a glass beaker, added to deionized water at a ratio of 1:3, and shaken to obtain a homogeneous suspension. Each enamel disc was immersed in the slurry (2 mL) in individual vials under agitation on an orbital shaker (SK300, Nova Analítica, São Paulo, SP, Brazil) for 1 min. Then, bleaching gels were applied to the enamel surface (0.04 mL) for 40 min, using a dosing syringe and a micro brush (KG Sorensen, Cotia, SP, Brazil). For 14 days, 3 bleaching sessions were performed at 7-day intervals. The gels were removed with gauze, followed by washing with deionized water for 30 s. Between bleaching sessions, the discs were kept in individual plastic containers containing 2 mL of artificial saliva (1.5 mmol/L of Ca(NO₃)₂*H₂O; 0.9 mmol/L of NaH₂PO₄*4H₂O; 150 mmol/L de KCl; in 0.1 mol/L of sodium cacodylate buffer, pH 7.0); and renewed every day [6].

2.2.3. Calculation of total color alteration and whiteness index for dentistry

The enamel/dentin discs were fixed in black silicone supports with a diameter of 5.7 mm and a thickness of 3.5 mm, standardizing the incidence of the light beam in the Visible Ultraviolet Reflection (UV-2450 Model, Shimadzu, Kyoto, Japan), with wavelength ranging from 400 nm to 700 nm, under standard lighting D65 and an illumination/observation angle of 45/0°. The measurement of colors was performed on the vestibular surface of the enamel after preparation of the discs and their pigmentation, 1st, 2nd, and 3rd bleaching sessions, as well as on the 7th and 14th days after the end of bleaching. Then, the absolute differences (Δ) of the colors coordinates (L*, a*, b*) were calculated between the time analysis (post-staining, post-bleaching, and after 7 and 14 days) and the initial values: ΔL* (positive value indicates more brightness, a negative value indicates darker), Δa* (positive value indicates redder, a negative value indicates greener) and Δb* (positive value indicates more yellow, negative indicates more blue). To determine the total color change between the three coordinates, the following formula was used: ΔE = √[(ΔL*)² + (Δa*)² + (Δb*)²] [6, 25]. Subsequently, the whiteness index for dentistry (WID) was determined according to the following equation: ΔWID = 0.511 L* – 2.324a* – 1.100b* [26]. The CIEDE2000 system was used and the values of ΔE₀₀ were calculated by the formula [27]: E₀₀ = (ΔL/ΚL × Sₐ) + (ΔC/ΚC × Sₐ)² + (ΔH/ΚH × Sₐ)² + (ΔC/ΚC × Sₐ) × (ΔH/ΚH × Sₐ)², where ΔL*, ΔC* and ΔH* are the differences in brightness, chroma, and hue between two specimens, and Rₜ (rotation function) is a function that explains the interaction between chroma and hue differences in the blue region. Sₐ, Sₐ, and
S_H are the weighting functions for the luminance, chroma, and hue components, respectively. K_L, K_C, and K_H are the parametric factors according to different visualization parameters that were defined as 1.

2.3. Surface and cross-sectional hardness and roughness analyses

The enamel surface of the enamel/dentin discs was flattened and polished, to remove approximately 120 µm of the surface enamel, according to a previous study [6]. After polishing, the samples were submitted to initial surface hardness readings (SH) (Micromet 5114, Buehler, Lake Bluff, IL, USA), using a Knoop diamond under static vertical load with 25g for 10 s [6, 9], and also to initial roughness (Ra) using a profilometer (model SJ-401, Mitutoyo, Kawasaki, Japan) with operating with a radius of 2 mm, constant speed of 0.1 mm/s with a load of 5 N and a cut value of 0.25 mm [28]. Enamel/dentin discs, with initial SH values between 342.0 and 378.0 KHN, were randomly distributed (Excel, Microsoft Corporation, USA) in the 5 previously defined experimental groups ($n = 12$). After the 3 bleaching sessions, as described above, surface hardness was done again (final SH), and final Ra was also measured.

After SH and Ra determination, the enamel/dentin discs were sectioned in half, and one of the halves was embedded in acrylic resin and polished [6]. Knoop hardness in the cross-sectional was determined with a load of 5 g/10 s at 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160 e 180 µm from the surface. The integrated area under the curve of hardness values (KHN x µm) was calculated by the trapezoidal rule using the software GraphPad Prism (Prism 7 for Windows, version 7.00, San Diego, CA, USA) [9, 18]. Hereafter, the values were subtracted from the integrated area for sound enamel to obtain integrated loss of subsurface hardness (ΔKHN; KHN x µm) [18, 20–22].

2.4. Determination of transamelodentinal diffusion of H_2O_2

To quantify the amount of H_2O_2 that permeated the dental tissues, enamel/dentin discs ($n = 10$/group) were placed in an artificial pulp chamber (APC) between two silicone rings (5.60 mm internal diameter; 1.78 mm thick; Ref. OR 008 - Rodimar Rolamentos Ltda, Araraquara, SP, Brazil) and sealed with melted pink wax nº 7 (Wilson®, Polidental, Cotia, SP, Brazil) restricting the lateral penetration of the bleaching agent, according to a study by Briso et al. [29]. APCs were placed individually in 24-well cell culture plates (Costar Corp., Cambridge, MA, USA). Each well was filled with 1 mL of sodium acetate buffer solution (2.0 mol/L, pH 4.5 by acetic acid, Sigma Chemical Co, St Louis, MO, USA) and subsequently received the APCs, already containing the disks of enamel/dentin. Thus, the dentin surface remained in contact with the acetate solution during the bleaching protocol, where the bleaching gels were applied once as described above (item 2.2.2) [29]. Then, the amount of 500 µL of buffer solution plus extract was transferred to experimental tubes to react with leuco-crystal violet (0.5 mg/mL; Sigma Chemical Co, St Louis, MO, USA) and horseradish peroxidase enzyme (1 mg/mL; Sigma Chemical Co, St Louis, MO, USA) [29]. The final reaction volume was adjusted to 3 mL with deionized water inserted into a cuvette and the optical density of the solutions was measured at a wavelength of 596 nm (UV-2450, Shimadzu, Kyoto,
Japan) [30]. A standard curve (0.5–5.0 µg/mL) was used to convert the optical density obtained in the samples into lg/mL of H₂O₂.

2.5. Scanning electron microscopy surface examination

Two specimens from each group were examined by scanning electron microscopy (SEM - Carl Zeiss, EVO ILS15, Carl Zeiss NTS LTD, Germany). All discs were gradually dehydrated in an ascending ethanol series (50, 60, 70, 80 and 100%) and coated in gold (Quorum - Q150T E), and then analyzed in SEM at 20 kV under ⋅5000 magnification [31]. Chemical elemental quantification (atomic %) of calcium (Ca), phosphorus (P), oxygen (O) and fluoride (F) on the enamel surface [32] was determined using energy dispersive X-rays (EDX, Oxford Instruments, INCAx - act, 133 eV, England), spatial resolution at ~ 2 µm, and the count time was 7000 s.

2.6. Statistical analysis

The Sigmaplot® for Windows version 12.0 statistical program was used, with a significance level of 5%. For the color alteration data, the different bleaching gels and the time of analysis were considered as variation factors and, as variables, the parameters ΔE, ΔE₀₀, ΔWI₀, SH, and Ra. The data were homogeneous and submitted to analysis of variance (ANOVA) of repeated measurements, followed by the Student-Newman-Keuls multiple comparison test. For the analysis of the ΔKHN and diffusion of H₂O₂, the values were considered as variables, and the bleaching gels as a factor of variation. The values were homogeneous and were submitted to one-way ANOVA followed by the Student-Newman-Keuls test.

3. Results

The bleaching agents evaluated promoted a significant change in ΔE after bleaching sessions (p < 0.001) in previously pigmented enamel (Fig. 1A-C). No differences in ΔE, ΔE₀₀, and ΔWI₀ were observed among the groups at any bleaching application, or throughout the bleaching sessions (p > 0.05) (Fig. 1A-C). All treatments showed similar bleaching effects, regardless of the period evaluated (p > 0.05). The color change was constant from the first bleaching session (Fig. 1A-C). In ΔWI₀, only the HP group showed significant partial regression in whiteness values 7 days after the bleaching procedures (p < 0.05), however, similar values were found between groups 14 days after bleaching completion (Fig. 1B).

All bleaching gels showed a reduction in hardness after the bleaching procedure (p < 0.001; Table 1), and the greatest reduction in hardness value was for the HP group. Compared to the HP group, the addition of F reduced the loss of surface hardness (SHf: p < 0.001), and the bleaching gel containing HP/F/TMPnano presented the highest final surface hardness value (p < 0.001; Table 1). The integrated loss of subsurface hardness (ΔKHN) showed a higher value when the HP/F/TMPnano bleaching gel was applied to enamel (p < 0.001), being 13% and 15% higher compared to the HP and HP/Ca groups, respectively. Furthermore, the addition of F and/or TMPnano promoted the smallest changes in enamel roughness; and the HP group provided higher roughness values after bleaching (Table 1). The bleaching gels HP and HP/Ca showed the highest values of transamelodentinal diffusion of H₂O₂ and the HP/F/TMP nano group had
the lowest value, being 27% and 23% inferior to the values of the mentioned gels, respectively (p < 0.001; Table 1).

Table 1
Mean values (SD) of roughness (Ra) and surface hardness (SH), integrated loss of subsurface hardness (ΔKHN), and transamelodentinal diffusion of H₂O₂ according to experimental gels (n = 12)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Variables</th>
<th>Ra</th>
<th>SH</th>
<th>H₂O₂ (µg/mL)</th>
<th>ΔKHN (KHN x µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>HP</td>
<td>Ra</td>
<td>0.067ᵃᵃ</td>
<td>0.190ᵇᵇ</td>
<td>370.1ᵃᵃ</td>
<td>312.1ᵇᵇ</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.058)</td>
<td>(3.7)</td>
<td>(6.3)</td>
<td>(491.9)</td>
</tr>
<tr>
<td>HP/F</td>
<td>Ra</td>
<td>0.065ᵃᵃ</td>
<td>0.104ᵇᵇ</td>
<td>370.1ᵃᵃ</td>
<td>321.2ᵇᵇ</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.038)</td>
<td>(3.9)</td>
<td>(5.9)</td>
<td>(427.7)</td>
</tr>
<tr>
<td>HP/TMPnano</td>
<td>Ra</td>
<td>0.065ᵃᵃ</td>
<td>0.122ᵇᶜᵇᶜ</td>
<td>370.2ᵃᵃ</td>
<td>314.9ᶜᵇ</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.047)</td>
<td>(4.1)</td>
<td>(5.4)</td>
<td>(410.9)</td>
</tr>
<tr>
<td>HP/F/TMPnano</td>
<td>Ra</td>
<td>0.066ᵃᵃ</td>
<td>0.097ᵇᵇ</td>
<td>370.1ᵃᵃ</td>
<td>349.3ᵈᵇ</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.034)</td>
<td>(2.4)</td>
<td>(4.1)</td>
<td>(389.5)</td>
</tr>
<tr>
<td>HP/Ca</td>
<td>Ra</td>
<td>0.068ᵃᵃ</td>
<td>0.154ᶜᵇ</td>
<td>370.2ᵃᵃ</td>
<td>314.1ᶜᵇ</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.056)</td>
<td>(2.5)</td>
<td>(6.6)</td>
<td>(503.1)</td>
</tr>
</tbody>
</table>

Distinct superscript lowercase letters indicate statistical differences among bleaching gels in each variable (Student–Newman–Keuls test, p < 0.001). Different capital letters indicate the difference between the analysis moment (initial and final) for Ra and SH variables (Student-Newman-Keuls; p < 0.05).

The enamel surfaces of the teeth, observed before carrying out any treatment (sound enamel), were seen to be uniform or with fewer irregularities (Fig. 2A), and a Ca/P ratio of 1.59 (Fig. 2B). The samples subjected to the bleaching protocol showed changes and moderate irregularities in enamel, mainly for the HP group (Fig. 2C) which presented Ca/P ratio of 1.52 (Fig. 2D). Enamel prism exposure with protruding interprismatic enamel was observed in the bleached groups, mainly for the HP/TMPnano group (Fig. 2G); nevertheless, the groups with TMPnano had fewer changes on the surface compared to other groups (Fig. 2G and 2I). HP/F/TMPnano group (Fig. 2I) presented a Ca/P ratio of 1.58 (Fig. 2J), and a surface similar to that observed in the unbleached enamel (Fig. 2A).

4. Discussion
Although dental bleaching is considered a traditional and conservative aesthetic treatment, there are guidelines, precautions, and certain concerns regarding its biocompatibility, especially when highly concentrated bleaching agents are applied. Currently, novel bleaching protocols are being developed to increase the clinical safety and use of the procedure. In the present study, the addition of F/TMPnano did not change the aesthetic performance of the bleaching gel at 35% H$_2$O$_2$; however, the presence of F/TMPnano in the gel reduced mineral loss, surface roughness, transamelodentinal diffusion of H$_2$O$_2$ and morphological changes. Thus, the null hypothesis was partially rejected.

The results of this study indicate that the incorporation of F and/or TMP nano did not interfere with the whitening efficacy of the product, as the analyses showed that in all bleaching gels evaluated the mean total color change (ΔE) was higher than 3.3 (Fig. 1A), which is considered a clinically accepted standard value for noting color difference per perception with the naked eye [33]. Furthermore, for all evaluated groups, ΔWl_D values (Fig. 1B) were positive after bleaching sessions and ΔE_{00} was also greater than 3 (Fig. 1C). This is important data, since for a clinically perceptible color change, $\Delta E_{00} > 0.8$ is required [34], which reinforces the whitening capacity of the gels, regardless of the addition of tested agents. As observed in previous studies [6, 9], the color change is intense in the first bleaching session and less constant in the subsequent ones; this is because the darker chromophores react more easily with free radicals, so it provides a great visual effect immediately in the first application of the bleaching agent with high concentration. It is important to report that testing previously pigmented enamel makes it possible to observe such findings, as well as to directly compare the performance of gels with supplemented agents. Furthermore, it was verified that the gels maintained chromatic stability (without regression) and no differences were observed between the experimental groups. A recent review showed that individual ΔE values and ΔE_{00} values are compatible with the visual perceptibility as well as the effectiveness of the bleaching procedure [34]. Therefore, the inclusion of these three objective parameters (ΔE, ΔE_{00}, and ΔWl_D) provides a more precise and broader discussion.

To obtain a bleaching effect, it is essential that the hydrogen peroxide is able to penetrate through the enamel and dentin, reaching the chromogenic molecules in the tooth structure [8, 25]. However, this substance can promote changes in mineralized dental tissues, as well as being toxic to the pulp tissue, since the greater the penetration of hydrogen peroxide inside the pulp chamber, the more aggressive the bleaching treatment [8, 15]. Several studies suggest that bleaching leads to changes in enamel surface structure (erosion and mineral loss) and these, in turn, alter the biomechanical properties of enamel [6, 13, 28]. Thus, the mechanical (Table 1) and topographic (Fig. 2) alterations observed in the present study reaffirm the conception that bleaching also promotes an erosive process [31]. Furthermore, bleaching also directly affects the organic protein components of the teeth [35], due to the penetration of hydrogen, as well as aggressive treatment that can also lead to changes in the mineral phase, resulting in visible morphological changes of the tooth surface [12, 13], as well decreased Ca/P ratio in enamel chemical composition as observed in high-concentrated peroxides (Fig. 2C and 2D), and indicated by previous reports in the literature [32, 36].
The addition of F/TMPnano to the bleaching gel produced a smaller reduction in hardness, enamel roughness, and hydrogen peroxide diffusion when compared to the HP group. These results were expected since the synergistic action of F/TMP has already been reported in relation to its beneficial effect on erosion processes [22] and dental caries [18, 37, 38]. Furthermore, its protective capacity during bleaching may be due to the fact that TMP is adsorbed on enamel by binding to the OH\(^-\) groups of hydroxyapatites [19] forming a TMP-Ca\(^{2+}\)-PO\(_4\)\(^{-}\) and/or TMP-Ca\(^{2+}\)-F layer on the enamel [39]. Thus, the TMP layer can bind to anions (HO\(_2\)\(^-\); OH\(^-\)) and cations (H\(^+\)) derived from H\(_2\)O\(_2\) dissociation, which explains the more pronounced effect on enamel demineralization, mainly in depth (ΔKHN; Table 1). However, it is not able to completely prevent alterations in enamel roughness and morphology.

Furthermore, the HP group had the lowest KHN values, the greatest positive variation in roughness (Ra) values, topographic alteration, and reduction in enamel calcium and phosphorus values when compared to the other bleached groups. These alterations are probably related to gels with concentrated H\(_2\)O\(_2\), capable of causing a modification/dissolution of mineralized structures when in contact with tooth enamel [9, 13]. The change in physical properties after bleaching is associated with the effects of demineralization caused by diffusion H\(_2\)O\(_2\) and also by the acidic effect of bleaching gels [6, 40]. The SEM images confirmed the results observed for the HP group, showing greater demineralization and an increase in the number of striations, scratch marks, and pitting on the enamel surface, when compared to the groups bleached with F and/or TMP nano. On the other hand, the addition of TMPnano to the bleaching gel showed an enamel surface with fewer irregularities and deformities than the HP group, possibly allowing less attack and promoting a protective effect on the enamel surface (Fig. 2G and 2I). Although such an effect minimized the topographic alteration, it was not enough to prevent the loss of hardness and roughness, which can be related to the apparent exposure of the enamel prisms observed also observed in the SEM (Fig. 2G). Moreover, it is interesting to note that the HP/F group showed greater topographic changes than the HP/TMPnano group, however, the presence of F in the gel composition allowed a higher hardness value (Table 1), probably attributable to the protective activity surface (Des/Re processes) that fluoride exerts on mineralized dental tissues [9, 38]. The HP/F/TMPnano group, on the other hand, presented the best results in all analyzed variables, possibly due to the combination of the good properties of TMP in the nanometer scale associated with the synergistic effect with F [18, 21]. In addition, this protective effect is also evidenced by the higher proportion in the calcium/phosphorus ratio (atomic %) verified in the EDX analysis (Fig. 2J).

The nanotechnology is also attributable to the good results because composites containing nanoparticles have better physical and mechanical properties when compared to traditional composites [41] and are attractive to the development of more composites acting in the processes of demineralization and remineralization of dental enamel [21]. In previous studies, it was verified that the addition of TMP nano to fluoridated vehicles showed a superior effect than conventional products and TMP counterparts on the micrometer scale [18, 21, 22, 37], as particles reduced to nanometer size optimized their effect on the formulation compared to larger particles, which makes them more reactive [18, 21].
It has been shown that after tooth bleaching, using fluoride products minimizes mineral loss and roughness [23] or during bleaching treatment [17, 28]. It is noteworthy that the present study adopted a whitening protocol simulating a clinical condition where treatment with fluoride toothpaste is performed twice daily. Possibly, the consideration of the clinical aspect reflected in minor alterations of the dental substrate could probably be more pronounced. Although enamel roughness may be associated with mineral loss, alteration of topography, or modification of light reflectance [28]; changes in roughness values, when compared to baseline (unbleached) data, were considered like previously reported results [42, 43]. This variation in roughness is probably less intensified due to the daily use of fluoride toothpaste as already reported in the literature [44], and possibly may be clinically less pronounced, although it is necessary to study the effects of clinical bleaching on the dental structure. In addition, it is speculated that the change in roughness can be recovered by the action of human saliva, although such an effect was not observed with the use of artificial saliva.

Previous studies [6, 9, 43, 45] indicated that the addition of Ca and F to bleaching gels did not confer additional protection on the enamel. These findings are corroborated in the present study, where the HP/Ca group presented similar results to the HP group, not having shown an effect in minimizing the alterations caused in the enamel as observed for the HP/F/TMPnano group. Thus, saturating the medium with a calcium source does not seem to guarantee an effect. It is known that the incorporation of remineralizing agents must be able to interact with the enamel in the presence of hydrogen peroxide and at the same time oppose the redox release of its degradation products. Fluoride and TMPnano have been shown to have the ability to be adsorbed to enamel [18, 21], which possibly also justifies our good results for the gel formulated with F/TMPnano. Furthermore, our findings related to SH, ΔKHN, and H₂O₂ diffusion values resemble the study conducted by Akabane et al., [6] who did not use TMPnano, but noted that the F/TMP association at the micrometer scale reduce enamel changes to a greater extent than HP/Ca. Under similar experimental conditions, other studies using higher concentrations of fluoride (0.2% or 0.5%) in 35% hydrogen peroxide (office bleaching agents) also reported less loss of surface hardness compared to using fluoride-free gels without reversal of surface demineralization [40, 46], and no effects were observed deep into the enamel [40]. This particularity of fluoride having a limiting action in depth on dental substrates has already been described in the literature [38, 47].

In general, the data obtained in the present study must be interpreted with caution, seeing that an in vitro model was used to evaluate esthetic clinical procedures widely applied in vital teeth. Within this context and knowing that under physiological conditions the vital tooth presents continuous exudation of fluid through the dentinal tubules, we may suggest that transdental diffusion of H₂O₂ may be reduced, limiting its deleterious effects on the dental tissue. Furthermore, some differences are observed between laboratory conditions and general aspects involving the oral cavity. As with many other interventions, some discolorations and some continuous bleaching processes can be observed in the natural condition of the oral cavity. Therefore, it is recommended to conduct clinical trials to confirm the optimization of the bleaching product containing F/TMP nano, as well as a more accurate assessment of the biological responses to mineralized and pulpal tissues.
5. Conclusion

According to the methodology used in the present study, it was concluded that the addition of F/TMPnano to the bleaching gel does not interfere with bleaching efficacy and significantly reduces the loss of surface and cross-sectional hardness, surface roughness, transamelodentinal diffusion of H$_2$O$_2$, as well as the morphological changes in enamel. Thus, future studies should be performed to assess the aesthetic outcome and biocompatibility of the different in-office bleaching gels.

Declarations

Conflict of interest: The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: The last author holds a patent for a product used in the study, by the National Institute of Industrial Property – INPI/SP, issued on November 05, 2019, under number BR 102013006761-0.

Funding: This study was financially supported by the Coordination of Higher Education Personnel (CAPES, Finance Code 001) and The State of São Paulo Research Foundation (FAPESP - grant number 2021/04318-1) - concession of a scholarship to the first author.

Ethical approval: Not applicable.

Informed consent: Not applicable.

Availability of data and materials: All datasets can be accessed through google drive with the prior request to Prof. Alberto Carlos Botazzo Delbem by e-mail at alberto.delbem@unesp.br.

Author Contribution: Conceptualization: Amanda Scarpin Gruba, Gabriel Pereira Nunes, Alberto Carlos Botazzo Delbem, Priscila Toninatto Alves de Toledo; Methodology: Amanda Scarpin Gruba, Gabriel Pereira Nunes, Mariana Takatu Marques, Renata de Oliveira Alves, Alberto Carlos Botazzo Delbem; Formal analysis and investigation: Amanda Scarpin Gruba, Gabriel Pereira Nunes, Mariana Takatu Marques, Renata de Oliveira Alves; Writing - original draft preparation: Amanda Scarpin Gruba, Gabriel Pereira Nunes, Priscila Toninatto Alves de Toledo, Alberto Carlos Botazzo Delbem; Writing - review and editing: Amanda Scarpin Gruba, Gabriel Pereira Nunes, Alberto Carlos Botazzo Delbem; Funding acquisition: Alberto Carlos Botazzo Delbem; Resources: Alberto Carlos Botazzo Delbem, André Luiz Fraga Briso; Supervision: Alberto Carlos Botazzo Delbem, André Luiz Fraga Briso, Marcelle Danelon.

Acknowledgments

The authors thank the Coordination of Higher Education Personnel (CAPES, Finance Code 001) and The State of São Paulo Research Foundation (FAPESP, grant number 2021/04318-1) for the concession of a scholarship to the first author.

References

46. Furlan IS, Bridi EC, Amaral FLBD, França FMG, Turssi CP, Basting RT (2017) Effect of high- or low-concentration bleaching agents containing calcium and/or fluoride on enamel microhardness. Gen Dent 65(3):66–70

Figures
Figure 1

Mean values of the alteration of: (A) total color alteration (ΔE), (B) whitening index in dentistry (ΔW_{ID}), and (C) color alteration by CIEDE2000 (ΔE_{00}) according to bleaching gels and time of analysis (n=12). Distinct superscript lowercase letters indicate statistical difference among the bleaching gels and each moment of analysis (Student-Newman-Keuls; p < 0.05). Vertical bars mean the standard deviation.
Figure 2

Photomicrographs of surface topography of enamel under SEM (× 5000) and EDX representative of the (A and B) sound enamel, and experimental groups: (C and D) HP, (E and F) HP/F, (G and H) HP/TMP nano, (I and J) HP/F/TMP nano and (K and L) HP/Ca; respectively.