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Abstract

Background: Histological images show huge variance (e.g. illumination, color,
staining quality) due to differences in image acquisition, tissue processing,
staining, etc. The variance can impede many image analyzes such as staining
intensity evaluation or classification. Methods to reduce these variances are
gathered under the term image normalization.

Methods: We present the application of CylceGAN - a cycle consistent
Generative Adversarial Network for color normalization in hematoxylin-eosin
stained histological images using typical clinical data including variability of
internal staining. The network consists of a generator network GB that learns to
map an image X from a source domain A to a target domain B, i.e.
GB : XA → XB . In addition, a discriminator network DB is trained to
distinguish whether an image from domain B is an original or generated one. The
same process is applied to another generator-discriminator pair (GA, DA), for the
inverse mapping GA : XB → XA. Cycle consistency ensures that the generated
image is close to the original image when being mapped backwards
(GA(GB(XA)) ≈ XA and vice versa). We validate the CycleGAN approach on a
breast cancer challenge and a follicular thyroid carcinoma dataset for various
stain variations. We evaluate the quality of the generated images compared to
the original images using similarity measures.

Results: We present qualitative results of the images generated by our network
compared to the original color distributions. Our evaluation shows that by
mapping images from a source domain to a target domain, the similarity to
original images from the target domain improve up to 96%. We also achieve a
high cycle consistency for the inverse mapping by obtaining similarity indices
bigger than 0.9.

Conclusions: CycleGANs have proven to efficiently normalize HE-stained images.
The approach enables to compensate for deviations resulting from image
acquisition (e.g. different scanning devices) as well as from tissue staining (e.g.
different staining protocols), and thus overcomes the staining variations in images
from various institutions.

The code is publicly available at
https://github.com/m4ln/stainTransfer_CycleGAN_pytorch. The dataset
supporting the solutions is available at https://heidata.uni-heidelberg.
de/privateurl.xhtml?token=12493b50-1538-4bdf-aca5-03352a1399a8.
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Background
In both histology and surgical pathology, the inherent individual appearance of

the considered object on the one hand, or the different staining protocols on the

other hand, must be compensated in addition to factors that influence the image

acquisition (e.g scanning devices). This demand applies to hematoxylin-eosin (HE)

staining being the standard method in pathology but also to all other histochemical

and immunohistochemical staining. Regarding HE-staining, solutions and protocols

are standardized at first glance. However, even within a single institution, protocols

may vary slightly and may not be coordinated with other institutes. Especially

when training deep neural networks, for example for image classification, there is

a need for stain normalization of images so that models are transferable to other

datasets.

The term color normalization is an umbrella term for image processing techniques

compensating for effects such as variable illumination, camera setting, etc. This

evident request drives an active research. Conventional image processing such as

color deconvolution or look-up tables with the need for selecting a reference template

slide for normalization are widespread [1, 2, 3, 4, 5, 6]. A particular but quite

similar issue is stain quantification [7, 8]. Recent publications investigate in the

use of deep learning approaches with GANs and show the benefits compared to

the conventional methods [9, 10]. It has also been shown how normalizing images

using GANs can highly improve results of image classification [11] or segmentation

[12]. Mahapatra et al. [13] integrate self-supervised semantic information such as

geometric and structural patterns at different layers to improve stain normalization

with CycleGANs. So far, however, the approaches have been applied to study-like

conditions, whereas it is not clear to what extent these strategies can be used for

typical daily data.

In this work, we investigate the potential and limitation in a clinical setting using

a machine learning-based approach with a cycle consistent Generative Adversarial

Network (CycleGAN) to learn the mapping from one HE-stain variant to an other.

The approach we follow was proposed by Zhu et al. [14]. It learns the image-to-image

mapping between two different HE-stained datasets to generate fake images in each

image domain. We apply the technique to two independent datasets: the Mitosis-

Atypia-14 challenge which provides two image sets of breast cancer tissue scanned

with two different devices, and our HE-Staining Variation (HEV) dataset, which is

follicular thyroid carcinoma slices stained with different protocols. We evaluate the

results using the Fréchet Inception Distance (FID) and the Structural Similarity

Index Measure (SSIM). Our results show that FID scores between generated and

real images from two image domains can be improved by a factor of ≈ 25. We

also achieve a high cycle consistency for the backward mapping by obtaining SSIM

values bigger than 0.9.

Methods
CycleGAN Formulation

The CycleGAN framework used in this work is based on the implementation from

Zhu et al. [14]. It consists of two generator and discriminator pairs each of which

learns the mapping from one image domain to the other. Given the image domains
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A and B with training images XA and XB , the generator GB learns the mapping

from A to B such that GB : XA → XB , while the generator GA learns the mapping

in reverse direction, i.e. GA : XB → XA. A discriminator D is a binary classifier.

It decides whether a sample is real (1), i.e. given from the training dataset, or

fake (0), i.e. produced by the generator. More precisely, discriminator DB learns to

distinguish between real images Xreal
B and generated ones Xfake

B , while in the same

way, DA is trained to discriminate between Xreal
A and Xfake

A .

For training, the objective function to be optimized is modeled by two loss func-

tions: the adversarial loss Ladv [15] and the cycle consistency loss Lcyc [14].

Adversarial Loss

Introduced by Goodfellow et al. [15] the adversarial loss refers to the two-player

game between the generator and the discriminator networks. More precisely, for

the mapping GB : XA → XB , the discriminator DB is trained to classify Xreal
B

and Xfake
B correctly, while the generator seeks Xfake

B being classified as real by the

discriminator. In this way, both, the generator and the discriminator try to fool the

other. Zhu et al. [14] use the least-squares loss as objective since it ensures more

stability during training and generates higher quality results. Thus, the adversarial

loss function is expressed as follows [14]:

min
GB

max
DB

LadvB = EXreal
B

[
DB

(
Xreal
B

)2]
+ EXreal

A

[(
DB

(
GB
(
Xreal
A

))
− 1
)2]

,

with E being the expected value over all instances of Xreal
A and Xreal

B . In the

same way, we can formulate the adversarial loss for the inverse mapping function

GA : XB → XA, i.e.

min
GA

max
DA

LadvA = EXreal
A

[
DA

(
Xreal
A

)2]
+ EXreal

B

[(
DA

(
GA
(
Xreal
B

))
− 1
)2]

,

Thus, the total adversarial loss Ladv is obtained by the sum of both terms LadvA and

LadvB .

Cycle Consistency Loss

Zhu et al. [14] presented this loss function to enforce that both mapping functions

GA and GB learned by the generators are inverse functions. In other words, if an

image is mapped from one domain to the other domain the backward mapping

should bring the image back to its original state. Thus, it must satisfy the cycle

Xreal
A → GB(Xreal

A ) → GA(GB(Xreal
A )) = Xrec

A ≈ Xreal
A and in the same way for

Xreal
B → GA(Xreal

B )→ GB(GA(Xreal
B )) = Xrec

B ≈ Xreal
B for the backward mapping.

Therefore, the total cycle consistency is given by:

Lcyc = EXreal
A

[∥∥GA(GB(Xreal
A

))
−Xreal

A

∥∥
1

]
︸ ︷︷ ︸

Lcyc
A

+EXreal
B

[∥∥GB(GA(Xreal
B

))
−Xreal

B

∥∥
1

]
︸ ︷︷ ︸

Lcyc
B

,

where ‖ · ‖1 denotes the `1-Norm.
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Hence, the total loss function is:

arg min
GB ,GA

arg max
DB ,DA

L = Ladv + λLcyc,

with λ being a regularization factor to control the relative importance of both,

adversarial and cycle consistency losses.

Figure 1 illustrates the CycleGAN structure for mapping an image from domain

A to domain B by GB : Xreal
A → Xfake

B and backwards by GA : Xfake
B → Xrec

A .

The discriminator DB tries to identify if an image is generated Xfake
B or real Xreal

B .

During training, the network is optimized by computing the adversarial loss Ladv

and the cycle consistency loss Lcyc. The same process is done for the reverse direc-

tion when a real sample image Xreal
B is mapped from domain B to domain A, i.e

Xreal
B

GA−−→ Xfake
A

GB−−→ Xrec
B .

Figure 1 Illustration of the applied CycleGAN architecture for mapping images from domain A
to domain B. A real sample image Xreal

A is mapped to domain B by the generator

GB : Xreal
A → Xfake

B and then back to domain A by the generator GA : Xfake
B → Xrec

A . The

discriminator DB differentiates between the generated image Xfake
B and a real sample image

Xreal
B . The same process is done for the reverse direction when mapping a real sample image

Xreal
B from domain B to domain A and backwards, i.e XB

GA−−→ Xfake
A

GB−−→ Xrec
B . During

training, the loss is computed by the adversarial loss Ladv and the cycle consistency loss Lcyc.

Experiments

We train the CycleGAN model to map images from one HE-stain to another. There-

fore, we choose two datasets with different configuration: (a) The Mitos-Atypia-14

challenge dataset in which the HE-stain in images appears different in color and

resolution due to different scanning devices. (b) Our clinical HEV dataset, which

contains images of serial sections that were subjected to different staining protocols.

Mitos-Atypia-14 Dataset

This is a publicly available challenge dataset containing breast-cancer histological

images [16]. The tissue was HE-stained and scanned by two different whole-slide

image (WSI) scanners: the Aperio ScanScope XT and the Hamamatsu Nanozoomer

2.0-HT. Both devices scan images with different resolutions, the Aperio 1539×1376

pixels and the Hamamatsu 1663×1485 pixels at X20 and X40 magnification. From

each scanned set, 7936 tiles are selected for training and 15000 tiles for testing. We

resize the images to 1024×1024 pixels and extract image tiles of 256×256 pixels as

input to our network.

HE-Staining Variation Dataset

This dataset was collected at the Institute of Pathology, Medical Faculty Mannheim,

Heidelberg University. It contains serial sections of a follicular thyroid carcinoma

and is stained with the following HE-staining variants: standard protocol (of the

Institute of Pathology, Mannheim) HE-stain (henceforth HE ), intentionally stained

too short (henceforth shortHE ), intentionally stained too long (henceforth longHE ),
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only stained with hematoxylin (henceforth onlyH ), and only stained with Eosin

(henceforth onlyE ). Figure 2 shows thumbnails from each WSI. For each set, we

extract tiles of 256×256 pixels. We collect 10000 and 15000 tiles for the training

and testing, respectively. The whole dataset including our training patches is made

publicly available [17].

Figure 2 Exemplary miniature image of the WSI that forms the HEV dataset. Serial tissue
sections from a thyroid tissue with a follicular carcinoma with HE-staining. For every slide the
staining protocol is intentionally modified: A: Standard protocol at the Institute of Pathology,
Medical Faculty Mannheim, Heidelberg University (HE) B: Shortened staining time (shortHE) C:
Prolonged staining time (longHE) D: Only hematoxylin-stain (onlyH) E: Only eosin-stain (onlyE)

Training Details

In total, we train five models: first, we train the network on the Mitos-Atypia-14

challenge to learn the mapping between the two image sets XA and XB obtained

by the scanners Aperio and Hamamatsu, respectively. We then perform further

experiments on the HEV dataset, with set A being the standard stained tissue (see

Figure 2 A) and set B being one of the other stained tissues (see Figure 2 B-E).

The experiments are summarized in the appendix in Table 1. For our models, we

use the same network architecture as described by Zhu et al. [14]. We train each

network for 60 epochs in total where the initial learning-rate is set to 2e−4 and then

decreases to zero after every 30 epochs. The regularization factor λ is set to 10 for

all experiments. Adam optimizer is used (β1 = 0.5, β2 = 0.999) with a batch size of

1. We train and evaluate the models on an NVIDIA Quadro P6000 graphics card.

Evaluation

Two different measures are used to assess the quality of the images generated by the

GAN: The Fréchet Inception Distance (FID) and the Structural Similarity Index

Measure (SSIM). They are calculated on basis of python code provided from [18]

and [19].

FID This metric consists of the Fréchet distance also known as Wasserstein-2

distance computed on the basis of feature vectors. Here, a feature vector is the

2048-sized output of a pre-trained inception v3 model applied on one image. For

the whole set of input images we get a sample of feature vectors with m1 as its

collective mean and C1 as its covariance while for the GAN output images we

get m2, C2 respectively [20]. The Fréchet distance is then applied to calculate the

minimum distance between the means and covariances[21]:

d2 ((m1, C1), (m2, C2)) = ||m1 −m2||2 + Tr
(
C1 + C2 − 2

√
C1 ∗ C2

)
.

For identical images the FID is zero, whereas it increases with noise and distur-

bances.
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SSIM For a given original image x and the corresponding output of the GAN y

the features luminance l(x, y), contrast c(x, y) and structure s(x, y) are compared

on basis of the respective average, variance and covariance. The product of these

components with the weighting factors α, β, γ yields the SSIM:

SSIM(x,y) = [l(x,y)]
α · [c(x,y)]

β · [s(x,y)]
γ
.

The SSIM scale ranges from 0 to 1 and equals one only for exact identical images.

An SSIM close to zero hardly represents similar images [22].

Results
The results of our experiments are presented in the following section. For generators

GA and GB , image tiles from image domains A and B can be mapped in both

directions such that Xreal
A

GB−−→ Xfake
B

GA−−→ Xrec
A and Xreal

B
GA−−→ Xfake

A
GB−−→ Xrec

B .

Mitos-Atypia-14

Example results of on the Mitos-Atypia-14 dataset are shown in Figure 3. Columns

A-C refer to the image tiles scanned by the Aperio scanner (Xreal
A ) being mapped

by the generator GB to produce the corresponding image in the domain of the

Hamamatsu scanner (Xfake
B ) and the reconstruction from mapping the image back

to its original domain (Xrec
A ). The same process is done in the reverse direction

for image tiles scanned in domain B being mapped to domain A and backward

(columns D-F). Each row 1-4 presents another example image.

Figure 3 Results gallery from our experiments on the Mitos-Atypia-14 challenge dataset.
Columns A-C refer to the image tiles scanned by the Aperio scanner (Xreal

A ) being mapped by
the generator GB to produce the corresponding image in the domain of the Hamamatsu scanner

(Xfake
B ) and the reconstruction from mapping the image back to its source domain (Xrec

A ), i.e

Xreal
A

GB−−→ Xfake
B

GA−−→ Xrec
A . The same process is done in the reverse direction for image tiles

scanned in domain B, i.e Xreal
B

GA−−→ Xfake
A

GB−−→ Xrec
B (column D-F). Each row 1-4 presents

another example tissue section.

HE-Staining Variation

Figure 4 presents several test results when mapping a standard stained HE-image

Xreal
A to one of the four stains of domain Xfake

B . Each block A-D shows another

example tissue section. The top row of each block represents an exemplary image

tile of the stain to be mapped into (shortHE, longHE, onlyH, onlyE ), while the

bottom row depicts the input image (HE ) and the corresponding output for each

stain.

FID and SSIM Scores

For all five experiments FID scores are shown in Figure 5 A. As reference, FID

scores of all testing images from datasets A and B (blue) are computed. They

range between 31.5 (MA14 ) to 203.68 (onlyE ). Our experiments reach on average

FID scores for real vs. fake of 7.09 (A) and 6.93 (B), while for real vs. rec we obtain

an average of 5.76 (A) and 5.58 (B). When mapping images from a source domain
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Figure 4 Results gallery from our experiments on the HEV dataset for the mapping

GB : Xreal
A → X

fake
B .

Here, the input image is from domain A of the standard stained tissue (HE )

being mapped to domain B corresponding to the image-sets shortHE, longHE,

onlyH, onlyE. Each block A-D shows another example tissue section. The top

row of each block represents an exemplary image tile of the stain to be mapped

into, while the bottom row depicts the input image and the corresponding

output for each stain.

to a target domain, the FID scores compared to original images from the target

domain improve up to 96% (blue vs. orange, red, green and purple). More precisely,

for each experiment it is 76.85% (MA14 ), 91.93% (shortHE ), 89.23% (longHE ),

95.76% (onlyH ), 95.57% (onlyE ). A table with all FID is presented in the appendix

in Table 2.

In addition, SSIM scores (see Figure 5 B are computed between the real and

reconstructed images for each image domain A (blue) and B (orange). Each value

refers to the average SSIM for all test images and the bars represent the correspond-

ing standard deviation (SD). For each set A we obtain SSIM scores in the range

of SSIM = 0.94 (SD = 0.02) (MA14 ) and SSIM = 0.97 (SD = 0.01) (onlyH ),

whereas for set B we obtain scores between SSIM = 0.96 (SD = 0.02) (MA14 )

and SSIM = 0.98 (SD = 0.01) (onlyH ).A table with all SSIM scores is presented

in the appendix in Table 3.

Figure 5 Evaluation of our experiments using FID and SSIM scores. A FID scores between real
and generated (fake, rec) images. For identical images the FID is zero, whereas it increases with
noise and disturbances. B: SSIM scores between real vs. rec images. The SSIM scale ranges from
0 to 1 and is close to zero for hardly similar images. A table with all FID and SSIM scores is
presented in the appendix in Table 2 and Table 3.

Discussion
Our trained models show compelling results, both visually (Figure 3 and Figure 4)

and quantitatively (Figure 5) by obtaining FID scores up to 96% better for images

mapped to a target domain. The trained models are able to fully convert to the

desired color scheme while preserving the structural contents of the original image

due to the cycle consistency constraint leading to SSIM scores greater than 0.9 when

mapping generated images back to their source domain.

Some limitations of the model can be seen when mapping images obtained by dif-

ferent scanning devices with varying resolutions. This can cause a loss in structural

information despite the consistently good quality of the color normalization. With

the HEV data set, the generated images look very realistic compared to the original

images in a target domain without any decline in the image content (see Figure 4).

The CycleGAN approach used here, always learns the mapping between two image

stains and can instantly normalize any unseen image if it is within one of the trained

stains. For each other staining, the network needs to be retrained from scratch.

However, the network is able to learn even from a small amount of images (1000-

10000 per set) which can be obtained from a single WSI. In addition, the images do
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not have to be labeled or paired to learn the mapping between two domains. The

network can learn to add a stain to images which is not present in the source domain,

e.g we are able to create a full HE-stained image from an image which has only a

single stain (onlyH, onlyE ) or vice verca. This may simplify the manual staining

process. How this affects other stains besides HE needs further investigation.

Conclusion
In this work we show that CycleGANs are a powerful tool for normalization of

different variants of HE-stains and tissue types. We validated this approach on two

datasets covering images from different scanning devices, staining protocols and

tissue types. The method has been successfully applied to compensate for variances

resulting from image acquisition as well as from tissue staining while preserving

structural content of the images. In order to make use of this approach in a clinical

manner, the training process should be accelerated, i.e. using transfer learning,

an increased batch size and specialized hardware. The method may be added to

various image processing frameworks at WSI level to be applied to tasks such as

classification or segmentation.

Abbreviations

Abbr. Abbreviation
HE Hematoxylin-eosin

GAN Generative Adversarial Network
FID Fréchet Inception Distance

SSIM Structural Similarity Index Measure
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Appendix

Table 1 Overview of our experiments

Dataset Experiment Name Set A Set B
Mistos-Atypia-14 MA14 Aperio scanner Hamamatsu scanner

HEV

shortHE

standard HE stained

shortened staining time
longHE prolonged staining time
onlyH only stained with hematoxylin
onlyE only stained with eosin

Table 2 FID scores for all experiments between real and generated (fake, rec) images for A and B

FID MA14 shortHE longHE onlyH onlyE
Xreal

A vs. Xreal
B 31.5017 59.4240 51.4460 119.0061 203.6761

Xreal
A vs. Xfake

A 12.1464 4.5465 6.0007 4.1793 8.5647
Xreal

A vs. Xrec
A 4.0544 4.2877 7.8630 4.0363 8.5685

Xreal
B vs. Xfake

B 10.3222 4.0365 5.3136 7.0321 7.9218
Xreal

B vs. Xrec
B 2.6451 6.3173 2.9931 4.9206 11.0160
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Table 3 SSIM scores (SD = standard deviation) for all experiments between real and rec images for
A and B

SSIM (SD) MA14 shortHE longHE onlyH onlyE
Xreal

A vs. Xrec
A 0.9406 (0.0147) 0.9724 (0.0055) 0.9572 (0.0073) 0.9731 (0.0057) 0.9534 (0.0080)

Xreal
B vs. Xrec

B 0.9606 (0.0148) 0.9760 (0.0063) 0.9702 (0.0098) 0.9763 (0.0056) 0.9648 (0.0107)
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